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The contributions of key molecules predicted to align
chromosomes at the center of the mitotic spindle have
been recently examined. New results dictate that models
for how chromosomes align during the early stages of mitosis
must be revised to integrate properties of microtubule-based
motor proteins as well as microtubule dynamics.

 

Chromosome alignment at the spindle equator, or congression,
is a remarkably conspicuous event during mitosis that defines
the metaphase stage of the cell cycle. This movement of
chromosomes to the spindle equator is necessary for accurate
segregation of a cell’s replicated DNA in organisms as diverse
as plants, insects, and mammals (for review see Khodjakov et
al., 1999). Results from more than a century of detailed
observations of chromosomes in mitosis (particularly in
vertebrate cells) have provided a well-scripted sequence for
the steps involved in chromosome attachment to the spindle
and subsequent congression to the spindle equator (for
review see Rieder and Salmon, 1994). In addition, chromo-
some cutting experiments and microtubule marking ex-
periments have revealed many, if not all, of the forces in-
volved in driving chromosome movement (Gorbsky, 1992).
However, a striking gap exists in our understanding of the
mechanisms of chromosome movement due to our inability
to identify specific molecules that drive chromosome
movement or regulate chromosome alignment at the spindle
equator. This review highlights recent results that begin to
fill this gap and examines current models for chromosome
congression in the context of this new data.

Microtubule–chromosome interactions occur primarily at

 

kinetochores, specialized pairs of disc-shaped structures
located on either side of the centromere. To congress to the
spindle equator, a chromosome must biorient, i.e., attach to
spindle microtubules with each kinetochore interacting with
microtubules derived from one of the two spindle poles.
Some chromosomes biorient immediately upon nuclear

envelope breakdown and oscillate about the spindle equator,
but do not tend to stray far from the spindle midzone (Fig.

 

1, b–e). Other chromosomes initially interact with microtubules
at only one kinetochore. This leads to rapid chromosome
movement toward the pole as it slides along the length of the
microtubule in a manner similar to the transport of vesicles
(Fig. 1 b) (Rieder and Alexander, 1990). Once near the
spindle pole the kinetochore captures multiple microtubule
plus-ends and builds a kinetochore fiber (Fig. 1 c). These
monooriented chromosomes are positioned with their kineto-
chores pulled toward the pole and their arms pushed away
from the pole and oscillate toward and away from their
attached pole. During these oscillations, changes in kinetochore
fiber length coincide with chromosome movement toward
and away from the spindle pole. Eventually, a microtubule
from the opposite pole will contact the unattached sister
kinetochore establishing biorientation. The newly bioriented
chromosome then moves in a directed manner (i.e., congresses)
to the spindle equator (Fig. 1, d and e).

 

An appealing model for how chromosomes congress to
the center of the spindle is based on ideas developed by
Ostergren (1951). In this model, chromosomes attached
to two spindle poles experience force toward each pole
with the magnitude of each force being proportional to
the length of the kinetochore fiber connecting the chro-
mosome to the pole. Chromosomes align at the equator
of the spindle where opposing poleward forces are equal
and balanced. However, two key observations suggest
that this model is not likely to be correct (for review see
Rieder and Salmon, 1994). First, in many cell types
chromosomes oscillate back and forth over substantial
distances as they congress to the center of the spindle,
indicating that forces acting on chromosomes do not
change monotonically with distance from a spindle pole.
Second, monooriented chromosomes display both pole-
ward and away-from-the-pole movements, indicating
that chromosomes experience force away from the pole
independent of any attachment to the distal pole (the
polar ejection force). These observations are more con-
sistent with models that proposed “smart” kinetochores
capable of integrating different signals and forces to de-
termine their position in the spindle, as they dance to-
ward its center (Mitchison, 1989a).
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Kinetochore directional instability

 

In 1993, Skibbens and Salmon published a study using
high-resolution time-lapse video microscopy that provided
crucial insight into how chromosomes move in living cells
(Skibbens et al., 1993). Their four key observations were
that (1) the rates of chromosome movement are the same at
different positions on the spindle, (2) the transitions be-
tween poleward and away-from-pole movement are abrupt,
(3) sister kinetochore movement is highly coordinated, and

(4) chromosome congression is favored in prometaphase be-
cause kinetochores spend more time moving away from the
pole than they do moving poleward. They termed this con-
stellation of oscillatory behaviors kinetochore directional in-
stability.

Based on these observations, the authors proposed that ki-
netochores toggle between states of poleward force genera-
tion and neutral (or pushing), and tension experienced by
the kinetochore regulates the switching between those two
states. Monooriented chromosomes are dragged poleward by
their attached kinetochore. As poleward motion moves the
chromosome progressively closer to the spindle pole, the
leading kinetochore encounters increasing tension due to
the antagonistic polar ejection force pushing the chromo-
some arms away from the spindle pole. That tension causes
the leading kinetochore to cease poleward force production
and shift into neutral permitting the polar ejection force to
move the chromosome away from the pole. Kinetochores on
bioriented chromosomes moving poleward experience ten-
sion derived from both the polar ejection force and the activ-
ity of the sister kinetochore pulling toward the opposite
pole. High tension on the leading kinetochore will cause it
to switch into neutral permitting the poleward force derived
from the sister kinetochore, along with the ejection force
from the proximal pole, to move the chromosome toward
the spindle equator. Repeated iterations of these switches
lead to congression because chromosomes spend more time
moving away from the pole toward the spindle equator, and
the spindle equator is the position where the polar ejection
forces are equal—and, presumably, minimal—between the
poles. This model provides explanations for chromosome os-
cillations on both bipolar and monopolar spindles in animal
cells and for chromosome congression.

Although growing microtubule plus-ends may contrib-
ute to the polar ejection force, recent evidence demon-
strates that a majority of this force is generated by the Kid
subfamily of kinesin-related proteins (Antonio et al.,
2000; Funabiki and Murray, 2000; Levesque and Comp-
ton, 2001). Kid localizes along chromosome arms, and
consistent with the kinetochore directional instability
model, inhibition of Kid function in cultured cells abol-
ished chromosome oscillation on both monopolar and bi-
polar spindles (Levesque and Compton, 2001). Moreover,
in the absence of Kid function, chromosomes were unable
to maintain their distance from monopolar spindle poles,
suggesting that the poleward force at the kinetochore
dominates in the absence of the polar ejection force and
drags the chromosome into the pole. As chromosome os-
cillations were eliminated after Kid inhibition, it follows
that the polar ejection force regulates switching of kineto-
chores between poleward and neutral states. However, the
surprise was that bioriented chromosomes congressed nor-
mally in Kid-deficient cells despite the lack of oscillation.
Thus, whereas biased durations of oscillatory motion are
likely an important mechanism driving chromosome con-
gression in animal cells, these new results suggest that
another mechanism exists to provide positional cues to
chromosomes and that this alternative mechanism can ef-
ficiently drive chromosome congression if the oscillation-
based pathway is inoperative.

Figure 1. Chromosome positioning on the mitotic spindle. Schematic 
representation of a cell in prophase (a), prometaphase (b–d), and 
metaphase (e) of mitosis indicating the microtubules (black), 
chromosomes (blue), and kinetochores (red). Thin black lines 
represent individual microtubules and thick black lines represent 
bundles of 10–40 microtubules within kinetochore fibers. Arrows 
indicate the direction of chromosome movement.
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Kinetochore microtubule numbers

 

One potential source of positional information for chromo-
somes during early stages of mitosis may come from the
number of microtubules attached to each sister kinetochore
as the magnitude of kinetochore force, hence the direction
of chromosome movement, may depend on the number of
kinetochore microtubules (Hays and Salmon, 1990). Mc-
Ewen and colleagues recently tested this model using correla-
tive light and electron microscopy and observed no positive
correlation between the number of microtubules bound to
kinetochores and direction of chromosome movement
(McEwen et al., 1997). Thus, these data argue against chro-
mosome congression models in which the direction of
chromosome movement is dependent, either directly or in-
directly, on the number of microtubules bound to kineto-
chores.

 

Kinetochore motors

 

Another potential mechanism for chromosome congression
could involve the precise regulation of kinetochore-associ-
ated microtubule motors. Microtubule marking experiments
demonstrated that most poleward chromosome movement
coincided with the disassembly of microtubule plus-ends at
the kinetochore, indicating that in vertebrate cells chromo-
some movement may primarily be driven by kinetochore-
associated motors (Gorbsky et al., 1988; Mitchison and
Salmon, 1992). Based on these observations, it was proposed
that forces generated by the kinetochore-associated mo-
tors dynein, CENP-E, and/or MCAK/XKCM1 could drive
chromosome congression if appropriately regulated and cou-
pled to microtubule plus-end dynamics (also known as the
pac-man model) (Gorbsky et al., 1987). Regulation of the
activity of these motors could occur through a variety of
mechanisms including changes in the phosphorylation state
or the abundance of the proteins at kinetochores (Hyman
and Mitchison, 1991). Concordantly, CENP-E is known
to undergo cell cycle–dependent phosphorylation, and the
abundance of both CENP-E and dynein has been shown to
be dependent on microtubule occupancy at kinetochores
(Liao et al., 1994; King et al., 2000; Hoffman et al., 2001).

Recent experiments in cultured animal cells have tested
the potential role of each of these motors in chromosome
congression. Disruption of Kin I kinesin (MCAK) function
in cultured cells using either antisense or overexpression of
dominant–negative fragments caused defects in chromatid
segregation at anaphase, but prior chromosome alignment at
the spindle equator did not appear altered (Maney et al.,
1998). Inhibition of cytoplasmic dynein activity impaired
chromosome congression in fruit fly embryos (Sharp et al.,
2000), but did not cause any detectable effect on the rate or
extent of chromosome congression in cultured vertebrate
cells (Howell et al., 2001). Finally, depletion of CENP-E
from kinetochores by antibody injection caused cell cycle ar-
rest with multiple chromosomes lying adjacent to the spin-
dle poles instead of at the spindle equator (Schaar et al.,
1997). Although suggestive of a failure in congression, care-
ful analysis of these cells by electron microscopy demon-
strated that the unaligned chromosomes failed to congress
because they were monooriented (McEwen et al., 2001).
Bioriented chromosomes in the same cells showed chromo-

some congression and oscillation indistinguishable from
control cells even though the kinetochores lacked detectable
CENP-E. Thus, although these data do not exclude the pos-
sibility that chromosome congression is driven by regulated
kinetochore motor activity, the molecular mechanisms for
regulating the activities of these proteins to determine the
position of chromosomes in spindles have not been charac-
terized.

 

Traction fiber

 

Another possible source of positional information in the
spindle is based on the traction fiber model, perhaps the old-
est and most widely discussed model for chromosome con-
gression (Ostergren, 1951). Although the traction fiber
model cannot explain the complex oscillatory movements of
chromosomes, it offers an alternative to the oscillation-based
mechanism to explain how chromosomes sense their posi-
tion on spindles. In its developed form, this model proposes
that kinetochore microtubules are translocated poleward
generating a poleward force that is proportional to the
length of the kinetochore fiber (Fig. 2) (for review see Rieder
and Salmon, 1994; and for an alternative view see Pickett-
Heaps et al., 1996). Hays and Salmon provided evidence
that poleward force was proportional to the length of kineto-
chore microtubules in agreement with a traction fiber–based
mechanism (Hays et al., 1982). However, the most compel-
ling evidence that a traction fiber–based mechanism exists
comes from the direct observation of the poleward transloca-
tion of kinetochore microtubules, referred to as poleward
microtubule flux, in spindles in many different cell types
(Mitchison, 1989b; Mitchison and Salmon, 2001).

To explain how the microtubule lattice translocates to-
ward the spindle pole, while keeping the length of the spin-
dle constant, a nonmicrotubule mechanical ensemble, or
spindle matrix, has been proposed (for reviews see McIntosh
et al., 1969; Pickett-Heaps et al., 1982). Motor proteins
may bind to this structure and generate force to drive micro-
tubule translocation poleward. However, such a spindle
component has not been biochemically characterized and
the existence of the spindle matrix remains controversial.
Recently, two observations have once again focused our at-
tention on the possible existence of a spindle matrix. First,
examining the localization of a protein “skeletor” in fixed

 

Drosophila

 

 embryos suggests that a non-microtubule spin-
dle–like structure exists (Walker et al., 2000). Whether this
is in fact the long sought after spindle component is still un-
clear as the biochemical function of skeletor is unknown and
homologous proteins in other cell types have not been iden-
tified or characterized. Second, examining the translocation
and turnover of the BimC kinesin Eg5 in bipolar spindles
using fluorescent speckle microscopy, it was found that the
motor protein was static relative to spindle microtubules
that fluxed polewards (Kapoor and Mitchison, 2001). An
interpretation of this observation is that Eg5 is static while it
interacts with a nonmicrotubule matrix in the spindle. How-
ever, other interpretations, including the possibility that the
motor protein itself forms higher order oligomers with lim-
ited diffusion, cannot be ruled out. Validating a candidate
spindle matrix component may be particularly challenging
for at least two reasons. First, the matrix may not be a stable



 

554 The Journal of Cell Biology 

 

|

 

 

 

Volume 157, Number 4, 2002

 

framework but a dynamic assembly, consistent with the ob-
servation that fluorescent Eg5 speckles persist for few sec-
onds and the protein rapidly exchanges in and out of the
spindle (Kapoor and Mitchison, 2001). Second, the assem-
bly of the spindle matrix and spindle microtubules may be
interdependent.

The rate of poleward microtubule flux has been shown
to be equal to that of poleward chromosome movement
in anaphase in frog egg extracts, suggesting that it may be
the primary poleward driving force in that system (De-
sai et al., 1998). However, the rate of poleward microtu-
bule flux has been found to be significantly slower than
the rate of poleward chromosome movement in many
other cell types that have been examined (Mitchison and
Salmon, 1992). Thus, contrary to the simple tug-of-war
idea originally proposed in the traction fiber model, pole-
ward microtubule flux may not be responsible for directly
powering chromosome congression to the spindle equator
in many cell types. However, this does not rule out the
possibility that the force generated by poleward microtu-
bule flux regulates kinetochore activity to appropriately
position chromosomes at the spindle equator. If the find-
ings of Hays and Salmon indicating that the magnitude
of the force at the kinetochore were dependent on kineto-
chore microtubule length were confirmed in all cell types
(Hays et al., 1982), then we envision that poleward mi-
crotubule flux may be a mechanism to bias chromosome
movement to the spindle equator. This mechanism would
most likely act independently of the polar ejection force
and chromosomes may utilize both mechanisms to deter-
mine their position on the spindle. In this context, the
traction fiber alone may provide all the positional infor-
mation needed to correctly align chromosomes at the
center of the spindle, which offers an explanation for how
chromosomes congressed efficiently after perturbation of
the polar ejection force generating motor Kid. However,
it is currently unknown if the poleward translocation of
spindle microtubules occurs during prometaphase, the
critical period of mitosis for congression, and no direct
test of this idea is possible at this time because no re-
agents are available to specifically inhibit poleward mi-
crotubule flux.

 

Force gradients: positional cues 
for chromosome alignment

 

A parallel exists between the mechanisms by which the polar
ejection force and the traction fiber–based poleward micro-
tubule flux could direct chromosome congression. These
two forces are most likely manifested as force gradients
within the spindle lattice with the magnitudes of force gen-
erated by polar ejection and poleward microtubule flux de-
creasing and increasing, respectively, as chromosomes move
away from the spindle pole toward the spindle equator. It is
appealing to speculate that both these force gradients influ-
ence kinetochore activity by generating tension at the kinet-
ochore (Fig. 2). Tension has been shown to stabilize kineto-
chore-microtubule attachment and kinetochore motility in
meiotic cells (Nicklas and Koch, 1969; Nicklas, 1977) and
to influence kinetochore motility in mitotic cells (Skibbens
et al., 1995). It has been shown that poleward microtubule
flux can generate sufficient force to maintain interkineto-
chore stretching (Waters et al., 1996), an observation consis-
tent with idea that a traction fiber mechanism could gener-
ate tension to regulate kinetochore activity (Mitchison,
1989a). Furthermore, the polar ejection force has been
shown to regulate chromosome oscillations, presumably,
through altering kinetochore tension (Levesque and Comp-
ton, 2001).

A key component of such tension-regulated mechanisms
is the elastic properties of the centromeric DNA linking the
kinetochore to the chromosome, a rather unexplored aspect
of chromosome and spindle biology. Significant stretching
of centromeric chromatin in response to spindle forces has
been observed in both budding yeast and human cells
(Shelby et al., 1996; Pearson et al., 2001). It has also been
argued that the elastic properties of centromeric DNA influ-
ences the coordination between sister kinetochores during
oscillatory chromosome movements (Skibbens et al., 1995;
Pearson et al., 2001). Moreover, centromeric elasticity is
most likely responsible for syntelic chromosome orientation,
where both sister kinetochores attach to microtubules ema-
nating from the same spindle pole (Rieder, 1982; Kapoor et
al., 2000). It is not understood why kinetochore tension re-
sulting from polar ejection forces is manifested as oscillatory
chromosome movement, whereas tension generated at ki-

Figure 2. Postional cues for chromo-
some congression may be derived by 
integrating two force gradients in the 
spindle, the polar ejection force and the 
traction fiber mechanism. A chromo-
some (blue) moving from left to right is 
shown. Red arrows indicate translocation 
of the traction fiber with the number of 
arrows proportional to the length and 
therefore the forces acting along the 
kinetochore fiber. The blue arrows 
correspond to the polar ejection force. 
This force is predicted to decrease as the 
distance from the pole increases. The 
kinetochores (red) are under tension and 
stretched (pulled apart) due to forces 
acting on chromosomes. The magnitude 
of tension at kinetochores can regulate 
the movement of a chromosome.
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netochores by poleward microtubule flux is not. We specu-
late that this difference may result from the fact that the
polar ejection force needs to be transduced from the chro-
mosome arms through the elastic centromeric chromatin to
the kinetochore, whereas the force exerted by poleward mi-
crotubule flux acts directly on the kinetochore, the likely lo-
cation for the tension-sensitive mechanism.

 

Summary

 

Data from inhibition of molecules and examination of the
dynamics of spindle components has begun to fill the gaps
in our understanding of the process of chromosome congres-
sion. However, our complete understanding of congression
may require the application of multiple experimental ap-
proaches as “something of a gulf exists between dynamics-
centered and motor-centered views of spindle assembly and
force generation” (Mitchison and Salmon, 2001). Thus, an-
swers to outstanding questions, such as how does poleward
microtubule flux contributes to chromosome congression,
what is the tension-sensitive molecular switch that allows
kinetochores to change direction of movement, and how
can mechanisms of force generation be distinguished from
sources of positional information, may only come through
combining tools that perturb specific molecules with power-
ful new imaging technologies such as fluorescent speckle mi-
croscopy (Waterman-Storer et al., 1998).
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