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Abstract

Caspase-6 was discovered decades ago, but its roles in biological processes remain largely 

unknown. Recently, we have demonstrated that caspase-6 plays a critical role in influenza A virus 

(IAV)-induced cell death and innate immune responses. During IAV infection, Z-DNA binding 

protein 1 (ZBP1) initiates ZBP1-PANoptosome assembly to drive inflammasome activation and 

cell death, and we showed that caspase-6 interacts with RIPK3 to enhance the interaction between 

RIPK3 and ZBP1, thus promoting PANoptosome assembly. Moreover, the caspase activity of 

caspase-6 is not required for tins process, suggesting a caspase-independent function of caspase-6 

during IAV infection. Additionally, we found that caspase-6 is required for the alternative 

activation of alveolar macrophages in response to IAV infection. Our findings provide an 

opportunity to reconsider the physiological role of caspase-6.
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Caspase-6: An Apoptotic and Non-apoptotic Caspase

Caspases are critical for regulating cell death, immune responses, and homeostasis. These 

cysteine-dependent endoproteases cleave their substrates after certain aspartic acid residues 

[1]. So far, thirteen caspases have been discovered in mice and humans. They are composed 

of an N-terminal pro-domain of variable size and a C-terminal protease domain consisting of 

one small and one large catalytic subunit [2,3]. Caspases have been found to be involved in 

several biological processes, including inflammatory responses, programmed cell death, 

homeostasis, and cell differentiation [2,4]. Those that directly participate in the 

inflammatory cell death pathways are called inflammatory caspases, including caspase-1, -4, 

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and source are credited.
*Correspondence should be addressed to Thirumala-Devi Kanneganti; Thirumala-Devi.Kanneganti@StJude.org. 

Conflict of Interest
The authors declare that they have no conflict of interest.

HHS Public Access
Author manuscript
J Cell Immunol. Author manuscript; available in PMC 2021 January 08.

Published in final edited form as:
J Cell Immunol. 2020 ; 2(6): 341–347. doi:10.33696/immunology.2.064.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



-5, and -11, while those mediating apoptosis activation are known as apoptotic caspases, 

including caspase-3, -6, -7, -8, -9, and -10 [2].

Apoptotic caspases can be classified as initiator caspases (caspase-8, -9, and -10) and 

executioner caspases (caspase-3, -6, and -7) [2]. Caspase-6 has long been recognized as an 

apoptotic caspase. Overexpression of caspase-6 can induce apoptosis in mammalian cells 

[5]. Additionally, it can mediate nuclear apoptosis after activation by processing Lamin A/C, 

caspase-6–specific nuclear intermediate filament proteins, and nuclear mitotic apparatus 

protein [6–8]. Very recently, one report showed that caspase-6–induced apoptosis is a key 

step for the development of nonalcoholic steatohepatitis [9]. However, the full mechanistic 

details of how caspase-6 is activated remain unclear. Reports suggest that it can be activated 

in both a caspase-3–dependent and –independent manner [10–13]. Also, caspase-6 can 

undergo autoactivation both in vitro and in vivo [14,15]. It is possible that the activation of 

caspase-6 is a context-dependent event. More studies are required to determine the detailed 

mechanism of caspase-6 activation.

In addition to being an executioner of apoptosis, caspase-6 can also act as a non-apoptotic 

caspase. Caspase-6 plays crucial roles in several neurodegenerative diseases, including 

Huntington’s disease [16–19], Alzheimer’s disease [20–22], and Parkinson’s disease [23]. 

While active caspase-6 has been detected in these processes, its activation does not lead to 

apoptosis in these contexts. Additionally, caspase-6 has also been found to be involved in 

several inflammatory responses. Caspase-6 can cleave IL-1 receptor-associated kinase M to 

regulate neutrophil-mediated TNF production in macrophages [24]. Another study reported 

that active caspase-6 can induce microglial TNF secretion to drive inflammatory pain [25]. 

Furthermore, caspase-6 was shown to be critical for the differentiation of alternatively 

activated macrophages [26]. All these studies indicate that caspase-6 has dual functions, 

acting as both an apoptotic and non-apoptotic caspase.

Caspase-6 in Innate Immunity and Host Defense

Despite the classification of caspase-6 as an apoptotic caspase and the knowledge of its 

association with neurological disorders, the functions and importance of caspase-6 in innate 

immunity have remained largely a mystery. In our recent study, we found that caspase-6 is 

critical for influenza A virus (IAV)-induced cell death and inflammatory responses [27]. In 

the absence of caspase-6, IAV-induced cell death and inflammasome activation is attenuated 

in bone marrow-derived macrophages (BMDMs). Similarly, the amount of inflammasome-

related cytokines, IL-1β and IL-18, is significantly reduced in the supernatants of IAV-

infected Casp6−/− cells. Furthermore, caspase-6 was critically involved in the host defense 

against IAV infection in a murine model, and Casp6−/− mice were more likely to succumb to 

infection and had a higher viral burden [27].

Caspase-6 in PANoptosis

During IAV infection, Z-DNA-binding protein 1 (ZBP1) acts as an innate immune sensor to 

detect IAV vRNPs and activate cell death through PANoptosis [27–33]. PANoptosis (‘P’, 

Pyroptosis; ‘A’, Apoptosis; ‘N’, Necroptosis; and ‘optosis’) is defined as “a unique 
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inflammatory programmed cell death regulated by the PANoptosome, which provides a 

molecular scaffold that allows for the interactions and activation of machinery required for 

inflammasome/pyroptosis (such as NLRP3, ASC, caspase-1), apoptosis (caspase-8), and 

necroptosis (RIPK3/RIPK1)” [27,31,32,34]. The ability of these molecules to interact allows 

for intricate coregulation between cell death pathways that had previously been thought to be 

independent. PANoptosis has been implicated in infectious and autoinflammatory disease, 

cancer, and beyond [27,28,31,34–39]. We found that caspase-6 is a critical component of the 

ZBP1-PANoptosome (Figure 1) [27]. Without caspase-6, both PANoptosis and 

inflammasome activation following IAV infection are impaired, suggesting the essential role 

of caspase-6 in the assembly of the PANoptosome.

Mechanistically, ZBP1 contains two nucleic acid sensing Zα domains and a RIP homotypic 

interaction motif (RHIM). The Zα2 domain is critical for sensing IAV upstream of 

PANoptosis [28,40–42]. The RHIM then allows ZBP1 to form a complex with RIPK3 and 

RIPK1, two other RHIM-containing proteins, to drive cell death [28,40–42]. In this process, 

caspase-6 interacts with RIPK3, thus enhancing the interaction between RIPK3 and ZBP1 in 

the presence of RIPK1 [27]. It has been shown that without a functional RIPK1 RHIM 

domain, ZBP1 can sense endogenous ligands and interact more strongly with RIPK3 to 

activate necroptosis [29,43–46], suggesting that RIPK1 competes with RIPK3 to interact 

with ZBP1. Our study provides a possible explanation for how ZBP1 interacts with RIPK3 

in the presence of RIPK1 under physiological conditions. Through binding to caspase-6, the 

affinity of RIPK3 for ZBP1 is increased during IAV infection, without altering the binding 

activity of RIPK1. However, it is unclear how and when caspase-6 binds to RIPK3 in this 

process. Also, more studies are needed to test the requirement of caspase-6 in other 

biological processes that can recruit RIPK3 to ZBP1. It is clear that RIPK3 acts as a key 

adaptor for the ZBP1-initiated PANoptosome [28,41,42]. However, in the absence of RIPK3, 

ZBP1-mediated, IAV-induced cell death is increased later in the infection phase, and this cell 

death signal is transmitted through RIPK1 [42]. This implies that the components of the IAV 

induced-PANoptosome may vary over time throughout the progression of the infection. 

More investigations are warranted to elucidate the dynamics of the ZBP1-PANoptosome 

components and how caspase-6 is involved in these cell death mechanisms.

Caspase Activity-independent Function of Caspase-6

It is interesting to note that the caspase activity of caspase-6 is not required for it to enhance 

the interaction between RIPK3 and ZBP1, evidenced by the fact that both caspase-dead or 

uncleavable mutants of caspase-6 can interact with RIPK3 and therefore promote the 

interaction between ZBP1 and RIPK3. Additionally, both the N- and C-terminal domains of 

caspase-6 can immunoprecipitate the full length, N-, and C-terminal domains of RIPK3. 

Likewise, both N- and C-terminal domains of caspase-6 have the potential to increase the 

binding of RIPK3 to ZBP1. Since both caspase-6 and RIPK3 contain intrinsically disordered 

regions [27,47,48], it is likely that the interaction between caspase-6 and RIPK3 is mediated 

by those regions. Overall, our study suggests that caspase-6 possesses a caspase-independent 

role in cell death. This is unique from its role in neurodegenerative diseases or other 

inflammatory responses, during which the catalytic activity of caspase-6 is required for the 
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proteolytic activation of its substrates to execute its non-apoptotic function [18,19,21–26]. 

Our study is the first to show that caspase-6 can function without caspase activity [27].

Caspase-6 is not the only caspase that possesses caspase-independent functions. Caspase-8 

has been shown to act as a scaffold to promote inflammasome activation downstream of 

Toll-like receptors [49] and proinflammatory cytokine production induced by TRAIL [50]. 

Recently, the scaffold function of caspase-8 has also been shown to be important in 

development. In mice expressing a caspase-dead version of caspase-8, deletion of MLKL 

leads to apoptosis and pyroptosis in the intestines, suggesting that caspase-8 can act as a 

scaffold to promote cell death during development [51,52]. These studies suggest that 

caspase proteins have the potential to play caspase-independent roles in biological processes. 

It is therefore not unprecedented to find that caspase-6 could regulate the RHIM-mediated 

interaction between RIPK3 and ZBP1 via binding to RIPK3 in response to IAV infection in 

the absence of caspase activity. It is important to note, however, that due to the limitation of 

currently available caspase-6 antibodies, we did not detect an endogenous interaction 

between RIPK3 and caspase-6 in primary cells. We did find that the binding of ZBP1 to 

RIPK3 is reduced during IAV infection in caspase-6–deficient primary cells. Developing 

better caspase-6 antibodies may help resolve this issue. Also, the generation of transgenic 

mice with tagged caspase-6 is another promising method that could be used to confirm the 

endogenous protein interactions. Additionally, RHIM-mediated interactions tend to form a 

detergent insoluble amyloid-like complex [48,53–56]. It is possible that caspase-6 

interacting with RIPK3 is present in the insoluble part of cell lysates under physiological 

conditions. More studies are required to clarify these potential mechanisms.

Perspectives

Although it was discovered decades ago, caspase-6 has remained enigmatic. As an apoptotic 

executioner caspase, it seems to be redundant with caspase-3 and -7. Initial studies 

demonstrated that caspase-6 is critical for nuclear apoptosis [8,57], but studies with 

Casp6−/− cells indicate that nuclear breakdown is normal in the absence of caspase-6 during 

apoptosis [58]. Additionally, deleting caspase-3 and -7 can block both extrinsic and intrinsic 

apoptosis in human leukemia cells, but deleting caspase-3/-6 or caspase-6/-7 does not have 

any inhibitory effect on extrinsic or intrinsic apoptosis [59]. These studies indicate that 

caspase-6 is dispensable during apoptosis and that it can be compensated by the other 

proteases, which raises a question about its physiological role. It is possible that the primary 

function of caspase-6 is as a non-apoptotic caspase. It will be informative to conduct mass 

spectrometry analyses to identify the interactome of caspase-dead or uncleavable caspase-6. 

Given that the currently available antibodies for mouse caspase-6 do not have high enough 

affinity and specificity for immunoprecipitation, it will be important to establish transgenic 

mice expressing tagged mutants of caspase-6 and use primary cells or tissue samples to 

conduct immunoprecipitations. Similar strategies can be employed to investigate the 

PANoptosome components that are induced by IAV throughout the timeline of infection to 

study the role of caspase-6 and other molecules at different infection phases.

Overall, beyond its originally identified apoptotic functions, caspase-6 has critical roles in 

innate immunity, ZBP1-mediated NLRP3 inflammasome activation, PANoptosis, and host 
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defense during IAV infection. While the molecular details of the function of caspase-6 in the 

PANoptosome have been described, this caspase still has many unsolved mysteries to be 

investigated.
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Figure 1: 
IAV induces PANoptosis through the formation of the ZBP1-PANoptosome.
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