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BACKGROUND Visualizing fibrosis on cardiac magnetic resonance
(CMR) imaging with contrast enhancement (late gadolinium
enhancement; LGE) is paramount in characterizing disease progres-
sion and identifying arrhythmia substrates. Segmentation and
fibrosis quantification from LGE-CMR is intensive, manual, and
prone to interobserver variability. There is an unmet need for auto-
mated LGE-CMR image segmentation that ensures anatomical accu-
racy and seamless extraction of clinical features.

OBJECTIVE This study aimed to develop a novel deep learning so-
lution for analysis of contrast-enhanced CMR images that produces
anatomically accurate myocardium and scar/fibrosis segmentations
and uses these to calculate features of clinical interest.

METHODS Data sources were 155 2-dimensional LGE-CMR patient
scans (1124 slices) and 246 synthetic “LGE-like” scans (1360 slices)
obtained from cine CMR using a novel style-transfer algorithm. We
trained and tested a 3-stage neural network that identified the
left ventricle (LV) region of interest (ROI), segmented ROI into
viable myocardium and regions of enhancement, and postprocessed
the segmentation results to enforce conforming to anatomical
constraints. The segmentations were used to directly compute clin-
ical features, such as LV volume and scar burden.
Address reprint requests and correspondence: Dr Natalia A. Trayanova,
Johns Hopkins University, 3400 N. Charles St, Hackerman Hall 216, Balti-
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RESULTS Predicted LV and scar segmentations achieved 96% and
75% balanced accuracy, respectively, and 0.93 and 0.57 Dice coef-
ficient when compared to trained expert segmentations. The mean
scar burden difference between manual and predicted segmenta-
tions was 2%.

CONCLUSION We developed and validated a deep neural network
for automatic, anatomically accurate expert-level LGE- CMR myocar-
dium and scar/fibrosis segmentation, allowing direct calculation of
clinical measures. Given the training set heterogeneity, our
approach could be extended to multiple imaging modalities and pa-
tient pathologies.
KEYWORDS Segmentation; Contrast-enhanced; CMR; Deep
learning; Machine learning
(Cardiovascular Digital Health Journal 2022;3:2–13) © 2021 Heart
Rhythm Society. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Introduction
Many cardiac diseases are associated with structural remod-
eling of the myocardium. In both ischemic and nonischemic
cardiomyopathies, the presence of myocardial fibrosis and
scar significantly elevates the risk for lethal heart rhythm dis-
orders and sudden cardiac death (SCD).1–3 Therefore,
assessment of myocardial scar and fibrosis is important for
diagnostic and prognostic purposes, in forecasting the
trajectory of heart disease,4 evaluating arrhythmia propensity
in the heart,5,6 and stratifying patients for SCD risk.7,8 Car-
diac magnetic resonance (CMR) imaging with late gadolin-
ium enhancement (LGE) has unparalleled capability in the
detection and quantification of scar and fibrosis, visualized
as increased brightness in regions with a higher proportion
of extracellular space.9 The utility of scar/fibrosis assessment
in clinical decision-making has been demonstrated by a large
body of clinical research in patients with different cardiomy-
opathies2,3,6,8,10–13 and by a number of mechanistic studies of
arrhythmogenesis in heart disease.14–17 However, LGE-
CMR image analysis is a laborious task prone to substantial
interobserver variability. It requires expert contouring of the
epicardial and endocardial borders, the intermediate-intensity
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KEY FINDINGS

� An efficient, cost-effective deep learning solution was
developed for automatic expert-level segmentation of
the left ventricle myocardium, blood pool, and scar/
fibrosis regions in contrast-enhanced (late gadolinium
enhanced, LGE) cardiac magnetic resonance (CMR) im-
aging.

� The deep neural network uses a novel convolutional au-
toencoder postprocessor that guarantees that predicted
myocardium segmentations satisfy anatomically
inspired geometrical constraints.

� Owing to its high-anatomical-fidelity predictions, the
segmentation algorithm can be used to seamlessly
compute clinical features, such as left ventricular vol-
ume and scar burden.

� A new style-transfer approach was used to augment the
training data by transforming nonenhanced CMR imag-
ing into “LGE-like” scans.
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peri-infarct zone (gray zone, GZ), and the high-intensity
dense scar region. There is an unmet need for an automated
method to segment myocardium and scar in LGE-CMR im-
ages. Ideally, resulting segmentations should be anatomically
accurate, ie, free from nonanatomical artefacts, thus ensuring
seamless extraction of important clinical features used in
diagnostic and prognostic decisions.

Deep learning (DL)-based image segmentation offers the
promise of full automation and output consistency. However,
most of the available algorithms require intensive manual in-
terventions, eg, specifying anatomical landmarks18 or label-
ing boundary slices of the stack at the apex and base of the
heart.19 The few DL algorithms developed for LGE-CMR
myocardial segmentation20–23 and the even fewer for LGE-
CMR scar/fibrosis segmentation24–27 all suffer from several
limitations. Specifically, these approaches fail to address
the presence of resulting poor-performing segmentation out-
liers, and are not robust to varying image acquisition quality
(ie, different scanners and protocols at different centers) or to
the varying fibrosis patterns resulting from different heart pa-
thologies, potentially leading to bespoke algorithms, which
fail to generalize across populations or produce anatomically
plausible heart geometries.24,26,27

Here we develop an anatomically informed DL approach
to LGE-CMR image segmentation and clinical feature
extraction. We term our technology Anatomical Convolu-
tional Segmentation Network, ACSNet. This fully automated
technology applies 3 stages of deep neural networks to
segment the left ventricle (LV); contour the LV myocardium,
blood pool, and scar/fibrosis regions; and apply geometric
constraints to the segmentations to ensure anatomical accu-
racy. ACSNet is robust to different scar/fibrosis distributions,
to inputs from various imaging centers acquired on scanners
from different manufacturers, and to multiple CMR
modalities. It outperforms interexpert segmentation results
and demonstrates consistently accurate performance across
often ambiguous regions of the LV (eg, apex and base). Seg-
mentations satisfy anatomical guidelines, allowing for
expert-level immediate computation of clinical features,
such as scar burden and LV volume.
Methods
Imaging data and processing
The primary data source for ACSNet was 2-dimensional (2-
D) LGE-CMR scans acquired during the Left Ventricular
Structural Predictors of Sudden Cardiac Death Study
(ClinicalTrials.gov ID NCT01076660) sponsored by Johns
Hopkins University. All LGE-CMR images used in this study
were acquired using 1.5-T magnetic resonance imaging
(MRI) devices (approximately 40% of the scans using Signa;
GE Medical Systems, Waukesha, Wisconsin; and roughly
60% using Avanto; Siemens, Erlangen, Germany). The
contrast agent used was 0.1520.20 mmol/kg gadodiamide
(Omniscan; GE Healthcare) and the scan was captured
10230 minutes after injection. The most commonly used
sequence was inversion recovery fast-gradient echo pulse,
with an inversion recovery time typically starting at 250 ms
and adjusted iteratively to achieve maximum nulling of
normal myocardium. Typical spatial resolutions ranged
from 1.522.4 ! 1.522.4 ! 628 mm, with 2- to 4-mm
gaps. After excluding 7 scans with very poor quality, 1124
2-D LGE-CMR slices were selected from 155 patients with
ischemic cardiomyopathy (ICM). Trained experts provided
manual segmentations of myocardium and scar/fibrosis as
described in previous work.28 The 3-dimensional (3-D) dis-
tribution and average amount of contrast enhancement as a
proportion of myocardium volume are shown in Figure 1. Re-
gions with high enhancement were predominantly in the apex
and anterior septal region for the middle part of the ventricle.
Per-patient enhancement region proportion of myocardium
volume ranged between 5% and 53%.

LGE data were supplemented with 1360 2-D short-axis
end-diastole cine CMR slices (245 scans) from 2 publicly
available sources. The first was MICCAI Automated Cardiac
Diagnosis Challengewith scans acquired atUniversityHospi-
tal of Dijon, France, using 2 MRI scanners of different mag-
netic strengths (1.5 T – Siemens Area; Siemens Medical
Solutions, Erlangen, Germany; and 3.0 T – Siemens Trio
Tim; Siemens Medical Solutions). Patient pathologies in
this set were divided into 5 groups: normal patients, patients
with systolic heart failure with infarction, dilated cardiomy-
opathy patients, hypertrophic cardiomyopathy patients, and
patients with abnormal right ventricle.29 The second source
was Cardiac MR Left Ventricular Segmentation Challenge
with scans acquired at Sunnybrook Hospital, Canada using
a 1.5 T scanner (Signa; GE Medical Systems, Waukesha,
WI). Patients in this cohort were divided into 4 groups by pa-
thology: normal, heart failure with infarction, heart failure
without infarction, and LV hypertrophy.30 Ground truth
myocardium segmentations were provided with the scans.

http://ClinicalTrials.gov


Figure 1 Distribution of enhanced myocardium regions for ground truth data. The spatial distribution of regions of enhanced myocardium is shown for 3 re-
gions of the ventricle: basal (left), middle (center), and apical (right). The x-axes capture septal vs lateral location and the y-axes capture anterior vs posterior. The
heat map quantifies the proportion of enhanced myocardium located in the respective region, averaged over all patients.
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The cineCMRdata set was converted into “LGE-like” images
using a custom style transfer method (Figure 2). First, with a
given occurrence probability, a pseudo-enhancement mask
was generated independently for each slice by intersecting
the myocardium mask with a randomized collection of basic
shapes (eg, ellipses, squares, etc) with randomized locations.
The probability was selected to match the proportion of slices
with enhancement among the LGE scans. The resulting
patches were subsequently blurred using Gaussian filters,
leading to smoother edges. The resulting mask was overlaid
onto the original (dark) myocardium, elevating the signal in-
tensity in the corresponding area. Then, speckle noise was
added and, finally, for each cine scan, a histogram match
was performed between the newly generated image and
randomly sampled scans from the LGE training data set, re-
sulting in a set of “LGE-like” images.

All LGE and resulting “LGE-like” 2-D slices were pre-
processed and stored in a common file format to accommo-
date multiple medical image file types (eg, DICOM, NIfTI,
etc), retaining 3-D ventricular geometry information. Spe-
cifically, slices were automatically ordered from apex to
base, retaining slice location, image intensities, resolution,
and patient orientation information. An average of 1.9 slices
per patient, which did not have ground truth myocardial
segmentation—most did not contain the LV region of inter-
est (ROI)—were excluded from training to prevent potential
bias in the network. The images were standardized in terms
of orientation by applying rotations in increments of 90�

(90� was chosen to avoid interpolation). If scans originally
stored in DICOM had the “WindowCenter,” “Window-
Length,” “RescaleSlope,” and “RescaleIntercept” tags
populated, the corresponding linear transformation was
applied to the raw signal intensities to enhance contrast
and brightness.

Finally, to increase the contrast between myocardium and
blood pool, contrast-limited adaptive histogram equaliza-
tion31 was applied. All images were cropped or padded to a
square of size 192 ! 192 pixels (no aspect ratio distortion),
without centering. Finally, resulting images were rescaled in
the range [0, 255].

The research protocol used in this study was reviewed and
approved by the institutional review board.
Multi-network design
The overall architecture of our DL approach is presented in
Figure 3. ACSNet used a multi-network sequential
approach in 3 stages to segment viable myocardium,
enhanced myocardium (scar/fibrosis), and blood pool. The
first network identified the LV ROI, which was then used
to zero out signal outside a tight square around the
segmented ROI (Figure 3A). The second network differen-
tiated between myocardium and enhancement (Figure 3B).
The third was a postprocessing stage, which adjusted the
predictions to satisfy anatomical constraints (Figure 3C
and 3D).
Stage 1: ROI segmentation network
The first network in ACSNet (Figure 3A) was trained to pre-
dict a mask of the LV ROI, which included myocardium and
blood pool. The goal of this network was to simplify the
detailed segmentation problem in the next stage by reducing
the very high ratio of background-to-myocardium pixels and
limiting the field of view for the second network to mostly
myocardium features. The ROI segmentation network
(Figure 4) was a U-Net with residuals (ResUNet) of depth
4.19,32 During the downsampling process, each of the 4 depth
levels consisted of 2 repetitions of a block made up of a 3! 3
2-D convolution, followed by a rectified linear unit activation
and batch normalization. After the 2 blocks, each was fol-
lowed by a 2 ! 2 max pooling layer and 20% dropout.
The upsampling branch had a similar structure using 2 ! 2
nearest-neighbor upsampling and identical convolutional
layers. ROI predictions were automatically cleaned up by dis-
carding all but 1 connected component, specifically the one
closest to the center of the mass of objects in slices located
between the 20th and 80th percentiles (higher confidence)
of the short-axis height. Lastly, slices close to the base with
very large jumps in ROI area were deemed likely above the
ventricle and were automatically pruned.
Stage 2: Left ventricle myocardium segmentation network
The second network (Figure 3B) used the ROI mask pre-
dicted by the first network to differentiate LV blood pool,
viable myocardium, and regions of enhancement, returning



Figure 2 Conversion process of cine images to “late gadolinium enhancement (LGE)-like” images. (1) The original cine image is cropped/padded to a square
and contrast-limited adaptive histogram equalization (CLAHE) is applied. (2) Cine images are further transformed by first generating a pseudo-enhancement
(“LGE-like” enhanced myocardium) mask. (3) Pseudo-scar mask is randomly eroded and Gaussian filters are applied to realistically blur the edges. (4) Speckle
noise is added to the image to resemble LGE noise. (5) An LGE cardiac magnetic resonance scan is sampled at random and a histogram match is performed.
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segmentations for the latter 2 tissue types. As preprocessing,
the ROI mask center of mass was used to center the LV im-
ages in a 128 ! 128 pixel square. Next, the predicted LV
ROI was used to rescale the intensity values (Supplemental
Material, Appendix A).

For the LV myocardium segmentation network, we im-
plemented a modified ResUNet structure (Figure 4), similar
to the ROI segmentation network. It differed from the ROI
network in that it used twice the number of filters at each
of the 4 depth levels owing to the higher complexity of
the task. The network outputted 2 masks, 1 representing
the entire myocardium and the other identifying only the
enhanced tissue. The enhanced regions were minimally
cleaned up using an automated series of morphological op-
erations—erosion, opening, and closing—with parameter
choices determined by maximizing training data average
Dice coefficient using a greedy grid search.

Stage 3: Anatomical autoencoder postprocessing
The final neural network (Figure 3C and 3D) ensured that
myocardial segmentation results abided by anatomical guide-
lines, reducing the performance impact of ambiguous regions
(eg, apex and base), where observer ground truth variability
Figure 3 ACSNet architecture consisting of 3 interconnected deep learning subn
around the left ventricle (LV).B: The second network uses the tightly cropped image
and enhanced myocardium. C: The third network is a convolutional autoencoder tr
Segmentations from the training set are encoded using the third network to form a
conditional resampling is performed to populate the space with anatomically correc
neighbors algorithm is used to return a perturbed, anatomically correct version (gre
tional details are presented in Methods.
was high primarily owing to imaging artifacts. Anatomical
corrections were applied on reduced-dimension versions of
the myocardial segmentations.

The space of low-dimensional myocardial segmentations
was constructed using a convolutional autoencoder network
(Figure 5), which consisted of 6 strided 3! 3-kernel convo-
lutional layers, 2 dense layers, and 6 transpose convolutions.
Leaky rectified linear unit activations were used after each
layer. On the encoding branch, the number of channels
started at 16 and doubled after each convolutional layer to
2048, before being collapsed to the 16-dimensional encoding
vector by a dense layer.

During training, the autoencoder learned how to encode
ground truth myocardial segmentations into the 16-
dimensional latent space and use this representation to
decode into the original image, effectively resulting in a
collection of 16-dimensional vectors representing anatomi-
cally correct myocardial segmentations. Next, the latent
space was augmented by generating new vectors based on
the existing ones. This was done by modeling the existing
vectors using a Gaussian mixture model and performing
rejection sampling, where the rejection criteria encapsulated
the anatomical correctness using a collection of
etworks. A: The first residual U-Net (ResU-Net) is used to identify and crop
from panel A and the LV segmentation to further segment the LV into viable
ained to encode (compress) and decode myocardial segmentation masks. D:
latent space. The space is modeled as a Gaussian mixture model (GMM) and
t samples (black dots). Predicted segmentations are encoded and the nearest-
en dot) of the original (red dot). GMM image adapted from source.48 Addi-



Figure 4 Left ventricle andmyocardium segmentation network architecture. The left ventricle region of interest network (LVNet.) identifies the main region of
interest. The second network (MYO Net.) segments the myocardium by differentiating between viable and nonviable tissue represented by each of the 2 outputs.
The networks differ by the number of filters, input image size, and number of outputs as indicated.
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morphological checks. Mathematical details are provided in
the Supplemental Material, but a sketch of the model is pre-
sented here. The ground truth 16-dimensional representations
of the myocardial segmentations were modeled as points
coming from a mixture of 5 Gaussian distributions, with
weights, means, and covariance matrices estimated using
the training data. New samples were drawn from this mixture
and kept only if, once decoded, they passed anatomical
checks. These checked for convexity defects, holes in
myocardium, circularity, number of objects, and myocardial
wall thickness. This increased the size of the latent space by
sampling an additional 10,000 points.
Figure 5 Autoencoder network architecture. The anatomical autoencoder is used
convolutions and downsampling layers to create a 16-dimensional latent representat
original myocardial segmentation from the latent representation.
The 16-dimension representation of a predicted myocar-
dial segmentation was not guaranteed to decode to an
anatomically correct image. The “correction” consisted of
moving in the direction of the nearest neighbor in the latent
space by the smallest distance possible such that the decoding
becomes anatomically correct, as defined by the criteria
described above. This guarantees anatomical correctness of
the predicted myocardium mask.

Finally, the 2-D myocardial segmentations were recon-
structed to volumes and additional automatic volumetric
checks were applied to remove segmentations from images
located below the apex or above the base of the LV. We
as a postprocessing step that takes in myocardial masks and uses a series of
ion (left side). The decoder piece of the autoencoder (right side) re-creates the



Table 1 ACSNet cardiac magnetic resonance imaging with late gadolinium enhancement segmentation performance

Measure Apex
Location
Middle Base Total

LV ROI
MYO BA (%) 96.3 6 0.4 96.3 6 0.4 96.2 6 0.5 96.3 6 0.2

Dice 0.92 6 0.02 0.95 6 0.01 0.94 6 0.01 0.93 6 0.01
HD (mm) 6.9 6 1.6 6.1 6 0.8 6.6 6 1.5 6.5 6 0.8

Enhancement region BA (%) 93.3 6 1.1 93.1 6 1.2 92.9 6 1.4 93.1 6 0.7
Dice 0.75 6 0.04 0.82 6 0.02 0.80 6 0.04 0.79 6 0.02
HD (mm) 6.4 6 0.7 6.6 6 0.7 7.2 6 1.5 6.7 6 0.6

Core scar region BA (%) 69.9 6 2.3 69.8 6 2.6 70.4 6 2.6 70.0 6 1.4
Dice 0.51 6 0.06 0.48 6 0.07 0.59 6 0.09 0.51 6 0.04
HD (mm) 16.8 6 3.4 24.0 6 6.6 19.8 6 8.7 19.9 6 3.3
BA (%) 74.9 6 2.8 74.3 6 3.1 75.5 6 3.3 74.9 6 1.8
Dice 0.57 6 0.08 0.52 6 0.09 0.63 6 0.11 0.57 6 0.05
HD (mm) 14.9 6 3.7 24.4 6 6.7 18.1 6 8.9 18.9 6 3.5

Balanced accuracy (BA), Dice coefficient (Dice), and Hausdorff distance (HD) are shown for 4 regions of interest (ROI) segmented by ACSNet: whole left
ventricle (LV ROI), myocardial tissue (MYO), area of enhancement (Enhancement region), and scar tissue (Core scar region).

BA is expressed in percentage terms, Dice is adimensional, and HD is in millimeters. All numbers are averages 6 95% confidence interval size over apex/
middle/base/total slices of all patients in the test set.
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compared ratios of myocardium to blood pool areas of each
slice to identify the longest subsequence of slices in the stack.
The threshold used to determine whether to include a slice in
the subsequence was approximately a 40% maximum
decrease in LV area. Segmented volumes were truncated at
the index i5 maxðiM; minðiC 11; iDÞÞ, where iM refers to
the final index in the subsequence; iC represents the index
of the first “C”-shaped slice (a myocardial segmentation
shape that occurs at the boundary of the ventricle and the
atrium in the basal region); and iD represents the index of a
large deviation (drop to 60% or increase of 60%) in LV
area between successive slices. This check allowed incorpo-
ration of at most 1 “C”-shaped slice and excluded slices
above the base with no true ROI. The numerical values for
Table 2 ACSNet cardiac magnetic resonance imaging with late gadolin

Feature

LV Volume Tertile

Lower Middle

LV ROI
GT (cc) 226 (186–259) 307 (280–
Pred (cc) 237 (193–273) 312 (279–
Norm. MAE (%) 10.3 (4.8–18.8) 4.5 (0.6–
MYO
GT (cc) 121 (85–159) 171 (110–
Pred (cc) 144 (109–186) 187 (144–
Norm. MAE (%) 24.1 (12.6–41.1) 12.7 (1.8–
Enhancement region
GT (cc) 27 (15–46) 24 (3–39
Pred (cc) 21 (7–43) 19 (0–33
Norm. MAE (%) 26.6 (5.9–53.4) 31.1 (3.8–
Core scar region
GT (cc) 13 (6–21) 11 (1–19
Pred (cc) 11 (5–20) 9 (0–17
Norm. MAE (%) 14.4 (1.2–41.2) 42.5 (18.2

Ground truth (GT) and predicted (Pred.) volumes and mean absolute error norm
shown for 4 regions of interest (ROI) segmented by ACSNet: whole left ventricle (LV
and scar tissue (Core scar region). GT and Pred. are expressed in cubic centimeters
patients in the test set (Total) and patients grouped by GT LV volume tertile (lowe
the thresholds were determined by ensuring no more than
5% of the ground truth segmented slices would be discarded.
Final predicted myocardial segmentations of patient scans
therefore passed both per-slice and per-volume anatomical
constraints.

Training and evaluation
All train/test splits were performed on the patient level. The
training data set consisted of 2484 images from 2 sources:
1124 2-D LGE-CMR slices from 75% of available patients
and all 1360 “LGE-like” images. The test set contained
only LGE-CMR images from the remaining 25% of patients
(269 2-D images). For the myocardium segmentation
network, only LGE-CMR scans with enhancement
ium enhancement clinical feature performance

TotalUpper

327) 405 (334–573) 312 (186–573)
339) 424 (342–614) 323 (193–614)
8.0) 4.4 (1.3–10.3) 6.3 (0.6–18.8)

215) 180 (114–274) 158 (85–274)
226) 217 (159–351) 183 (109–351)
30.8) 24.7 (2.2–53.7) 20.1 (1.8–53.7)

) 30 (7–47) 27 (3–47)
) 26 (3–38) 22 (0–43)
100.0) 45.4 (15.9–87.5) 34.2 (3.8–100.0)

) 17 (4–30) 13 (1–30)
) 14 (2–22) 12 (0–22)
–100.0) 42.7 (32.1–72.0) 33.7 (1.2–100.0)

alized by GT volume (Norm. MAE), together with ranges (parentheses), are
ROI), myocardial tissue (MYO), area of enhancement (Enhancement region),
and Norm. MAE in percentage terms. Numbers represent averages across all
r/middle/upper).



Figure 6 Left ventricle (LV) region of interest (ROI) and myocardium segmentation results by region. Histograms of per-slice Dice scores are shown for 3
regions of the heart (rows from top to bottom: basal, middle, and apical). Columns represent the left ventricle (LV ROI) segmentation (A–C) and myocardium
(MYO) segmentation (D–F). The averages are shown as solid vertical lines, and the dotted lines represent the 5th and 95th percentiles. LGE-CMR 5 cardiac
magnetic resonance imaging with late gadolinium enhancement.
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segmentation ground truth were used (roughly 80% of the
train and test sets). The autoencoder used ground truth
myocardial segmentations from all the available training
data. No early stopping or other methods that learn from
the validation set were used in training.

To prevent cine-derived “LGE-like” images from domi-
nating the training set, they were weighed less in the loss
function.

The loss function used was an equally weighted combina-
tion of the balanced cross-entropy loss and the Tversky
loss33:

l1ðp; bpÞ5� ðbplogðbpÞ1ð1� bÞð1� pÞlogð1� bpÞÞ

l2ðp; bpÞ5 12
2TPðp; bpÞ

2TPðp; bpÞ1bFPðp; bpÞ1ð12bÞFNðp; bpÞ

where p and bp are pixel ground truth and predicted values, T/
F P/N are true/false positive/negatives, and b is a weight on
the false positives, which was modulated up to b 5 0.6 in
the first network to avoid over-cropping and down to b 5
0.4 in the second to limit outliers. The final loss combined
per-pixel mean loss (l1) and per-image (l2) loss in equal pro-
portions to incorporate both local and holistic performance.
All networks used the Adam optimizer34 with learning rate
of 1023 and trained on NVIDIA Titan RTX graphics process-
ing units using Keras35 and Tensorflow.36

We evaluated ACSNet’s segmentation performance
(Table 1) using balanced accuracy (BA), Sørensen-Dice
(Dice) coefficient, and Hausdorff distance (HD)37 as metrics.
Values were computed by averaging slice values over section
of the heart (apex, mid ventricle, base) and over the total
heart. Sections of the heart were determined by equipartition-
ing the short-axis distance between the first and last slice.

Additionally, we evaluated LV ROI (myocardium and
blood pool) volume, myocardium volume, enhancement re-
gion volume, and core scar region volume derived from the
segmentations (Table 2). Volumes were calculated by



Table 3 Comparison of cardiac magnetic resonance imaging with late gadolinium enhancement segmentation results for the left ventricle
myocardium

Method MYO Dice score MYO Hausdorff distance (mm)

ACSNet 0.79 6 0.02 6.70 6 0.53
Interobserver40,41 0.76 6 0.08 12.50 6 5.38
Zabihollahy et al24 0.85 6 0.03 19.21 6 4.74
Yue et al20 0.76 6 0.23 11.04 6 5.82
Roth et al21 0.78 16.30
Mean result of MS-CMRSeg MICCAI Challenge45 0.77 6 0.10 18.06 6 12.18
Chen et al22 0.83 6 0.04 12.45 6 3.14

All entries were rounded from the provided values to the nearest tenths place. Note: These sources use different data sets or additional cardiac magnetic
resonance (CMR) scans; data for Interobserver,40,41 Yue et al,20 Roth et al,21 and Chen et al22 are based on the 2019 CMRSeg MICCAI challenge45 consisting
of 2-D late gadolinium enhancement (LGE)-CMR and corresponding balanced steady-state free precision from 45 patients, various subsets of whom were used
as test sets. Zabihollahy et al24 used 3 orthogonal views of 34 subjects with 3-D LGE-CMR scans.
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summing voxel volumes and using nearest-neighbor interpo-
lation between slices. Mean absolute errors (MAE) were
normalized to the respective ground truth volume. To quan-
tify core scar, the enhanced (scar/fibrosis) region segmented
by the network was used to extract the dense core scar region
using a modified version of the full width at half
maximum38,39 algorithm.

The remote nonenhanced myocardium intensity used by
the full width at half maximum algorithm was automatically
determined as the median intensity value outside the pre-
dicted enhancement region. Differences between ground
truth and predictions were reported as the MAE normalized
relative to the ground truth value.
Statistical methods
All data analysis in this manuscript was performed using Py-
thon 3.4 and open source packages. All results presented
without a qualifier represent averages over slices or patients
from the 25% of the contrast-enhanced data reserved for
testing using a random split. Prediction error was estimated
using approximately normal confidence intervals for large n
(eg, number of slices) and minimum/maximum ranges for
small n (eg, number volumes). Statistically significant differ-
ence testing was assessed using Welch’s t test using the Py-
thon package scipy.
Results
Segmentation performance
ACSNet segmentations were evaluated using BA, Dice, and
HD computed on the test set (see Methods). Table 1 shows
that LV ROI identification (first subnetwork) resulted in
BA of 96%, Dice coefficient of 0.93, and HD of 6.5 mm.
The second subnetwork resulted in 93%, 0.79, and 6.7 mm
for the LV myocardium using the same metrics. The same
subnetwork evaluated for the identification of the enhance-
ment region led to 70% BA, 0.51 Dice, and 19.9 mm HD.
The core scar portion of the enhanced region achieved BA
of 74.9%, Dice of 0.57, and HD of 18.9 mm. The anatomical
postprocessing (third subnetwork) did not have significant
impact on performance metrics.
Figure 6 illustrates the consistency of ACSNet results
across 3 regions of the LV (apex, middle, and base) through
histograms of per-slice Dice scores. Dice scores are shown
for the LV ROI (Figure 6A–6C) and LV myocardial segmen-
tations (Figure 6D–6F). The average Dice scores for each
region are 0.94 (Figure 6A) and 0.80 (Figure 6D) for basal
slices, 0.95 (Figure 6B) and 0.82 (Figure 6E) for middle
slices, and 0.92 (Figure 6C) and 0.75 (Figure 6F) for apical
slices. Further details of LV ROI and myocardial segmenta-
tions for the 3 regions of the ventricle are in Table 1.

Table 3 presents a comparison of Dice scores and HD for
previously published LV myocardial segmentation methods,
showing that ACSNet achieved the lowest HD among those
LGE-CMR myocardium segmentation methods. The Dice
score is similar to the other methods’ results. ACSNet
improved upon the interobserver Dice score of 0.76 as well
as the interobserver HD (10.6 6 4.65 mm endocardial HD
and 12.5 6 5.38 mm epicardial HD) achieved in the Multi-
Sequence Cardiac MRI Segmentation Challenge.40,41

Figure 7 illustrates examples of ACSNet’s performance in
terms of scar segmentation. The first row shows the original
scan, the middle row presents the ground truth scar and GZ
segmentations, and the bottom row shows the predicted seg-
mentations. Results for patients 1–3 are representative exam-
ples of scar and GZ segmentations. Patient 4 was included to
show an example of an outlier for which GZ segmentation
has low accuracy. Of note, the low GZ accuracy did not hind-
er the scar segmentation performance. Balanced accuracy,
Dice score, and HD for all enhancement and core scar for
the apex, middle, and base of the LV are shown in Table 1.

Clinical feature calculation
ACSNet was used to seamlessly calculate clinical features,
such as scar burden and LV volume. Our results demonstrate
no statistically significant difference between features
computed using automatic vs manual (expert-level) myocar-
dium and regions of enhancement segmentations (P value 5
.71 for LV volume and P value 5 .46 for scar volume).
Figure 8A shows the normalized absolute error of each LV
volume in the test set (dots), together with the MAE at
6.3% (line). Similarly, Figure 8B shows scar volume
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comparison to ground truth, which resulted in an MAE of
33.7%. Also shown are each patient’s scar volume absolute
errors (dots). Table 2 presents ground truth and predicted vol-
umes of the entire LV, LV myocardium, enhancement re-
gion, and core scar volumes in cubic centimeters (cc), as
well as MAE in patients grouped by volume of the LV.
Scar burden, calculated as the mean scar-to-myocardium vol-
ume fraction, differed by 2% when comparing automatic and
manual segmentations (Figure 8).
Discussion
In this study we present a DL approach for automatic and
anatomically accurate segmentation of myocardium and
scar/fibrosis on LGE-CMR images and for extraction of
anatomical features, such as scar burden and ventricular vol-
ume. The complex learning process involves 3 subnetworks,
each having distinct tasks: the first reduces class imbalance
between the ROI and background, the second delineates
the endocardium and epicardium, and the third ensures
anatomical correctness for both slices and volumes. We
show that ACSNet outperforms interexpert (ie, manual)
scores and performs well on inputs with various scar distribu-
tion patterns acquired from numerous imaging centers and
MRI machines. Our technology is seamlessly employed to
extract clinical anatomical covariate data, potentially
enhancing the prognostic utility of LGE-CMR.
Advantages of ACSNet
ACSNet fully automates the segmentation of LV LGE-CMR
images. The high number of manual steps and the interob-
server variability associated with this task have hindered im-
plementing LGE-CMR image analysis as part of routine
patient assessment and prognostication. For instance, scar
burden and LV volume computed from myocardial and
scar/fibrosis segmentations have been associated with risk
of SCD42 but are seldom used in practice to guide primary
prevention. ACSNet can produce accurate segmentations
within seconds from raw medical images, making it possible
to more easily incorporate LGE-CMR image analysis in clin-
ical decision-making.
Figure 7 Scar segmentation results. Segmentations of enhancement regions from
(red). The first row shows the original scan, the middle row shows the ground truth
segmentations. LGE-CMR 5 cardiac magnetic resonance imaging with late gadol
ACSNet achieves goodperformance despite the complexity
of LGE-CMR images. Contouring of LGE-CMR images is
complicated by the presence of both low- (viable) and high-
(scar/fibrosis) signal-intensity myocardium regions. As a
result, manual segmentations can be variable even across
experts, potentially affecting estimated features of clinical in-
terest. The same complications also affect computer-aided seg-
mentation algorithms,which can strugglewith visually similar,
but distinct anatomical entities (eg, myocardium and blood
pool). ACSNet’s results demonstrate robust learning, leading
to reliable segmentations, despite inherent noise present in
ground truth data. There were no clear common characteristics
of the cases that had lower performance. The network main-
tains consistently high performance across all regions of the
heart. This is prioritized by design in favor of higher average
Dice scores with poor-performing outlier slices. Despite ACS-
Net’s success with whole-ventricle segmentation, some out-
liers were present when segmenting the area of enhancement
(Figure 7, patient 4). However, the proposed method to tease
out the core scar does not seem sensitive to the overestimation
of GZ, leading to accurate clinical feature estimation.

In this study, we use a novel method to ensure anatomical
accuracy of segmentations: we integrate, in the DL approach,
an additional deep neural network (ACSNet’s third subnet-
work) encompassing a number of per-slice and per-volume
morphological checks. The distribution-based model of the
latent space allows for complex anatomical segmentations
such as “C”-shaped myocardium, which can occur in the ven-
tricle’s base, while also smoothing out potentially erroneous
myocardial segmentation predictions. This low number of
large deviations from ground truth is illustrated by ACSNet’s
performance in terms of HD (Table 3). Moreover, ACSNet
uses volumetric checks that standardize and automate the
identification of apical and basal (beginning and end) slices,
a time-consuming and often error-prone process when per-
formed manually. Importantly, these checks also establish
consistency and reliability in the calculation of clinical fea-
tures (eg, LV volume and scar burden).

ACSNet takes advantage of the more widely available
cine data with ground truth segmentation labels and ad-
dresses the scarcity of available segmented LGE-CMR
the myocardium segmentation network represent gray zone (yellow) and scar
scar and gray zone segmentations, and the bottom row shows the predicted

inium enhancement.



Figure 8 Scar and left ventricle (LV) volumes. LV (A) and scar (B) volume error is computed as the absolute error normalized by each respective volume. Each
point represents the error in LV volume of a single segmented patient scan. The solid black line shows the mean.
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data. Importantly, ACSNet performs well despite data scar-
city owing to the innovative style transfer process to augment
the training data presented here. This process generates
pseudo-enhancement for nonenhanced cine using a low-
cost cine-to-LGE conversion algorithm. The method tripled
the available training data and added heterogeneity to the
learning process in terms of patient cohorts and health cen-
ters. By training ACSNet with both LGE and “LGE-like”
cine CMR images from a broad range of cohorts, the technol-
ogy holds the promise to fully automate segmentation of
short-axis cardiac images across multiple medical imaging
modalities. For example, since style-transferred cine images
were already part of training, ACSNet would be expected
to segment cine scans with high accuracy. Similarly, given
that signal intensity preprocessing was minimal, our
approach could generalize to computed tomography images,
which, like CMR, display a high-intensity blood pool and
low-intensity myocardium. Finally, ACSNet performance
was validated on ICM patient data, though ACSNet could
be easily applied to non-ICM patient scans as well.

Lastly, we envision ACSNet to be an important and neces-
sary first step in a number of fields related to cardiac imaging.
For example, in machine learning or radiomics applied to
CMR, having an efficient way to discard information outside
the ROI can greatly enhance models’ abilities to learn without
getting bogged down with extraneous information. Further-
more, personalized computational heart modeling simulating
cardiac electrophysiology to identify arrhythmogenic pathways
and arrhythmia dynamics14–16 or the targets for ablation
therapy43,44 often require segmentations to capture heart geom-
etry and scar distribution. Their efficiency and robustness could
therefore be drastically improved by ACSNet.

Comparison to other work
Segmentation algorithms for the LV myocardium have pre-
dominantly focused on cine CMR images. Despite promising
advances, most cine segmentation algorithms still require
manual steps. For example, the method by Zheng and col-
leagues19 requires a preprocessing step to discard apical
and basal slices and a manual curation of “difficult cases.”
An attempt by Bello and colleagues18 at segmenting cine im-
ages relies on ground truth landmark annotations to prevent
anatomically inconsistent outliers. The current limitations
in cine segmentation have demonstrated that LGE-CMR
require a tailored segmentation algorithm, rather than a reim-
plementation of methods developed for cine scans.

Some DL methods have been proposed specifically for
LGE-CMR myocardial or scar segmentation; however, these
solutions also have a number of limitations. The approach by
Campello and colleagues23 for segmenting the myocardium
in LGE-CMR images attempted to address LGE-CMR data
scarcity by using a costly DL cine-to-LGE style transfer
approach. However, in the process, the style-transferred cine
images lost the salient aspect of LGE-CMR, the scar/fibrosis
features. A recent attempt by Zabihollahy and colleagues24 at
myocardial and scar/fibrosis segmentation on 3-D LGE-
CMRresulted in artifacts, such asdisjoint piecesof themyocar-
dium, despite the benefit of a 10-fold increase in the number of
slices per patient furnished by the 3-D acquisition. Addition-
ally, 3-D LGE-CMR data are relatively scarce, as most hospi-
tals and healthcare centers acquire in 2-D. The 2019 CMRSeg
MICCAI challenge for myocardial segmentation20–22,45 and a
study focused on scar segmentation27 both required LGE-
CMR and corresponding cine scans for each patient. Further-
more, Fahmy and colleagues27 exclusively utilized images of
patients with hypertrophic cardiomyopathy and did not present
overall myocardial segmentation performance, which could
have been traded off for better scar segmentation. An attempt
by Moccia and colleagues25 at predicting enhancement seg-
mentations required manually segmented ground truth
myocardium as an additional network input; this requirement
limited their data set to only 30patients, all froma single center.

A few recent methods have proposed postprocessing steps
to improve the anatomical accuracy of myocardial segmenta-
tions from cine images.46,47 Although these algorithms
smooth out resulting segmentations, they have a number of
limitations: they use generic techniques unable to capture
nuances of heart anatomy47; they require an already highly
accurate segmentation as input to function well46; or they
do not incorporate 3-D constraints.46

Study limitations
As with any DL algorithms, ACSNet could benefit from a
larger cohort with more diverse image data, including
different imaging centers, machines, scar patterns based on
different cardiomyopathies, etc. The LGE-CMR images in
this study originated exclusively from ICM patients, which
could affect the algorithm’s ability to generalize to non-
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ICM. However, while the pseudo-enhancement generated for
the synthetic data was done through a random process and not
based on established scar distributions, its addition improved
the network’s ability to identify regions of enhancement.

Another limitation inherent to supervised learning tasks in
medical imaging is the potential subjectivity of ground truth.
Considering that myocardial segmentation interobserver Dice
can be as low as 0.76,40,41 one can expect even lower concor-
dance for the more complicated regions of scar/fibrosis. A su-
pervised DL algorithm is trained to best replicate whatever
ground truth it is provided, the quality of which, therefore,
sets an upper bound on the algorithm’s segmentation perfor-
mance. Given the significant interobserver disagreement on
ground truth, exceedingly high concordance of an algorithm
with 1 expert should be seen as a sign of poor generalization,
rather than strong performance. In ACSNet, small potential in-
creases in performance metrics are explicitly traded off for
reasonable segmentations that preserve anatomical cardiac fea-
tures and avoid artifacts.

Additionally, we did not perform a broad hyperparameter
sweep when developing the structure of our networks. How-
ever, manual exploration of different hyperparameter imple-
mentations resulted in similar Dice scores for myocardium
segmentation, which indicates the robustness of the core
ACSNet model. This is suggested, for example, in Table 3,
where ACSNet myocardial segmentations have significantly
lower HD when compared to other methods. However, it is
important to stress that the comparison in Table 3 should
be interpreted more as a general guidepost rather than a pre-
cise comparison, given that either the presented segmentation
methods require additional inputs unavailable for our dataset
(eg, corresponding/matching cine MRI for each LGE scan),
or the details of the methodology were not made publicly
available for us to replicate.
Conclusion
We demonstrated an efficient, cost-effective DL solution for
automatic expert-level segmentation of LV LGE-CMR im-
ages and seamless, accurate derivation of scar burden and
LV volume. ACSNet segmentations uphold anatomical con-
straints and have been trained on scans from heterogeneous
cohorts, thus offering the potential for much broader applica-
tion across imaging modalities and patient pathologies.
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