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Very recently, our group has explored arylation® and
borylation® at the distal 5- position of leucine. In 2021,
Carretero and co-workers also demonstrated J-arylation of
different y-unblocked aAA derivatives using a sulfonamide
linker.**

However, all such transformations to produce NPAAs are
achieved by incorporating different functional groups in the
side chain of an existing ¢AA. While this could be one exciting
way out for synthesizing NPAAs, introducing a new functional
group with a free ester or acid to a simple aliphatic amine can
overall lead to a novel NPAA itself on the contrary (Figure 1).
In a stark contrast to aromatic C(sp?)—H olefination, ¢ distal
C(sp*)-H olefination is still an underexplored territory due to
its intrinsic problem® ™ and is mostly restricted to aliphatic
acids as substrates,”"™** Although in 2016 Shi and co-workers
reported d-alkenylation of leucine and its derivatives, internal
alkynes were used as the source of olefin.”> While olefins are
widely used in cycloaddition chemistry,*~*" distal aliphatic
olefination possess two-fold issues: (i) requirement of six-
membered metallacycle overriding thermodynamically stable
five membered cycle*” and (ii) postsynthetic easy cyclization in

Amino acids (AAs), being the fundamental component of
peptides, have significantly influenced the entire fraternity of
modern drug discovery.' High site selectivity and facile
synthesis of peptides make them alluring drug candidates.
While native amino acids (NAAs) contribute most in the
structural diversity of the peptides, their inadequate bioavail-
ability and brief circulating plasma half-life impede their use as
therapeutics and often demand further structural tuning. To
surpass this issue, substantial efforts have been devoted in the
last few decades to expand the genetic code by selectively
incorporating several functional groups into NAAs. These
analogues of NAAs or popularly known as “unnatural” or
“nonproteinogenic” amino acids (NPAAs) offer a wave of
appealing applications in drug discovery.”> However, unlike
the NAAs, most NPAA analogues must be synthesized by
means of chemical or enzymatic pathways.*~” While biologists
have their own tricks to synthesize these unnatural amino
acids,”” alkylation of amino acid side chain is the most
appreciated methodology so far. Although multicomponent or
tandem reactions proceeding via highly reactive intermediates
seem to be the most approachable route, often they suffer from
multiple synthetic steps, low productivity, and poor stereo-
selectivity. In this context, transition metal-catalyzed C—H
functionalization can offer a simple and straightforward
solution.'’™"? Particularly, palladium-catalyzed a-, -, and y-
C(sp®)—H functionalizations of different proteinogenic aAAs
have come up as a very powerful tool in the last 10 years.”™>
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Figure 1. Direct access to NPAAs.

the presence of a more nucleophilic directing group which
eventually diminishes the versatility of the olefin group
inserted.”

In this work, we report a novel route to synthesize an array
of long chain NPAAs by means of direct §-C(sp’)—H
olefination of aliphatic amines with acrylic acid derivatives in
the presence of pyridone/quinoline-based ligands. Interest-
ingly, direct olefination of leucine further expands the scope to
generate a new set of NPAAs.

To materialize our hypothesis of synthesizing NPAAs,
feasibility of palladium-catalyzed ligand-enabled 6-C(sp®)—H
olefination of the methyl ester of leucine 1a was studied. We
commenced with studying the extraordinary effect of
substituted pyridone, pyridine, and quinoline based ligands
in site-selective distal C(sp®)—H functionalizations (Figure
2).>'7% 1t is prevalent from the literature that substituted
pyridones or 2-hydroxy pyridines (X-type ligands) can
effectively coordinate with the palladium catalyst and make
the C—H bond activation step quite facile by lowering the
energy barrier of that particular step.”” Studies indicate that the
formation of Pd-ligand dimer complexes in the case of
pyridone ligands is quite feasible due to a z—rm stacking
interaction between two pyridone ligands which enables a
thermodynamically stable Pd-ligand system in the first place.
Interestingly, the efficacy of such ligands further enhances
when there is a strong electron-withdrawing group (such as
—NO, or —CF;) present at the 3- or sometimes 3,5- positions
of pyridones. As the major focus of this optimization study was
achieving high J-selectivity with a synthetically useful yield, we
were pleased to find 3-nitro-2(1H)-pyridone (L8) as the best
ligand to attain an exclusive O-selectivity over an equally
accessible y-C(sp*)—H bond in substrate la. After carefully
scrutinizing other reaction parameters, it was found that the
use of 10 mol % Pd(OPiv), and 20 mol % L8 along with 2
equiv of CF;CO,Na and 2.5 equiv of Ag,COj; as oxidant in
DCE at 110 °C provided 51% yield of product 2a (Figure 2).
In this context, it is also worth mentioning that the use of both
Pd(OPiv), and CF;CO,Na were found immensely crucial for
the increase of the yield compared to other Pd catalysts and
metal salts. Since the use of mono N-protected amino acid
(MPAA) ligands is quite well investigated in palladium-
catalyzed C—H activation reactions,”*>® we studied several
MPAAs (see Supporting Information section S6) to improve
the yield of the d-alkenylated product 2a. However, none of
them could outperform L8. Finally, several directing groups
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Figure 2. Ligands for §-C(sp*)—H olefination of leucine.

(DGs) with diverse electronic environments and coordination
strengths were also tested, but PG1 turned out to be the most
suitable DG for this protocol (Figure 3).

Under this optimized condition, we further varied a series of
acrylates which in turn produced &-olefinated leucine
derivatives with preparatively useful yields (1—7) (Scheme
1). Apart from leucine, analogous AA isoleucine also led to the
formation of §-olefinated product 8 with 63% (8:y = 2.4:1)
overall yield under a slightly modified reaction condition.
Additionally, structurally comparable other open chain
aliphatic amines and alicyclic amines (9—11) with multiple
competing reaction sites such as - vs y-C(sp®)—H bond or
primary methyl vs secondary methylene (in the case of 11)
also selectively led to &- alkenylated product. Even substrate
having three equally accessible 5-C—H bonds in 12 exclusively
produced d-specific olefin product under a modified reaction
condition. Unfortunately, amines with no a-substitution failed
to deliver any olefinated products probably because of
difficulty in forming the required palladacycle due to the
absence of an additional a-alkyl effect. Despite our rigorous
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Figure 3. DGs for 5-C(sp®)—H olefination of leucine.

Scheme 1. §-C(sp*)—H Olefination of Leucine and
Unbiased Aliphatic Amines
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“2-Chloro quinoline was used as the ligand (20 mol %), Ag,O (2.5
equiv) instead of Ag,CO;, and TFT (1 mL) instead of DCE. Isolated
yields are reported.

optimization, we were unable to obtain J-olefination of
completely unbiased aliphatic amines.

Another class of substrate obtained from 2,4,4-trimethyl-
pentan-2-amine was somewhat less productive under the
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similar reaction condition as mentioned in Scheme 1.
However, replacing silver carbonate by silver oxide in addition
to copper acetate as the cooxidant improved the yield of
desired product significantly. Interestingly, for this system,
quinoline ligands were found to be superior over pyridone
ligands. 4-Hydroxy quinoline and 7-chloro-4-hydroxy quino-
line were equally effective to obtain the desired d-olefinated
product. Additionally, an acetate combo of cupric acetate,
palladium acetate, and sodium acetate was quite essential in
boosting the formation of the d-alkenylated product up to a
yield of 72%. Remarkably, this method was found compatible
with a diverse range of simple open chain as well as cyclic
esters of acrylic acid (13—21, Scheme 2). Under a slightly

Scheme 2. §-C(sp*)—H Olefination of 2,4,4-
Trimethylpentan-2-amine
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“2-Chloro quinoline was used as the ligand (20 mol %); TFT (1 mL)
instead of DCE. Isolated yields are reported. “Combined yields of the
isolated mono-and disubstituted products. Products isolated as mono-
and dimixtures.

modified reaction condition, natural product appended
acrylates such as fenchyl alcohol (22) and menthol (23)
derivatives were also found compatible albeit with moderate
yield. Interestingly, under this modified reaction condition,
other activated olefins, for example, methyl vinyl ketone (24)
and phenyl vinyl sulfone (25), also were tolerated. However,
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olefins such as acrylo nitrile, N,N-dimethyl acrylamide, or
styrenes remained completely silent under both the reaction
conditions. When we used benzyl methacrylate, an a-
substituted acrylate, as a coupling partner, the desired
olefinated product 26a formed as a minor product along
with its isomerized analogue 26b (major product) where the
double bond is migrated. Unfortunately, no internal olefins
such as trans-4-octene, ethyl trans-3-hexanoate, or even methyl
cyclopent-1-ene-1-carboxylate worked under similar or in a
modified reaction condition. To probe the practical adequacy
of the current protocol, compound 15 was synthesized in gram
scale in 56% yield (see Supporting Information S17).

Upon mono-olefination, we turned our focus on sequential
5-C(sp®)—H hetero difunctionalizations of picolyl tethered tert-
octylamine. At first, we employed our developed protocol® to
obtain mono J-arylated amine derivatives which were then
used as the substrate for §-olefination. Undoubtedly, upon
monoarylation, the steric and electronic environments of the
substrates no longer remained the same. Therefore, the current
protocol was solely exposed to a new class of substrates. While
sequential functionalizations were attempted before to diversify
arenes, consecutive heterofunctionalizations are quite less
explored at distal aliphatic sites. It was quite intriguing to see
that these new substrates delivered J-olefinated amine
derivatives (27—34, Scheme 3) with synthetically useful yield.

Various substrates, irrespective of ortho-, meta-, and para-
substitutions, were found well suitable for a second
functionalization. Additionally, we tested seven [l-iodo-2-
methoxybenzene, 1-iodo-2-methylbenzene, 1-chloro-2-iodo-
benzene, 1-(2-iodophenyl)ethan-1-one, 1-iodonaphthalene, 2-
iodo-1,3-dimethylbenzene, and 1,3-difluoro-2-iodobenzene]
different types of aryl iodides for preparing the &-arylated
substrates. Only two aryl iodides (1-iodo-2-methoxybenzene
and l-iodonaphthalene) were reported in our prior work.””
However, out of all five mono ortho-substituted arylated
substrates, only 1-iodo-2-methoxybenzene benzene led to 6-
olefinated product 34 (Scheme 3). However, a significant
amount of other side product (arene-olefination of the anisole)
was also observed, and both the products came as an
inseparable mixture. On the other hand, with 1-iodo-2-
methylbenzene, 1-chloro-2-iodobenzene, 2-iodo-1,3-dimethyl-
benzene, and 1,3-difluoro-2-iodobenzene, the first step, that is,
O-arylation, did not take place. After mono-olefination, the
modified substrate was successfully used for diolefination (38,
Scheme 4) under the same reaction condition. Further, a series
of post synthetic diversifications were done with compound 13
(for an elaborate scheme and other synthetic details, see Figure
S1 in Supporting Information, page S17—S19).

Following the scope of the current protocol, we wanted to
investigate its mode of action. At the onset of our experiment,
we synthesized the acetonitrile-coordinated [5,6]-fused orga-
nopalladium complex Int A.** Stoichiometric reaction of Int A
with ethyl acrylate under otherwise similar condition was done,
and compound 13 was obtained in 60% yield (Scheme ).

Next, we sequentially studied the interaction of olefin with
the synthesized cyclopallada complex Int by 'H NMR
experiment. The reaction was carried out in a NMR tube
using CDCl; as the solvent (Scheme 6). After mixing ‘butyl
acrylate with Int A, we found that peaks (8.6—7.3 ppm)
corresponding to the pyridyl moiety of PG1 were shifted to a
downfield region as we gradually increased the reaction time.

Interestingly, formation of compound 14 was identified
within S min of the experiment (Scheme 6a—d). Simulta-
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Scheme 6. Interaction of the Olefin with the Carbo-
Palladated Intermediate Int A
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neously, another significant change was observed in the 5.5—
6.5 ppm region where broadening of the initial sharp peaks of
the olefinic double bond of ‘butyl acrylate took place. After 2 h
following the addition of Int A, significant broadening of these
signals was observed, which can be attributed to the
coordination of the olefin to Pd(II).””°® Characteristic
aliphatic peaks corresponding to H. and diastereotopic H,/
H; were also observed due to the formation of new Int A’
(Scheme 6¢). Interestingly, the initial straw yellow color of Int
A in CHCl; gradually converted into dark black in the
presence of the olefin (Scheme 6f).

While the NMR titration study revealed the interaction of
olefin, a detailed mechanistic investigation with amide 2a was
carried out to understand the mode of C—H activation and
other steps. We observed that substrate 2a having a quaternary
y-center undergoes reversible C—H bond activation and the
substrate was recovered with 80% deuterium incorporation
(Scheme 7A). Even in the presence of olefin, 20% deuterium
incorporation of the starting material 2a was observed, which
further confirms the reversible nature of the C—H activation
step in the case of 2a. A unit order with respect to both amide
2a as well as ethyl acrylate corroborates that the C—H
activation step is not involved in the rate-determining step
(RDS) for this class of substrate and olefin is involved in the
rate-limiting step (Scheme 7B).Therefore, we assumed that
possibly 1,2-migratory insertion or f-hydride elimination step
demands higher energy in comparison to the C—H activation
step in this case. To gain further evidence, we synthesized
deuterated benzyl acrylate (ds-benzyl acrylate) by following a
reported literature procedure® and then performed kinetic
isotope analysis by running two parallel sets of reactions. A
primery KIE value of 2.3 with d;-benzyl acrylate confirms that
B-hydride elimination step is probably the RDS (Scheme 7C),
which was also found to be consistent with our prior
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Scheme 7. Mechanistic Investigation with Amide 2a
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A. Reversibility Experiment of 1a
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Figure 4. Mechanistic Studies of §-C(sp*)—H Olefination of Leucine and Analogues Aliphatic Amine. (A) Reversibility experiment of 1a, (B) order
determination study for 1a, (C) reversibility experiment of 3a, and (D) order determination study for 3a.

observations. Simultaneously, kinetic studies were performed
to investigate the role of individual components in the reaction
medium (Scheme 7D). As mentioned earlier, the reaction
works best in the presence of a base (NaOAc) with silver oxide
as the oxidant and 4-hydroxyquinoline as the ligand. However,
a drastic deterioration of yield can be observed in the absence
of the base and silver salt. Apart from their usual role, the
presence of Na* or Ag" ions perhaps led to hetero-bimetallic
cluster formation which helps in a facile product release and
hence contribute to elevate the yield.® On the other hand,
compared to silver oxide, the absence of copper acetate
showed little effect which justified the role of silver oxide as the
major oxidant responsible to run the catalytic cycle, while
copper acetate might be playing the role of the co-oxidant.
Next, the nature of the C—H activation step for the other two
types of substrates was also probed separately by the
reversibility experiment (Figure 4). Unlike previous case, no
deuterium scrambling was observed for amide 1a, even at 110
°C for 72 h with or without the ligand (Figure 4A). This
implies that possibly C—H activation is the rate-limiting step
for this class of substrate. Our hypothesis was further
strengthened from the order determination study, where a
first-order and a zero-order kinetics with respect to amide la
and olefin was obtained, respectively (Figure 4B). Similarly,
these experiments were run for a cyclic amine-based amide 3a.
In this case, a similar result as in 2a was obtained albeit with a
lower extent of deuterium incorporation (Figure 4C,D). These
results clearly indicated that the irreversible nature of the C—H
activation step in the case of 1a can be because of the lack of
Thorpe-Ingold effect by the extra methyl groups at the a-
position of amide unlike in 2a.*

Based on above studies, a plausible mechanistic blueprint
has been corroborated in Scheme 8. The catalytic cycle
commences with the formation of metal—ligand complex I
Subsequently, complex II, upon coordination with substrate
1a, undergoes C—H activation to generate intermediate III in
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Scheme 8. Mechanistic Blueprint of §-C(sp*)—H Olefination
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the presence of a base. The ESI-MS study of the reaction
mixture in the absence of olefin using 2-methylpyridine ligand
indicated the formation of Int B which further suggested the
formation of IIL. Next, olefin coordinates with the palladium
center to give intermediate IV which consequently generates
intermediate V via 1,2-migratory insertion. Upon p-hydride
elimination followed by reductive elimination desired olefi-
nated product, and Pd(0) forms. The catalyst then regenerates
in the presence of a silver oxidant.
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To summarize, we have disclosed a strategy to directly
synthesize a series of novel long chain unnatural amino acids
(NPAAs) via 5-C(sp*)-H olefination of aliphatic amines as well
as leucine and isoleucines. The protocol was further extended
to sequential diolefination and hetero difunctionalizations via
5-C(sp®)-H activation. Postsynthetic modification followed by
a series of kinetic studies has further helped to gain a better
perception about the developed protocol. A separate
investigation for the distal asymmetric aliphatic C—H
functionalizations is currently being carried out separately in
our lab.

Scheme 1

A clean, oven-dried screw cap reaction tube with a previously placed
magnetic stir bar was charged with picolinamide (0.1 mmol, 1 equiv),
olefin (0.4 mmol, 4 equiv), palladium(II) pivalate (0.01 mmol, 10 mol
%), 2-hydroxy-3 nitro pyridine L8 (0.02 mmol, 20 mol %), Ag,CO,
(0.3 mmol, 3 equiv), and sodium trifluoroacetate (0.2 mmol, 2 equiv)
followed by addition of DCE (1 mL). The reaction mixture was
vigorously stirred for 24 h in a preheated oil bath at 110 °C. After the
stipulated time, the reaction mixture was cooled to room temperature
and filtered through a celite bed using ethyl acetate as the eluent (30
mL). The diluted ethyl acetate solution of the reaction mixture was
subsequently washed with saturated brine solution (2 X 10 mL)
followed by water (2 X 10 mL). The ethyl acetate layer was dried over
anhydrous Na,SO,, and the volatiles were removed under vacuum.
The crude reaction mixture was purified by column chromatography
using silica gel and petroleum-ether/ethyl acetate as the eluent to give
the desired §-olefinated product.

Schemes 1 2

A clean, oven-dried screw cap reaction tube with a previously placed
magnetic stir bar was charged with picolinamide (0.1 mmol, 1 equiv),
olefin (0.4 mmol, 4 equiv), palladium(II) acetate (0.01 mmol, 10 mol
%), 2-chloro quinoline (0.02 mmol, 20 mol %), and Ag,O (0.3 mmol,
3 equiv) followed by addition of TFT (1 mL). The reaction mixture
was vigorously stirred for 24 h in a preheated oil bath at 110 °C. After
the stipulated time, the reaction mixture was cooled to room
temperature and filtered through a celite bed using ethyl acetate as the
eluent (30 mL). The diluted ethyl acetate solution of the reaction
mixture was subsequently washed with saturated brine solution (2 X
10 mL) followed by water (2 X 10 mL). The ethyl acetate layer was
dried over anhydrous Na,SO,, and the volatiles were removed under
vacuum. The crude reaction mixture was purified by column
chromatography using silica gel and petroleum-ether/ethyl acetate
as the eluent to give the desired d-olefinated product.

Scheme 2

A clean, oven-dried screw cap reaction tube with a previously placed
magnetic stir bar was charged with picolinamide (0.1 mmol, 1 equiv),
olefin (0.4 mmol, 4.0 equiv), palladium(II) acetate (0.01 mmol, 10
mol %), 4-hydroxy quinoline (0.02 mmol, 20 mol %), Ag,O (0.3
mmol, 2.5 equiv), Cu(OAc), (2 equiv), and sodium acetate (0.4
mmol, 4 equiv) followed by addition of DCE (1.1 mL). The reaction
mixture was vigorously stirred for 24 h in a preheated oil bath at 110
°C. After the stipulated time, the reaction mixture was cooled to room
temperature and filtered through a celite bed using ethyl acetate as the
eluent (30 mL). The diluted ethyl acetate solution of the reaction
mixture was subsequently washed with saturated brine solution (2 X
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10 mL) followed by water (2 X 10 mL). The ethyl acetate layer was
dried over anhydrous Na,SO,, and the volatiles were removed under
vacuum. The crude reaction mixture was purified by column
chromatography using silica gel and petroleum-ether/ethyl acetate
as the eluent to give the desired d-olefinated product.

Scheme 3

The monoarylation was carried out by following the reported
protocol.”™ Yields for each of the arylated products were calculated
considering the precursor amides obtained from preceding arylations
as 100%. A clean, oven-dried screw cap reaction tube with a
previously placed magnetic stir bar was charged with monoarylated
picolinamide (0.1 mmol, 1 equiv), olefin (0.4 mmol, 4.0 equiv),
palladium(II) acetate (0.01 mmol, 10 mol %), 4-hydroxy quinoline
(0.02 mmol, 20 mol %), Ag,0 (0.3 mmol, 2.5 equiv), Cu(OAc), (2
equiv), and sodium acetate (0.4 mmol, 4 equiv) followed by addition
of DCE (1.1 mL). The reaction mixture was vigorously stirred for 24
h in a preheated oil bath at 110 °C. After the stipulated time, the
reaction mixture was cooled to room temperature and filtered through
a celite bed using ethyl acetate as the eluent (30 mL). The diluted
ethyl acetate solution of the reaction mixture was subsequently
washed with saturated brine solution (2 X 10 mL) followed by water
(2 X 10 mL). The ethyl acetate layer was dried over anhydrous
Na,SO,, and the volatiles were removed under vacuum. The crude
reaction mixture was purified by column chromatography using silica
gel and petroleum-ether/ethyl acetate as the eluent to give the desired
d-olefinated product.

Scheme 4

At first, mono-olefination was carried out by following GP3. Yields for
each of the olefinated products were calculated considering the
precursor amides obtained from preceding olefins as 100%. Upon
mono-olefination, the olefinated amide was again used as the substrate
for the second J-olefination following procedure GP3. For the first
olefination, tert butyl acrylate was used as the coupling partner, and in
the next step, that is, for diolefination, ethylacrylate was used as a
coupling partner.

A clean, oven-dried screw cap reaction tube with a previously placed
magnetic stir bar was charged with monoarylated picolinamide (6
mmol, 1 equiv), olefin (24 mmol, 4.0 equiv), palladium(II) acetate
(0.06 mmol, 10 mol %), 4-hydroxy quinoline (0.12 mmol, 20 mol %),
Ag,0 (18 mmol, 2.5 equiv), Cu(OAc), (12 mmol, 2 equiv), and
sodium acetate (24 mmol, 4 equiv) followed by addition of DCE (6
mL). The reaction mixture was vigorously stirred for 24 h in a
preheated oil bath at 110 °C. After the stipulated time, the reaction
mixture was cooled to room temperature and filtered through a celite
bed using ethyl acetate as the eluent (50 mL). The diluted ethyl
acetate solution of the reaction mixture was subsequently washed with
saturated brine solution (2 X 10 mL) followed by water (2 X 10 mL).
The ethyl acetate layer was dried over anhydrous Na,SO,, and the
volatiles were removed under vacuum. The crude reaction mixture
was purified by column chromatography using silica gel and
petroleum-ether/ethyl acetate as the eluent to give the desired 6-
olefinated product.
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