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Abstract
An addition/elimination sequence of selenium halides to pseudo-geminally bis(acetylene) substituted [2.2]paracyclophanes leads to

new bridges with an endo-exo-diene substructure. The reactions have been found to be sensitive to the substitution of the ethynyl

group. The formation of dienes with a zig-zag configuration is related to that observed for non-conjugated cyclic diynes of medium

ring size.
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Introduction
Starting with their discovery in 1949, the [2.2]paracyclophane

molecule and its derivatives have been intensely studied [1-3].

Of particular interest are the geometry and transannular interac-

tions of these molecules, the study of electrophilic aromatic

substitution reactions involving these systems and their ability

to form charge-transfer complexes [4-7]. Much attention is also

being paid to the development of new functionalized [2.2]para-

cyclophanes that can be used in asymmetric synthesis [8], while

the formation of new bridges, particularly functionalized ones,

has been somewhat neglected so far. Functional groups in

pseudo-geminally substituted [2.2]paracyclophanes often

undergo highly specific reactions. This is due to the rigid frame-

work and the short distance between the two aromatic rings

within the [2.2]paracyclophane unit. Thus, unsaturated cyclo-

phane bis(esters) undergo intramolecular photocyclization,

yielding the corresponding ladderane isomers [9-11]. The

ethynyl group is well known for its ability to undergo coupling

reactions, making the pseudo-geminal bis(acetylene) 1 and its

derivatives good candidates for building molecular scaffolding

[12,13]. The reaction between bis(acetylene) 1 and other acety-

lene derivatives has been reported to provide new π-bridges in

[2.2]paracyclophane [14].
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Scheme 1: Reactions of selenium dichloride and selenium dibromide with pseudo-geminal bis(acetylene) 1.

Furthermore, a new way for bridging [2.2]paracyclophanes has

been accomplished by the addition of selenium monochloride to

pseudo-geminally substituted bis(propargylic) alcohols [15].

Organoselenium chemistry has become widely used in organic

synthesis, because of the availability of both electrophilic and

nucleophilic selenium species [16]. The fundamental aspects of

organoselenium chemistry have been comprehensively

described in monographs and review articles [17-20]. For elec-

trophilic selenium species, most of the investigations have been

carried out in order to study the addition mechanism of sele-

nium halides to alkenes [21-23]. Less work has been reported

on the addition of selenyl reagents to alkynes [24,25]. In

contrast to the chemistry of sulfur halides, selenium elec-

trophiles undergo smooth 1,2-additions to triple bonds, leading

to the formation of functionalized vinyl selenides [26]. It has

been reported that the addition of electrophilic selenium

reagents to alkynes preferably yields the corresponding

E-adducts [27].

In continuation of our investigations on the intramolecular inter-

action of chemically disturbed functional groups in pseudo-

geminally substituted [2.2]paracyclophanes, we report here the

results of the addition reactions of selenium halides to pseudo-

geminal bis(acetylenes).

Results and Discussion
Following our interest in the introduction of new bridges to

[2.2]paracyclophanes, we decided to investigate a double addi-

tion reaction of 1 equiv of selenium dichloride to both

triple bonds of 4,13-bis(ethynyl)[2.2]paracyclophane 1; a

bis(vinyl)selenide bridge should result from this interaction.

Thus, by reacting 1 with one equivalent of in situ prepared

SeCl2 [28], in chloroform at 0 °C, a mixture of unexpected ad-

dition products has been obtained (Scheme 1). After separation

by column chromatography, we assigned the structures of

isomeric cyclic dienes 2 and 3 and the tetrachloro derivative 4

on the basis of 2D NMR studies and mass spectrometric

analysis. The configuration of compound 2 as a (17E,19E)-

diene was established from the mutual NOEs between H18 and

H20. These products were obtained in a 1:1.5:0.5 ratio and an

isolated yield of 72% (Table 1, entry 1).

Table 1: Addition reactions to bis(acetylene) 1.

Entry SeX2, equiv Ratio of products Yielda

2 3 4

1 SeCl2, 1 equiv 1 1.5 0.5 72
2 SeCl2, 2 equiv 1 1.3 – 70

5 6 7

3 SeBr2, 1 equiv 1 1.4 0.3 76
4 SeBr2, 2 equiv 1 1.3 – 73

aTotal isolated yield.

Analogously, the reaction of 1 with one equivalent of in situ

prepared SeBr2 [28], in chloroform at 0 °C, provided a mixture

of isomeric cyclic dienes 5 and 6, and the tetrabromo derivative

7 (Scheme 1, Table 1, entry 3) in 76% yield. Again, the struc-

tures of these compounds, as well as the configuration of diene

5, have been established on the basis of 2D NMR studies, mass

spectrometry analysis and a mutual NOE between H18 and

H20. The relative Z stereochemistry of tetrabromo derivative 7

was unambiguously established by X-ray analysis; however,

there is a disordered carbon–bromine bond and the structure

could not be completely refined. The ratio of 5 and 6 was deter-

mined as 1:1.4. It is interesting to note that the synthesis of the

[2.3.2](1,2,4)cyclophane derivative 5 has been previously

reported as the result of bromine addition to bis(acetylene) 1, in

87% yield [13].

In both experiments, the formation of elemental red selenium

was observed. The unexpected reaction products result from the

equimolar interaction of bis(acetylene) 1 with selenium

dihalides; the tetrahalide derivatives 4 and 7, in particular,

prompted us to investigate the interaction of 1 with 2 equiv of

these selenium derivatives. Under the same experimental condi-
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Scheme 3: Plausible reaction mechanism for the addition of phenylselenyl chloride to pseudo-geminal bis(acetylene) 1.

tions, using 2 equiv of selenium dichloride or selenium dibro-

mide, we isolated only the [2.3.2](1,2,4)cyclophane derivatives

2, 3 and 5, 6, respectively; no traces of tetrahalides 4 and 7 were

detected (Table 1, entries 2 and 4). Although unexpected, the

lack of tetrahalides from these experiments proved later to be of

significant importance for the reaction mechanism of selenium

dihalide addition to pseudo-geminal bis(acetylene) 1.

The unexpected formation of [2.3.2](1,2,4)cyclophane deriva-

tives 2, 3 and 5, 6, then induced us to investigate the addition

reaction of phenylselenyl chloride to 4,13-bis(ethyn-

yl)[2.2]paracyclophane. Surprisingly, the addition of 2 equiv of

PhSeCl to bis(acetylene) 1 again provided a mixture of dienes 2

and 3 along with diphenyl diselenide, in a 70% total isolated

yield (Scheme 2).

Scheme 2: Reaction of phenylselenyl chloride with pseudo-geminal
bis(acetylene) 1.

The ratio of isomeric dienes 2 and 3 was again 1:1.5, as resulted

from the SeCl2 addition to 4,13-bis(ethynyl)[2.2]paracyclo-

phane. Moreover, an important experimental observation was

the fact that diphenyl diselenide was formed in an equimolar

amount with the isomeric dienes. This indicates a common

intermediate for the reaction products from which elimination

of diphenyl diselenide provides dienes 2 and 3.

Based on previously reported investigations on the mechanism

of the reaction of phenylselenyl chloride with selected steri-

cally hindered alkenes [29], the most probable mechanism

involves, in a first step, the addition of one equivalent of

PhSeCl to one of the triple bonds of 1 resulting in the forma-

tion of episelenonium ion 8 (Scheme 3). The episelenonium ion

8 should equilibrate with the ring-opened form, a benzylic type

carbocation; the interaction of this intermediate with the

opposing ethynyl substituent provides adduct 9. For steric

reasons the chlorine anion attack from "outside" leading to

intermediate 10. The reaction of 10 with the second equivalent

of PhSeCl leads to selenonium ion 11; once the diphenyl dise-

lenide leaving group is formed, the addition of chloride counter-

anions from both directions is accompanied by the formation of

[2.3.2](1,2,4)cyclophane derivatives 2 and 3. Most probably

compound 3 is formed under kinetic control, diene 2 being ther-

modynamically more stable.

With regard to the addition of selenium dihalides to bis(acety-

lene) 1, the reaction mechanism should follow a similar course,

consisting of the formation of a selenonium ion of type 10

rather than the addition of the selenium electrophiles to the

second triple bond. This involves elimination of diselenium

dihalides with the formation of dienes 2, 3 and 5, 6. The forma-

tion of diselenium dihalides appears to be correlated with the

presence of tetrahalides 4 and 7 among the reaction products

when only one equivalent of selenium dihalides is used. Disele-

nium dihalides could be the source for the remaining two

halogen atoms either by disproportionation, which generates

molecular chlorine or bromine [30], or/and by decomposition

(e.g., Se2Br2 + Br− → BrSeSe− + Br2). As mentioned before,

we always noticed the formation of elemental red selenium.

These assumptions are supported by the outcome of the reac-

tion when 2 equiv of selenium dihalides were used (Table 1,

entries 2 and 4).

The fact that the ratio of the isomeric dienes is almost identical

with those determined for entries 1 and 3, together with the lack

of tetrahalide derivatives, suggests that the second equivalent of
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Scheme 4: Reactions of selenium dichloride and selenium dibromide with 4,13-bis(propyn-1-yl)[2.2]paracyclophane (12).

Table 2: Addition reactions to 4,13-bis(propyn-1-yl)[2.2]paracyclo-
phane 12.

Entry Selenium electrophile,
equiv

Ratio of
products

Yielda

13 14

1 SeCl2, 1 equiv 1 0.6 76
2 SeCl2, 2 equiv 1 – 70
3 PhSeCl, 2 equiv 1b – 56

15 16

4 SeBr2, 1 equiv 1 0.6 64
5 SeBr2, 2 equiv 1 – 62

aTotal isolated yield. bAlong with an equimolar amount of diphenyl
diselenide.

selenium dihalide acts as described in Scheme 3 for phenylse-

lenyl chloride. This reaction appears to be faster than the

involvement of diselenium dihalides in generation of tetra-

halides 4 and 7 from incompletely reacted starting materials.

Although our synthetic procedure involves an addition/elimina-

tion protocol of selenium derivatives, the formation of isomeric

endo-exo-dienes 2, 3 and 5, 6 resembles the zig-zag cycliza-

tions of nonconjugated cyclic diynes of medium ring size

reported by Gleiter [31,32].

In order to check the limits of these selenium-mediated

intramolecular interactions, we decided to extend the study to

another pseudo-geminal bis(acetylene), 4,13-bis(propyn-1-

yl)[2.2]paracyclophane 12 (Scheme 4). Thus, by reacting

bis(acetylene) (12) with 1 equiv of selenium dichloride we

isolated only the (17E,19E)-diene 13 and tetrachloride deriva-

tive 14 in 76% yield (Table 2, entry 1). The lack of isomeric

diene (17E,19Z) could be explained as the result of steric hin-

drance induced by the presence of methyl groups at the acety-

lenic carbon atoms. This forces the addition of a chloride anion

to a methylated intermediate of type 11 to take place in the way

that provides only the thermodynamically stable (17E,19E)-

[2.3.2](1,2,4)cyclophane derivative 13. The structure of this

Figure 1: Molecular structure of compound 13. Ellipsoids represent
50% probability levels. Selected molecular dimensions (Å, °): C17–C20
1.337(3), C18–C19 1.341(3), C18–C19–C4 128.9(2), C17–C20–C21
129.3(2).

compound was unambiguously proved by X-ray crystallog-

raphy (Figure 1). A colourless tablet 0.35 × 0.2 × 0.08 mm was

used to record intensity data to 2θ 56.6° on an Oxford Diffrac-

tion Xcalibur E diffractometer using monochromated Mo Kα

radiation (λ = 0.71073 Å). Crystal data: C22H20Cl2, monoclinic,

P21/c, a = 9.0685(3), b = 8.0240(3), c = 23.1441(8) Å,

β = 93.423(3)° (at 100 K), Z = 4. Structure refinement: The

structure was treated as a non-merohedral twin (by 180° rota-

tion about the a axis). Refinement on F2 using the program

SHELXL-97 [33] proceeded to wR2 0.117 (all data), R1 0.046

(F > 4σ(F)), twinning ratio 0.0481(6), S = 1.05, Δρ = 0.4 e Å–3.

CCDC-997241 contain the supplementary crystallographic data

for compound 13. These data can be obtained free of charge

from the Cambridge Crystallographic Data Centre via http://

www.ccdc.cam.ac.uk/data_request/cif. Furthermore, the reac-

tion of 12 with 1 equiv of selenium dibromide follows the same

course, providing only (17E,19E)-diene 15 and tetrabromide

derivative 16 in 64% yield (Table 2, entry 4).

http://www.ccdc.cam.ac.uk/data_request/cif
http://www.ccdc.cam.ac.uk/data_request/cif
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In support of the proposed reaction mechanism, the reaction of

4,13-diyne 12 with 2 equivalents of selenium dichloride or sele-

nium dibromide provided only (17E,19E)-diene 13 and 15;

again, no traces of tetrahalide derivatives were identified

(Table 2, entries 2 and 5). The addition of phenylselenyl chlo-

ride to 12 provides additional support to the proposed reaction

mechanism, as only diene 13, along an equimolar amount of

diphenyl diselenide, was obtained (Table 2, entry 3).

Conclusion
We present here an addition/elimination sequence of selenium

halides to pseudo-geminally bis(acetylene) substituted

[2.2]paracyclophanes that leads to a new bridge with an endo-

exo-diene substructure. The reactions have been found to be

sensitive to the substitution of the acetylenic bond.

Supporting Information
Supporting Information File 1
Detailed experimental procedures, supplementary

spectroscopic and X-ray data.
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