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Behcet’s disease (BD) is a multisystemic inflammatory disease and is characterized by recurrent attacks on eyes, brain, skin, and
gut. There is evidence that skewed T-cell responses contributed to its pathophysiology in patients with BD. Recently, we found
that Th17 cells, a new helper T (Th) cell subset, were increased in patients with BD, and both Th type 1 (Th1) and Th17 cell
differentiation signaling pathways were overactivated. Several researches revealed that genetic polymorphisms in Th1/Th17 cell
differentiation signaling pathways were associated with the onset of BD.Here, we summarize current findings on theThcell subsets,
their contribution to the pathogenesis of BD and the genetic backgrounds, especially in view of IL-12 family cytokine production
and pattern recognition receptors of macrophages/monocytes.

1. Introduction

Behcet’s disease (BD) is a systemic inflammatory disease,
characterized by recurrent signs and symptoms of oral
aphthosis, genital ulcers, skin lesions, and uveitis. BD is not
chronic inflammatory disease, but patients with BD suffer
from recurrent attacks of acute and self-limiting inflamma-
tion. Repeated attacks of uveitis can lead to blindness.

The etiology of BD is largely unknown and skewed
T-cell responses are associated with the development and
maintenance of BD [1]. Excessive cytokine production by
Th1 cells was reported using immunohistochemistry [2, 3]
and intracellular cytokine staining [4, 5]. Th1 dominance
was observed in BD uveitis [6] and stomatitis as well [7].
We reported excessive Th1 cell infiltration in BD skin and
intestinal lesions but interleukin- (IL-) producing T cells
were rarely detected [8–10]. T cells and peripheral blood
mononuclear cells (PBMC) from patients with BD responded

to KTH1 antigens of Streptococcus sanguinis in oral cavity of
patients with BD and produced interferon 𝛾 (IFN𝛾) and IL-12
[11].

Recently, Th1/Th2 paradigm was challenged by the dis-
covery of various subsets of Th cells, such as Th17 cells and
regulatory T (Treg) cells [12] (Figure 1). Researchers showed
that Th cell differentiation in each subset was closely related
and sometimes converted into another subset in response to
environmental signals both in peripheral blood and in organs
[13]. Recent studies on innate immune system suggested
that antigen-presenting cells (APC) stimulated with pattern-
recognition receptors (PRR) and corresponding ligands reg-
ulatedTh cell differentiation by cytokine production [14].

In this review, we summarize current understanding of
Th cell responses to IL-12 family cytokines produced by APC
through PRR in patients with BD. We also review recent
findings on the disease susceptibility genes in BD and human
autoimmune diseases, which regulate immune functions.

http://dx.doi.org/10.1155/2013/363859
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Figure 1: Current view of helper T (Th) cell subsets in humans [12]. NäıveTh cells differentiate into several Th cell subsets in the presence of
appropriate cytokines. In response to the cytokines, the corresponding signalingmolecules and transcription factors are expressed to regulate
lineage commitments.Th1 andTh17 cells require IL-12 and IL-23 for their expansion, respectively. TGF𝛽: transforming growth factor 𝛽, STAT:
signal transducer and activator of transcription 3, GATA:GATA transcription factor, RORC: retinoic-acid-receptor-related orphan receptor c,
and Foxp3: forkhead box P3.

2. Th1 Cells, Th17 Cells, Treg Cells, and
IL-12 Family Cytokines

Th17 cells produce a number of proinflammatory cytokines,
including IL-17, IL-17F, IL-21 and IL-22. IL-6, IL-21, and
transforming growth factor (TGF)𝛽 were reported to play
a role in the differentiation of Th17 cells which proliferated
in the presence of IL-23 (Figure 1) [12]. Treg cells control
T-cell immune responses and also need TGF𝛽 for their
differentiation (Figure 1) [12]. TGF𝛽 activates Smad pathway
and activated Smad protein leads to forkhead box P3 (Foxp3)
expression which is a master gene of Treg cells [15]. In the
presence of TGF𝛽, IL-6/signal transducer and activator of
transcription 3 (STAT3) signaling pathway plays a critical
role in the induction of retinoic-acid-receptor-related orphan
receptor c (RORC) expression which is a master gene ofTh17
cells [16]. The twoTh cell subsets require a common stimula-
tion of TGF𝛽 for the cell differentiation, but the resultant cells
show opposite immune function in the presence or absence
of IL-6.

As mentioned above, Th17 cells require IL-23 for the
proliferation and survive, while Th1 cells require IL-12 for
the differentiation (Figure 1). Recently, some researchers
revealed that IL-12, IL-23, IL-27, and IL-35 are heterodimeric
and share the subunits (Figure 2) and named them IL-12
family cytokines [17, 18]. IL-23 is composed of p19 and
p40 subunits, IL-12 is composed of p35 and p40 subunits,
IL-27 is composed of p28 and Epstein-Barr-virus-induced

gene 3 (Ebi3) subunits, and IL-35 is composed of p35 and
Ebi3 subunits. The 4 cytokines require each corresponding
receptor which also shares components for the function
(Figure 2). For example, IL-12 receptor (IL-12R) and IL-23
receptor (IL-23R) share IL-12R 𝛽1 subunit (IL-12R𝛽1), and
IL-12R and IL-35R share IL-12R 𝛽2 subunit (IL-12R𝛽2). It is
thought that the 4 cytokines have overlapping but distinct
effect onT cells with corresponding Janus kinase (JAK)-STAT
signaling pathway. The experimental data demonstrated a
functional spectrum from proinflammatory to inhibitory
in Th cell differentiation (Figure 2). IL-12 and IL-23 are
produced by activated dendritic cells and macrophages and
induce inflammation through Th1 and Th17 differentiation,
respectively. IL-23 phosphorylates STAT1, 3, 4, and 5, but
STAT4 activation, which is essential to produce IFN𝛾, is not
strong compared to that in IL-12 stimulation [19]. IL-27 is
secreted from APC and produces IL-10 secreting Th cells
through STAT1 and 3 phosphorylation [20]. IL-35 is mainly
produced by Treg cells, amplifies IL-35-producing Th cells,
and induces T-cell arrest through STAT1 and 4 heterodimer’s
in mice [21], but the function in humans is still controversial
[22].

Moreover, IL-6 and IL-11, both of which being single-
molecule cytokines, need gp130 for their signal transductions
in Th cell differentiation [23]. The concept of IL-12 family
cytokine spectrum is simple, but physiological condition of
the spectrum is supposed to be complicated.The relationship
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between the spectrum and TGF𝛽 expression remains largely
unclear.

3. Th17 Cells, Treg Cells, and Tissue Damage

Excessive expressions of Th17-related cytokines were found
in psoriasis [26], rheumatoid arthritis [27], multiple sclerosis
[28], and inflammatory bowel diseases [29]. Recently, several
studies have demonstrated that Th17 cell phenotype was not
fixed in vitro and in vivo and Th17 cells turned into IFN𝛾
expressing Th17 cells and subsequently into nonstandard
Th1 cells (Figure 3) [24, 25]. These two types of cells were
thought to be more pathogenic and have higher affinity
for inflammatory lesions than original Th17 cells [30–34].
IFN𝛾-expressing Th17 cells were found in several human
autoimmune diseases such as Crohn’s disease [30], psoriasis
[31], multiple sclerosis [32], and juvenile idiopathic arthritis
[33, 34].

Skewed Treg cell function was reported in many research
articles of human autoimmune diseases [35]. Recent study
revealed that there were differences in cell fate and functional
stability between thymus-derived (t)Treg cells and periphery-
induced (p)Treg cells [36]. tTreg cells had more effective
functional stability, whereas pTreg cells were not stable in
peripheral environment and converted into effector Th cells
[37]. Epigenomic changes in Treg cells were suggested to
regulate the Treg cell stability [38].

4. Th17 and Treg Cell Involvement in BD

It is generally thought thatTh17 effector function is increased
and Treg cell function is decreased in patients with BD.
Overexpression of RORCmRNA [39, 40], underexpression of
Foxp3 [41, 42], and high frequencies of Th17 cells [39–41, 43]
were reported in patients with BD. Th17 cells were found
in skin lesions [39, 40] and brain inflammatory lesions [41].
We recently reported that TGF𝛽/Smad signaling pathway
of mononuclear cells was overactivated in patients with BD
[44]. We also reported the possibility thatTh cells in patients
with BD showed higher sensitivity to IL-23 and IL-12, and
produced more IFN𝛾 and IL-17, as compared with normal
controls [40]. We observed Th1, Th17, and IFN𝛾-expressing
Th17 cells simultaneously in one skin specimen obtained
from erythema-nodosum-like lesion of BD (Figure 4). We
speculate that bothTh17 cells and Treg cells and the plasticity
play a crucial role in the pathogenesis of BD.

5. Pathogen/Damage-Associated
Molecular Patterns (PAMP/DAMP) and
Toll-Like Receptors (TLR)

Phagocyteswere thought to be activated by various pathogens
and pathogen-derived antigens in innate immune responses.
Recent studies provided evidence for the existence of specific
receptors on the phagocytes against the microbial anti-
gens where they were named pattern-recognition receptors
(PRR). The receptors are not rearranged even with adaptive
immune system and recognize bacterial and viral pieces,

known as pathogen-associated molecular patterns (PAMP).
PAMP are indispensable parts of the microbes, such as
lipopolysaccaride (LPS), peptidoglycan, bacterial DNA/heat
shock proteins (HSP) and viral DNA/RNA [45]. Interaction
between PRR and PAMP and subsequent induction of innate
immune function are highly conserved among species [46].
Phagocytes with PRR recognition produced proinflamma-
tory cytokines and upregulated major histocompatibility
complex (MHC) proteins for the promotion of adaptive
immune function [47].

Toll-like receptors (TLR) are transmembrane glycopro-
teins and called membrane-associated PRR. Ten functional
human TLR have been identified [48]. TLR1, TLR2, TLR4,
TLR5, and TLR6 were expressed on phagocyte cell surfaces
andTLR3, TLR7, TLR8, andTLR9 localizedwithin intracellu-
lar vesicles. It was shown that cell surface TLR recognized cell
membrane-type PAMP, such as LPS and peptidoglycan, and
intracellular TLR recognized nucleic-acid-type PAMP [49].

TLR also recognize endogenous damage-associated
molecular patterns (DAMP) which are secreted from severe
damaged host cells caused by any environmental stress,
such as microbial infection or injury. Self-DNA/RNA,
high-mobility group box1 (HMGB1), a DNA-binding
nuclear protein, and self-HSP are included in the DAMP.
These molecules were reported to be rapidly released
following unprogrammed cell death and activate PRR-
expressing cells similar to the PAMP [50]. Major TLR,
PAMP, and DAMP were summarized in Table 1. In PAMP,
bacterial lipopeptides, HSP, and LPS were recognized by
TLR1/TLR2/TLR6, TLR2/TLR4, and TLR4 with CD14,
respectively [46]. Similar mechanisms were found in
DAMP with self-lipoproteins, self-HSP, and HMGB1.
Two major TLR signaling pathways were demonstrated,
namely, myeloid differentiation primary response protein
(MyD)88-dependent pathway and Toll/interleukin receptor 1
(TIR) domain-containing adaptor-inducing IFN𝛽 (TRIF)-
dependent pathway (Figure 5). With TLR stimulation, except
TLR3, APC produced proinflammatory cytokines through
MyD88 and activated mitogen-activated protein kinases
(MAPK). APC produced type 1 IFN by utilizing of TRIF
through TLR3 stimulation, an intracellular TLR [46].

6. Th Cell Differentiation through
TLR Stimulation

Dendritic cells stimulated with TLR2 and TLR4 ligands
produced IL-12 and IL-23 [51, 52]. APC secreted IL-27
through TLR3 and TLR4 signaling [53–55] and type 1 IFN
enhanced the expression [53, 54]. It was found that each
IL-12 family subunit (Figure 2) had an expression pattern
in APC through TLR4 stimulation [55]. For example, APC
expressed p19 during early phase for a short time and
produced p35 and p40 continuously in later phase. P28 acted
as an intermediary between them. These data suggest that
TLR stimulation may play a role in autocrine activation of
APC by type 1 IFN induction (Figure 5) and the APC regulate
T-cell differentiation though IL-12 family cytokines in a time-
dependent manner.
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Figure 2: A schematic representation of IL-12 family cytokines and the corresponding receptors and JAK-STAT signaling pathways [16]. IL-
12, IL-23, IL-27, and IL-35 are heterodimeric and share the subunits. The 4 cytokines require each corresponding receptor which also shares
components for the function. It is thought that the 4 cytokines have overlapping but distinct effect on T cells with corresponding Janus kinase
(JAK)-STAT signaling pathway. The experimental data demonstrated a functional spectrum from proinflammatory to inhibitory in Th cell
differentiation. IL-12 and IL-23 are produced by activated dendritic cells and macrophages and induce inflammation through Th1 and Th17
differentiation, respectively. IL-27 is secreted from antigen-presenting cells and produces IL-10 secreting Th cells. IL-35 is mainly produced
by Treg cells, amplifies IL-35 producingTh cells, and induces T-cell arrest.
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Figure 3: Th17 and Th1 cell differentiations and the phenotype plasticity [24, 25]. Th17 cell phenotype is not fixed in vitro and in vivo and
Th17 cells can turn into IFN𝛾-expressing Th17 cells and subsequently into nonstandard Th1 cells. These two types of cells are thought to be
more pathogenic and have higher affinity for inflammatory lesions than original Th17 cells.

Th cells are suggested to express TLR [14]. T-cell recep-
tor (TCR) stimulation activates T cells by phosphorylation
of extracellular signal-regulated kinases (ERK)1/2, both of
which are subsets of MAPK family. TLR2 costimulation to
the human TCR signaling promoted the phosphorylation
and directlymodulated the T-cell differentiation [56]. Several
researchers demonstrated that TLR2 signaling without APC
led to the induction of not only Th1 [57–59] and Th17
[60] cells but also Treg cells [57] in mouse experiments.
Human näıve and Treg cells converted into Th17 cells with
stimulation of TLR ligands [61]. In human infectious disease,
TLR2 receptor on Th cells of patients with tuberculosis was
overexpressed and its stimulation caused amarked activation
of the cells [62]. In contrast, underexpression of TLR2 on
Th cells and lower secretion of IFN𝛾 by TLR stimulation
were observed in patients with filarial infection [63]. A
possibility was considered that the repeated antigen exposure
may explain the discrepancy [14].

Experimental approaches demonstrated various aspects
of the relationship betweenTCRandTLR4 stimulation. TLR4

co-stimulation inhibited ERK1/2 phosphorylation of Th cells
in mice [64] and TCR signaling with a pretreatment of LPS
decreased activatedMAPK [58]. TLR4 co-stimulation did not
directly regulate Th cell differentiation, but selective deletion
of TLR4 in Th cells decreased IFN𝛾 and IL-17 production at
experimentally inflammatory sites [65].

These results suggest a need to assess the molecular
relationship between MAPK/ERK and JAK/STAT signaling
pathways in Th cell differentiation under both physiological
and pathological conditions.

7. Possible Effects of HSP on Th Cell
Activation as Both PAMP and DAMP

HSP are highly conserved and ubiquitously expressed pro-
teins and function as an intracellular chaperonin for other
proteins. An HSP was found as a remarkably increased factor
in Drosophila salivary glands with “heat shock” in the first
study. After numerous studies, subgroups ofHSPwere named
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Table 1: TLR and corresponding PAMP and DAMP [46, 50].

TLR PAMP DAMP
TLR1 Bacterial lipopeptide
TLR2 HSP (mycobacteria, Chlamydia), LPS, bacterial lipopeptide, peptidoglycan HSP, HMGB1, and lipoprotein
TLR3 Viral RNA Self-RNA
TLR4 HSP (mycobacteria, Chlamydia), LPS HSP60, HSP70, HMGB1, and lipoprotein
TLR6 Bacterial lipopeptide
TLR7 Viral and bacterial RNA Chromatin and ribonucleoprotein, self-DNA
TLR9 Viral, bacterial and parasitic DNA HSP, chromatin and ribonucleoprotein, and self-DNA
TLR: Toll-like receptors; DAMP: damage-associated molecular patterns; PAMP: pathogen-associated molecular patterns; HSP: heat shock proteins; HMGB1:
high-mobility group box1; LPS: lipopolysaccharide.
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Figure 4: Immunofluorescence of Th1, Th17, and IFN𝛾-expressing Th17 cells in a BD skin lesion. (a) Th1 cell, (b) Th17 cell, and (c) IFN𝛾-
expressingTh17 cell were simultaneously observed in one skin specimen obtained from erythema-nodosum-like lesion of BD.

for their molecular weights and subdivided into two major
functional systems. HSP60-HSP10 system assisted the ade-
quate protein folding andHSP70-HSP40 systemwas involved
in the stability of cytosol peptides [66]. Significant sequence
homology is found between mammalian and microbial HSP.
For example, mycobacterial and streptococcal HSP65 have
more than 90% homology, and mycobacterial HSP65 and
human HSP60 have 42% homology [67].

It was suggested that HSP were secreted from both
microbes and necrotic cells and were recognized by TLR2
and TLR4 [46]. In several studies, HSP were categorized into

both PAMP and DAMP (Table 1) [50, 68]. Certainly, clinical
studies demonstrated that HSP accumulation was promoted
in the lesions of several human autoimmune diseases [69–
72]. HSP peptide-specific T cells were found in patients
with type 1 diabetes [73, 74], rheumatoid arthritis [75], and
juvenile idiopathic arthritis [76]. Several experimental model
studies of autoimmunity reported protective effects of HSP
peptide by deletion of peptide specific T cells [77]. In fact,
oral administration of an HSP peptide successfully increased
Treg cells [75] and reduced disease activity in patients with
rheumatoid arthritis [78].
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Figure 5: Two major TLR signaling pathways [48]. With TLR stim-
ulation, except TLR3, APC produced proinflammatory cytokines
through MyD88 and activated mitogen-activated protein kinases
(MAPK). APC produced type 1 IFN by utilizing of TRIF through
TLR3 stimulation, an intracellular TLR. TIRAP: Toll/interleukin 1
receptor (TIR) domain containing adaptor protein,MyD88:myeloid
differentiation primary response protein 88, TRIF: TIR domain-
containing adaptor-inducing IFN𝛽, MAPK: mitogen-activated pro-
tein kinases, and IFN: interferon.

8. TLR and HSP Involvement in BD

Clinical studies demonstrated that bothTLR andHSP expres-
sions increased in patients with BD. Elevated gene expres-
sions of TLR2 and TLR4 were found in peripheral blood
monocytes [79], PBMC [80], polymorphonuclear leukocytes
[80], bronchoalveolar lavage leukocytes [81], and oralmucosa
[82] in patients with BD compared to normal controls. TLR2-
and TLR4-positive cells in buccal lesions [83] and TLR6-
positive polymorphonuclear leukocytes cultured withHSP60
[84] were significantly increased in patients with BD.

Several researchers observed massive expressions of
HSP60 in BD skin [85] and oral ulcer lesions [86, 87]. HSP60
was expressedmore diffusely [87] and intensely [85, 87] in BD
lesions than those in other types of inflammation, such as oral
lichen planus and recurrent aphthous stomatitis. Excessive T-
andB-cell responses tomajor four peptides ofMycobacterium
tuberculosis HSP65 and human counterparts of HSP60 were
observed in patients with BD who lived in Europe, Far-
Eastern Asia, and Middle East [10, 88–90].

We have found that TLR2 and TLR4 mRNA were
expressed on ileocaecal ulcer lesions of BD, but less on
unaffected sites of BD and on Crohn’s disease lesions. IL-12
producing TLR2 positive macrophages located neighboring
to T cells and HSP60 was expressed on the same region of
the intestinal lesions [8, 9]. C-C-type chemokine receptor
(CCR)5 and macrophage inflammatory protein (MIP)1𝛽, a
Th1 related chemokine receptor and its ligand, were detected
in the intestinal lesions of BD and CCR5/MIP1𝛽 interaction
was thought to play a role in the migration of activated Th1
cells [9]. Moreover, we have reported that Th cells yielded
proliferative responses to human HSP60 peptide in Japanese
BD patients by a TCR V𝛽 gene restricted antigen-driven
process [90].We suggest that TLR/HSP60 interactions induce

destructive Th1-type responses at the intestinal lesion in
patients with BD [91].

9. Genetic Variations of IL-12 Family Genes in
BD and Human Autoimmune Diseases

Detailed analysis of comorbidity in dozens of human autoim-
mune diseases revealed the importance of treating the dis-
eases as one group and suggested that there were several
common etiopathologies among the diseases [92]. In the past
decade, genetic clustering in the human autoimmune dis-
eases has progressed with Genome-Wide Association studies
(GWAS) to invest underlying genetic factors. Particulary,
there have been noteworthy advances in the research of
genetic variants in IL-12-family-related genes, which have
shown major two subclusters, namely, Th17/Th1 cluster and
Th1/IL-35 cluster (Figure 6) [93].Th17/Th1 cluster was related
to the polymorphisms of IL-23R and IL-12B and affiliated
with inflammatory bowel diseases [94], psoriasis [95], anky-
losing spondylitis [96], and rheumatoid arthritis [97].Th1/IL-
35 cluster was related to the polymorphisms of IL-12A and IL-
12R𝛽2 and affiliated with primary biliary cirrhosis [98] and
Graves’ disease (Figure 6) [99]. Several studies suggest that
celiac disease [100] and multiple sclerosis [101] show both
clusters’ polymorphisms (Figure 6).

A decade of GWASwas conducted for BD in Turkey [102–
104], Japan [105, 106], China [107], Iran [108], andKorea [109].
Human leukocyte antigen (HLA)-B51 is the most strongly
associated risk factor for BDby ameta-analysis of case control
genetic association studies [110] and the GWAS data support
the result [102, 103, 106]. Recent two major studies [103, 105]
identified MHC class I locus, IL-10, and IL-23R-IL12RB2
as BD susceptibility genes. IL-10 is an inhibitory cytokine
to both T cells and APC [111], and secreted from T cells
under IL-27 stimulation, as it was previously mentioned in
Section 2. IL-10 production of healthy donors’ PBMC with
a BD-associated allele was significantly decreased compared
to that without the allele in the presence of LPS [103]. Other
several studies reported that, adding to IL-10 [108] and IL-
23R-IL12RB2 [108, 109], STAT4 [107, 109] and IL-17A [109]
genes were associated with BD. These data indicated a pos-
sibility that BD was included in Th17/Th1 cluster according
to the above-mentioned clustering analysis. The IL-12 family
cytokine gene polymorphisms suggest that the function of
each IL-12 family cytokine subunit molecule needs to be
reinvestigated based on the clustering analysis in patients
with BD.

10. Genetic Variations of TLR and HSP in
BD and Human Immune Diseases

Researchers mentioned that TLR gene polymorphisms were
associated with several allergic and inflammatory diseases
[112–116]. Skewed monocyte and mononuclear cell responses
in cytokine production against microbe extracts were found
in atopic dermatitis and asthma patients with a TLR2 [112]
and a TLR4 [113] polymorphisms, respectively.
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Figure 6: IL-12-family-cytokine-related genetic polymorphisms were found to be associated with several human immune diseases [44].
Th17/Th1 cluster was related to the polymorphisms of IL-23R and IL-12B and affiliatedwith inflammatory bowel diseases, psoriasis, ankylosing
spondylitis, and rheumatoid arthritis.Th1/IL-35 cluster was related to the polymorphisms of IL-12A and IL-12R𝛽2, and affiliated with primary
biliary cirrhosis and Graves’s disease. Several studies suggest that celiac disease and multiple sclerosis show both clusters’ polymorphisms.
Several Genome-Wide Association Studies identified IL-23R-IL12RB2, STAT4, and IL-17A as BD susceptibility genes and indicated a
possibility that BD was including inTh17/Th1 cluster.

Several TLR gene polymorphism studies in patients
with BD demonstrated no association with susceptibility to
BD [117–124]. Recently, a targeted resequencing study was
undertaken to detect rare genetic variants and, adding to IL-
23R, TLR4 andnucleotide-binding oligomerization domain 2
(NOD2) genes, the latter of which was an intracellular
PRR, were found to be associated with BD [125]. MyD88
adaptor-like protein (Mal), also known as TIR domain-
containing adaptor protein (TIRAP, Figure 5), polymorphism
was suggested to be associated with BD in UK [83]. TLR2
and TLR4 use TIRAP as an additional adaptor to recruit
MyD88 [46]. The two studies offered new approaches for
identifying BD susceptibility gene. Moreover, Killer cell
lectin-like receptor subfamily C, member 4 (KLRC4) gene,
a natural killer cell receptor, and endoplasmic reticular
aminopeptidase 1 (ERAP1) gene, a major immunoregulatory
molecule by peptide trimming inside the reticulum, were
identified as BD susceptibility genes [102]. These analyses
of gene polymorphisms in BD, with the high susceptibility
of HLA-B51, indicated the importance of innate immune
function as an effective therapeutic target in patients with BD.
In fact, inhibitors of tumor necrosis factor 𝛼, a downstream
effector cytokine of MAPK signaling pathway in APC with
TLR4 stimulation, remarkably ameliorated clinical symptoms
in patients with BD [126, 127].

It was reported thatHSP and the promoter gene polymor-
phisms were associated with Crohn’s disease [128], bacterial
sepsis [129], and multiple organ dysfunction after severe
trauma [130]. HSP genes may serve as important factors for
the detection of BD susceptibility gene.

11. Conclusions

We reviewed here current concept in Th cell differentiation
and the functional/genetic contribution of the cells to the
pathogenesis of BD. Skewed IL-12 family cytokine responses
and related genetic variants were suggested to play a crucial
role in the pathophysiological conditions in BD. Interestingly,
dysregulation of Th17/Th1 cells and genetic variation in IL-
12 gene family were found in several human autoimmune
diseases. The existence of genetic variants both in innate
and adaptive immune responses suggests that it is important
to understand the molecular mechanical differences in the

Th cell responses of BD between with and without APC of
the patients with BD.
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Arthritis and Rheumatism, vol. 50, no. 7, pp. 2291–2295, 2004.

[4] S. Koarada, Y. Haruta, Y. Tada et al., “Increased entry of CD4+ T
cells into the Th1 cytokine effector pathway during T-cell divi-
sion following stimulation in Behçet’s disease,” Rheumatology,
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uveitis in Behçet’s disease,”Canadian Journal of Ophthalmology,
vol. 43, no. 1, pp. 105–108, 2008.

[7] A. M. Dalghous, J. Freysdottir, and F. Fortune, “Expression
of cytokines, chemokines, and chemokine receptors in oral
ulcers of patients with Behcet’s disease (BD) and recurrent
aphthous stomatitis isTh1-associated, althoughTh2-association
is also observed in patients with BD,” Scandinavian Journal of
Rheumatology, vol. 35, no. 6, pp. 472–475, 2006.

[8] K. Nara, M. S. Kurokawa, S. Chiba et al., “Involvement of innate
immunity in the pathogenesis of intestinal Behçet’s disease,”
Clinical and Experimental Immunology, vol. 152, no. 2, pp. 245–
251, 2008.



8 Genetics Research International

[9] Y. Imamura, M. S. Kurokawa, H. Yoshikawa et al., “Involvement
of Th1 cells and heat shock protein 60 in the pathogenesis of
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