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A B S T R A C T   

Background and Purpose: Clinical Artificial Intelligence (AI) implementations lack ground-truth when applied on 
real-world data. This study investigated how combined geometrical and dose-volume metrics can be used as 
performance monitoring tools to detect clinically relevant candidates for model retraining. 
Materials and Methods: Fifty patients were analyzed for both AI-segmentation and planning. For AI-segmentation, 
geometrical (Standard Surface Dice 3 mm and Local Surface Dice 3 mm) and dose-volume based parameters were 
calculated for two organs (bladder and anorectum) to compare AI output against the clinically corrected 
structure. A Local Surface Dice was introduced to detect geometrical changes in the vicinity of the target vol-
umes, while an Absolute Dose Difference (ADD) evaluation increased focus on dose-volume related changes. AI- 
planning performance was evaluated using clinical goal analysis in combination with volume and target overlap 
metrics. 
Results: The Local Surface Dice reported equal or lower values compared to the Standard Surface Dice (ano-
rectum: (0.93 ± 0.11) vs (0.98 ± 0.04); bladder: (0.97 ± 0.06) vs (0.98 ± 0.04)). The ADD metric showed a 
difference of (0.9 ± 0.8)Gy for the anorectum D1cm3 . The bladder D5cm3 reported a difference of (0.7 ± 1.5)Gy. 
Mandatory clinical goals were fulfilled in 90 % of the DLP plans. 
Conclusions: Combining dose-volume and geometrical metrics allowed detection of clinically relevant changes, 
applied to both auto-segmentation and auto-planning output and the Local Surface Dice was more sensitive to 
local changes compared to the Standard Surface Dice. This monitoring is able to evaluate AI behavior in clinical 
practice and allows candidate selection for active learning.   

1. Introduction 

Every step in the radiation therapy (RT) workflow has been exposed 
to Artificial Intelligence (AI) solutions and the benefits have been 
demonstrated [1–4]. However, most studies report on retrospective or 
simulated evaluations, which does not represent a clinical setting [5]. 

To date, auto-segmentation tools contour a variety of structures on 
both CT and MR with high accuracy [6–10]. Some papers even report 
feasibility of treatment plan creation based on AI generated structures 
[11]. However, AI-segmented regions of interests (ROIs) close to the 
target volume still need verification [12,13]. Small user-adjustments 
also remain necessary to ensure quality and guideline compliance, 
mainly in case of changing guidelines or image acquisition protocols 

[14]. 
Automated treatment plan generation in general improves planning 

efficiency and reduces plan quality variability [15]. Different ap-
proaches are available and able to create treatment plans for a variety of 
pathologies and dose prescriptions [16–19]. Despite these benefits, the 
main challenges remain safe implementation, ongoing maintenance of 
an AI model and adaptation to changing workflows and procedures [20]. 
Stereotactic body radiation therapy (SBRT) treatments, delivering high 
doses in a limited number of fractions, require even more stringent 
quality assurance (QA) measures [21]. 

Guidelines for safe AI implementation and QA were published [22] 
and the success rate of AI in RT will largely depend on the interpret-
ability and data-model dependency [23]. Also, data standardization and 
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integration into existing clinical workflows remains a challenge [24]. 
Validation and commissioning reports help documenting intended use 
and limitations of a model. Reviewing automated plans using checklists 
will improve patient safety as well [25]. However, automated and in-
dependent QA of the AI models is preferable as more efficiency in the 
radiotherapy workflow is needed [26]. Uncertainty is embedded in AI 
models and continuously monitoring the behavior on unseen data can 
make AI even more efficient by guiding users towards cases that need 
attention [27]. 

Continuously monitoring AI output in clinical routine benefits from 
the large number of patients, but also requires new, combined metrics, 
both geometrical and dose-volume related, to detect the clinical rele-
vance of anomalous output and to allow the selection of appropriate 
datasets for further optimization of AI models within the framework of 
expert-augmented machine learning [28]. 

This study investigated how problem-specific clinical knowledge 
from experts can be automatically extracted from an AI supported 
workflow using a combined analysis of both geometrical and dose- 
volume metrics. Performance of both segmentation and planning 
models, clinically implemented for SBRT prostate treatments, was 
evaluated. In addition, metrics with specific thresholds were proposed to 
detect outliers for model retraining. 

2. Material and Methods 

2.1. Patient data 

Fifty SBRT prostate cancer patients were simulated on a Brilliance -
Big Bore (Philips, The Netherlands) or a SOMATOM Go-Sim CT scanner 
(Siemens, Germany). All auto-segmentations and automated treatment 
plans were created in our treatment planning system (TPS) (RayStation 
11B, RaySearch Laboratories AB, Sweden) and all AI models were 
commercially available and trained, validated and tested by the com-
pany. The AI-segmentation model was initially trained on local data of 
the Iridium Netwerk (Belgium), and data of the University Health 
Network (UHN) (Canada) was used for AI-planning model training. All 
patients were treated at the Iridium Netwerk following the PACE Trial 
guidelines (ClinicalTrials.gov Identifier: NCT01584258) in five 

fractions, received a dose of 7.25 Gy per fraction to the PTV, which was a 
uniform expansion of the CTV of 5 mm, except in the posterior direction 
where a margin of 3 mm was used. The training dataset of UHN was 
based on a uniform PTV expansion of 7 mm. Due to de-identified nature 
of the data, the need for ethics review was waived for this retrospective 
study. 

2.2. Clinical AI models 

The Deep Learning Segmentation (DLS) model (RSL Male Pelvic CT 
(v1.0.0), RaySearch Laboratories AB, Sweden) segmented five different 
organs (prostate (as CTV), anorectum, bladder and left and right femoral 
head) and used the simulation CT as input and outputted deep learning 
ROIs (RDL) based on the ACROP and RTOG guidelines [29,30]. In clin-
ical routine, contours were reviewed by a radiation oncologist (RO) and 
corrected when needed, providing planners with clinically approved 
ROIs (Rclin) (Fig. 1). The CTV generated by the model differed from the 
clinically used CTV on two accounts: inclusion of seminal vesicles and 
the use of MRI. As described in the PACE Trial guidelines, part of the 
seminal vesicles will be included in the CTV, depending on the patient’s 
risk group (low, intermediate or high). Additionally, MRI imaging was 
used in clinical routine to determine the anatomical borders of the 
prostate, which impacts the CTV contour. Therefore, the CTV contour 
was not further evaluated. 

The Deep Learning Planning (DLP) model configuration (RSL-Pros-
tate-3625-SBRT (v3.0.0), RaySearch Laboratories AB, Sweden) con-
sisted of a two-step approach: prediction/mimicking of a 3D-dose 
distribution based on input ROIs, followed by a post-processing opti-
mization. The latter facilitated model sharing between clinics as pre-
diction/mimicking highly relies on the training dataset, the post- 
processing allowed additional output tuning based on local, clinical 
needs. A deep learning generated plan (PDL) was the result of running 
the model (Fig. 1). An optional ‘Fine-tune optimization’ step allowed 
manual tweaking of the treatment plan to fulfill most of the patient 
specific requirements, if appropriate. This final plan was the clinical 
plan (Pclin) which was used for treatment delivery. 

Prior to clinical use, DLS and DLP model commissioning was per-
formed on five patients. For DLS, all RDL‘s were evaluated by an 

Fig. 1. Schematic overview of a deep learning guided contouring and dose planning workflow. The input is the CT image on which the DLS model generates AI 
contours RDL, followed by a radiation oncologist’s review resulting in contours Rclin. Based on Rclin, the DLP model creates plan PDL which can be further optimized by 
a planner leading to plan Pclin within the fine-tune optimization step. All datasets (RDL, Rclin, PDL, Pclin) are stored in the database and were used for DLS and 
DLP monitoring. 
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experienced radiation oncologist (RO) and scored based on quality and 
timesaving. For DLP, the model’s output PDL was retrospectively 
compared against manually created, clinically used plans and quality 
was scored using the Plan Quality Index (PQI) [31]. To assess treatment 
machine deliverability, patient specific plan QA was performed using 
the SunCHECK platform (Sun Nuclear Corporation, Melbourne, USA). 

2.3. Auto-segmentation performance monitoring 

Continuous monitoring compared RDL with Rclin using both 
geometrical and dose-volume parameters on bladder (#50) and ano-
rectum (#50) ROIs. The geometrical performance of the model was 
assessed via the Standard Surface Dice 3 mm and a new Local Surface 
Dice 3 mm. Both metrics were calculated based on following definition 
of a Surface Dice with a tolerance of 3 mm: 

Surface Dice(SDLS, Sclin, 3mm) =
|SDLS∩B3mm

clin |+|Sclin∩B3mm
DLS |

|SDLS |+|Sclin |
where SDLS and 

Sclin were the surfaces of RDL and Rclin and B3mm
DLS and B3mm

clin were the 
tolerance regions, 3 mm in- and outside the corresponding surface S 
[32]. The Standard Surface Dice used the entire ROI volumes as input for 
SDLS and Sclin. On the other hand, the Local Surface Dice only evaluated 
differences between S′

DLS and S′
clin where S′ is the surface S cropped at the 

transversal slices 2 cm away from the target, as visualized in the sagittal 
plane of Fig. 2 and this distance was chosen based on used thresholds in 
the online adaptive setting [33,34]. The Standard Surface Dice already 
provided clinically relevant and quantitative measures [35,36], the local 
variation further increased the focus on the clinically relevant changes 
in the vicinity of the target. Dose-volume impact of the applied changes 

to RDL was investigated by evaluating different dose volume constraints 
for both RDL and Rclin on the clinically approved dose distribution Pclin. 
The absolute dose difference (ADD) at different clinically relevant dose 
levels, as listed in Table 1, were reported next to the average dose 
(Daverage) and the near maximum dose (D0.03cm3 ). For every dose volume 
constraint, the absolute dose differences ADD = |Dclin – DDLS| were 
calculated as a change in a contour might have an impact on the re-
ported dose value. Segmented organs were categorized into four groups, 
based on an ADD of 100 cGy and a mean Local Surface Dice minus one 
Standard Deviation (SD). Zone 1 resembled patients with a high Local 
Dice score and an ADD less than 100 cGy, while in Zone 2 the reported 
ADD became larger than 100 cGy. Zone 3 contains patients with a Local 
Dice score that was one SD less than the mean Local Dice. In Zone 4 both 
reported values showed larger deviations. Patient with hip prostheses 
were marked with a red border. 

2.4. Auto-planning performance monitoring 

In clinical routine, PDL was autonomously created via the DLP pro-
cess and a consistent shape of the dose distribution (Fig. 2) was obtained 
for all fifty patients. Pclin underwent minor adaptations from scaling to 
the dose prescription to further optimize the plan for better fulfilling the 
clinical goals or finding a different balance between OAR sparing and 
target coverage. To quantify the differences between PDL and Pclin, 
clinical goals of Table 1 were evaluated on both dose distributions 
against Rclin volumes. Additionally, spatial information, such as ROI 
volumes and overlap ratios between ROI and PTV, were reported as the 
dose prediction method uses ROIs as input to the model. Geometrical 
metrics related to the PTV margin are standardized using: 

x′ = x − average(X)
stdev(X)

with x the PTV volumes, or the overlap volume between the PTV and 
an organ, and X the corresponding values of all fifty plans. The applied 
scaling allowed comparing volume-based metrics between the training 
set and the local data in case different PTV margins were used. All these 
parameters were calculated for both the autonomously created PDL’s and 
clinically approved Pclin’s. 

Target volume reported standardized PTV volumes because of the 
difference in PTV margin and the standardized overlap volume consid-
ered the intersection with both bladder and anorectum. Model’s per-
formance was classified based on the optimal clinical goal analysis for 
both PDL and Pclin and four different groups could be distinguished: 
green dots resemble patient ROIs for which PDL did achieve the optimal 
dose constraint and not further optimization of Pclin was needed (PDL 
was selected for treatment). In case PDL did not pass the clinical goal, but 
Pclin did, the plan was marked orange. Patient ROIs for which both PDL 

Fig. 2. Typical output of DLS and DLP models. White, DLS generated ROIs are plotted next to the clinical correct yellow bladder and brown anorectum. On the 
sagittal plane, the dashed red lines mark the boundaries for the Local Surface Dice calculation. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Table 1 
Mandatory and optimal ROI dose constraints for SBRT.   

Dose volume constraints  

Dose (Gy) Minimum volume (%) 

Target  Mandatory Optimal 

PTV 36.25 90 95  
Dose (Gy) Maximum volume (% or cm3) 

OAR  Mandatory Optimal 
Rectum 18.1 50 %  

29.0 20 %  
36.0 2 cm3 1 cm3 

Bladder 18.1 40 %  
37.0 10 cm3 5 cm3 

Femoral heads 14.5 – 5 % 
Bowel 18.1 5 cm3  

30.0 1 cm3  

Penile bulb 29.5 – 50 % 
Urethra 42.0 – 50 %  
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and Pclin were not able to fulfill the most stringent clinical goal were 
marked as red. Finally, if a different compromise between organ sparing 
and target coverage was preferred a dot can turn black in case PDL did 
pass the clinical goal, but Pclin did not. 

To compare reported means, a T-test for two independent samples 
was performed in Python 3.9 using the SciPy package. 

3. Results 

3.1. Model commissioning 

The commissioning phase on five patients revealed necessity of no 
(cf. femoral heads) to minor (cf. bladder, anorectum) corrections with 
high timesaving for DLS. For DLP, a significantly (p < 0.001) better 
sparing of the anorectum (V18.1 Gy = (23.9 ± 7)% for the manual plan 
and (15.3 ± 6)% for PDL) is reflected in a better PQI for PDL (65.4 %) 

compared to manual planning (74.4 %). No other significant clinical 
goals differences were detected. In general, the number of Monitor Units 
increases when comparing manual plans against PDL: (1963 ± 192) and 
(2680 ± 200) (p < 0.001) respectively. The gamma pass rate (3 %2mm) 
remained identical: (100 ± 0.1)% for manual plans and (99.9 ± 0.2)% 
for PDL. 

3.2. Auto-segmentation – Performance monitoring 

The Standard Surface Dice 3 mm and the Local Surface Dice 3 mm 
reported values of (0.98 ± 0.04) and (0.93 ± 0.11) (p = 0.006) 
respectively for the anorectum, and (0.98 ± 0.04) and (0.97 ± 0.06) (p 
= 0.3) for bladder. The anorectum was evaluated against four different 
ADD’s: D0.03cm3 (0.5 ± 0.5)Gy, D1cm3 (0.9 ± 0.8)Gy, D2cm3 (1.3 ± 1.2)Gy 
and Daverage (0.6 ± 0.6)Gy (p < 0.001). Bladder reported ADD’s of (0.2 

± 0.3)Gy,(0.7 ± 1.5)Gy, (1.5 ± 2.3)Gy and (0.6 ± 1.2)Gy (p < 0.001) 

Fig. 3. On the x-axis, Absolute Dose Difference (ADD) for anorectum and bladder were reported for different critical volumes. On the y-axis, the Local Surface Dice is 
plotted and the color of each dot resembles the Standard Surface Dice as shown by the color bar. The dashed lines resemble the ADD of 1 Gy and the first standard 
deviation of the Local Surface Dice. Each graph is divided into four zones, reflecting perfect DLS segmentations in zone 1, minor corrected DLS ROIs with large dose- 
volume impact (zone 2), major corrected DLS ROIs outside the high dose region and less clinical impact in zone 3 and zone 4 shows major corrections with large 
difference in ADD. 
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for respectively D0.03cm3 , D5cm3 , D10cm3 and Daverage. All information is 
visualized in Fig. 3. 

3.3. Auto-planning – Performance monitoring 

Clinical goal evaluation revealed that PDL did fulfill all mandatory 
clinical goals (Table 1) in 90 % of the cases, while all where fulfilled in 
Pclin. The success rate dropped to 32 % and 74 % respectively for PDL and 
Pclin when the optimal dose constraints were evaluated. The geometrical 
analysis showed significant volume differences between the training and 
the local dataset for respectively PTV ((154 ± 45)cm3; (120 ± 50)cm3 

with p < 0.001), bladder ((141 ± 51)cm3; (226 ± 136)cm3 with p <
0.001) and rectum ((58 ± 18)cm3; (76 ± 29)cm3 with p < 0.001). 

Fig. 4 also reveals clinical data points that were outside the first SD of 
the training data. 

4. Discussion 

Model commissioning proved its advantage with respect to both time 
and quality of models’ output. Nevertheless, the results largely depen-
ded on the quality and variety of the commissioning test set and even 
large retrospective studies are not representative and not able to provide 
a full estimate of the models’ clinical behavior [5]. Also, retrospective 
analysis often compared against ground truth datasets for both seg-
mentation and planning models [37–39]. So, proper performance 
monitoring tools are appropriate and must deal with variations inherent 
to a clinical workflow such as, due to timesaving, mainly relevant seg-
mentation errors will be corrected in the vicinity of the target volumes as 
this will impact the dose distribution and the lack of ground truth data 
[12]. For DLP, different PTV margins compromise direct comparison 
between training and local datasets. Despite the feasibility to automat-
ically create deliverable treatment plans, detecting sub-optimal created 
plans remains a challenge [40]. 

DLS performance monitoring must be able to detect local and 
certainly small changes with a large potential impact on the dose dis-
tribution. Fig. 3 shows that the Local Surface Dice is more sensitive 
compared to the Standard Surface Dice in cases where the Standard Dice 

is high (>0.9), but the Local Dice score is low (<0.7) and even signifi-
cantly different in case of rectum analysis. Additionally, the ADD im-
proves revealing cases with a high Local Surface Dice (>1SD) but with 
large (>1Gy) difference in reported dose. Literature already showed the 
dose-volume impact, but either a new plan was optimized, introducing 
additional uncertainty [13], or only ROIs were reported further away 
from high doses [41]. By comparing both RDL and Rclin to the approved 
dose distribution of Pclin, no plan optimization bias was introduced. The 
combination of both geometrical and dose-volume metrics proves its 
advantage as the Local Surface Dice is sensitive to detect large deviations 
close to the target volumes (Fig. 3, zone 3 and 4) and the ADD can detect 
small changes in the vicinity of the high dose region (Fig. 3, zone 2). The 
bladder in Fig. 2 is a zone 2 example. Deviations in zone 3 can be 
categorized as clinically less relevant with no major impact on the dose 
distribution, while the opposite is true in zone 4. Fig. 3 also shows that 
D0.03cm3 and Daverage are more robust as a dose-volume metric compared 
to the D1cm3 , D2cm3 , D5cm3 or D10cm3 as the mean ADD is higher for the 
latter and differ significantly. Too small volumes (D0.03cm3 ) are not 
sensitive enough in case a ROI shifts in a homogenous dose distribution. 
Further, average doses report on too large volumes, which decreases 
sensitivity as well. In addition to previous papers, a minimal critical 
volume (>1cm3) is recommended in case of dose-volume analysis of AI 
segmented contours. A different dose-volume analysis can be obtained 
by creating a treatment plan directly on RDL to investigate how DLS does 
impact the dose distribution. As this approach inherently increases the 
user interaction, we currently only evaluated the ADD parameter. 

Femoral head and prostate segmentations were not reported. The 
former was never adapted manually, leading to a Standard Surface Dice 
score of 1 for all femoral heads, both left and right. The latter was 
impacted by the local delineation guideline of the prostate contour and 
the superposition of Gaussian distributions when plotting the clinical 
PTV volume data also reveals the different, risk group dependent, PTV 
definitions in Fig. 4. The different PTV margin necessitated data stan-
dardization, the risk-group dependent delineations made it impossible 
to monitor the quality of the prostate segmentation. 

DLP monitoring showed a lower mean PTV volume in the clinical 
data compared to the training data, which originates from the smaller 

Fig. 4. Clinical goal analysis comparing DLP output against the clinical plan for both bladder (D5cm3 < 37 Gy), anorectum (D1cm3 < 36 Gy) and PTV (V36.25 Gy >
95 %) and every colored dot resembles a patient ROI belonging to one of the four clinical goal evaluation groups. The blue distribution plots above and to the right of 
each scatter plot show the corresponding data of the training data. The dashed blue lines show the first standard deviation of this training data. The lower left graph 
visualizes the difference in PTV volume between local and training data. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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PTV margin and it impacts the target-ROI overlap volume. As PDL did 
fulfill almost all mandatory clinical goals, comparison of the plan quality 
between Pclin and Pdlp did focus on the fulfillment of the optimal dose 
constraints. To date, dose normalization can differ between Pclin and Pdlp 
which may impact the dose comparison, but has the advantage that Pdlp 
is created fully autonomously. Fig. 4 shows the impact of both organ and 
overlap volume on the clinical goal fulfillment. Larger overlap volumes 
between OAR and target lead to a more complex plan optimization 
problem as reflected by the red dots for which even Pclin could not fulfill 
the clinical goal. This increased complexity dominates the incapability 
of automatically creating a clinically acceptable Pdlp and user interaction 
is needed to find the optimal balance between organ sparing and target 
coverage. It is unclear if adding these plans to the training dataset will 
improve model’s output. In case of increasing ROI volume, the dose 
prediction might be impacted as large ROI volumes are not represented 
in the training dataset and most of the orange dots have a volume that 
exceeds the first SD of the training dataset. Consequently, these plans are 
interesting candidates to add to the training dataset to improve perfor-
mance and robustness of the model. Volume differences between local 
data and training data might be introduced by different bladder and 
anorectum preparations between the different centers. This observation 
strengthens the need for OOD detection to better understand the 
behavior of AI models and at the same time the robustness of the dose 
prediction is proven as DLP hardly generates plans causing major 
violations. 

In conclusion, combining geometrical and dose-volume metrics is of 
added value when monitoring the performance of both AI based seg-
mentation and planning models. For segmentation, the Local Surface 
Dice is more sensitive compared to the Standard Surface Dice and 
detection of changes in the vicinity of the target volume can further 
improve in combination with ADD analysis if a critical volume of at least 
1 cm3 is used. For planning, reporting volumes in combination with 
clinical goal analysis enables OOD detection. Future work might explore 
analyzing dose-volume metrics of plans created directly on RDL in an 
automated way as well as improving the comparison between Pdlp and 
Pclin by taking into account the dose normalization. 
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