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Background: Neuroblastoma is the most common extracranial childhood solid tumor
which accounts for 10% of the malignancies and 15% of the cancer fatalities in children.
N-glycosylation is one of the most frequent post-translation protein modification playing a
vital role in numerous cancers. N-glycosylation changes in neuroblastoma patient serum
have not been studied in existing reports. The comprehensive analyses of serum
N-glycomics in neuroblastoma can provide useful information of potential disease
biomarkers and new insights of the pathophysiology in neuroblastoma.

Methods: The total serum protein N-glycosylation was analyzed in 33 neuroblastoma
patients and 40 age- and sex-matched non-malignant controls. N-glycans were
enzymatically released, derivatized to discriminate linkage-specific sialic acid, purified by
HILIC-SPE, and identified by MALDI-TOF-MS. Peak areas were acquired by the software of
MALDI-MS sample acquisition, processed and analyzed by the software of ProgenesisMALDI.

Results: Three glyco-subclasses and six individual N-glycans were significantly changed
in neuroblastoma patients compared with controls. The decreased levels of high mannose
N-glycans, hybrid N-glycans, and increased levels of a2,3-sialylated N-glycans, multi-
branched sialylated N-glycans were observed in neuroblastoma patients. what is more, a
glycan panel combining those six individual N-glycans showed a strong discrimination
performance, with an AUC value of 0.8477.

Conclusions: This study provides new insights into N-glycosylation characteristics in
neuroblastoma patient serum. The analyses of total serum protein N-glycosylation could
discriminate neuroblastoma patients from non-malignant controls. The alterations of the
N-glycomics may play a suggestive role for neuroblastoma diagnosis and advance our
understanding of the pathophysiology in neuroblastoma.
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INTRODUCTION

Neuroblastoma (NB) is the most common type of extracranial
solid tumor in children, accounting for about 8–10% of pediatric
malignancies and for 15% of malignant neoplasm deaths in
children (1, 2). It derives from the neural crest cells of the
sympathetic system, which can arise along the sympathetic
ganglion chain from the neck to the pelvis. Approximately
64% of neuroblastomas are diagnosed in the abdomen, 14%
are diagnosed in the posterior mediastinum, and the remainders
are diagnosed in the neck, pelvis and other locations (3). A key
characteristic of neuroblastomas is their extreme heterogeneity,
generating different clinical presentations (4). A small number of
them can spontaneously differentiate and regress with a favorable
prognosis even without any therapies, but most of them are
highly undifferentiated displaying very aggressive behaviors,
refractory to current therapies, and with very poor outcomes (5).

With the development of the risk classification system
introduced by International Neuroblastoma Risk Group
(INRG), patients are divided into different risk categories
according to their clinical markers such as age, tumor stage,
and histology as well as genetic markers such as MYCN
amplification and arm-level alterations of chromosomes (6). In
this way, risk-assigned therapies have been delivered to NB
patients, which have improved the prognosis to some extent
(7). Nevertheless, the diagnoses of some patients are still delayed
due to the occult locations of occurrence and the lack of specific
clinical symptoms. Overall, more than 50% of new diagnosed
neuroblastomas are metastatic (8). Despite aggressive multi-
modal treatments such as resection, intensive chemotherapy,
radiation, immunotherapy and 13-cis-retinoic acid are applied,
the long-term survival of the high risk patients with metastasis
remains below 50% (9, 10). Currently, the standardized criteria
for diagnosis of neuroblastomas include the analysis of urinary
catecholamine metabolites, imaging procedures and
histopathology (11). However, in pediatric patients, it has
difficulty in collecting 24-h urine samples. Imaging
examination is greatly affected by the location of lesions and
the size of tumors. Although histopathology is considered as the
gold standard for the diagnosis of NB, which is obtained through
invasive surgical procedures and in some cases may not be
accessible (9). Peripheral blood based tests are minimally
invasive and the risk to patients is negligible. They are easily
obtainable and can be repeated at shorter intervals with a higher
application value, even in pediatric patients (12). Therefore,
incorporating some new serology biomarkers as one part of the
diagnostic and prognostic criteria will benefit the patients from
receiving appropriate treatments in time.

Glycosylation is one of the most common post-translation
protein modification which plays a vital role in numerous
biological functions such as protein folding, cell signaling, cell
adhesion and immune response (13–15). The levels of expression
of N-glycans affect multiple physiological and pathological
processes. Aberrant glycosylation has been reported to be
associated with many mammalian diseases including
immunological disorders (16), inflammations (17), cardiovascular
diseases (18) and different type of malignancies (19).
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Thus, detecting and monitoring N-glycomic differences
including the information of structures and the abundance of
N-glycans between healthy and diseased individuals is of great
interest and importance for advancing our understanding of the
diseases. The mass spectrometry (MS) based strategies have been
widely employed (20, 21). In neuroblastoma, disialoganglioside
(GD2) has been reported as a potential molecular marker for
detection and a target for immunotherapy in high-risk NB
patients (22). It was reported that reduced N-glycosylation of
intercellular adhesion molecule-2 (ICAM-2) attenuated the
ability to suppress metastasis of NB cells (23). The inhibition
of N-glycosylation of anaplastic lymphoma kinase (ALK) protein
which is significantly up-regulated in advanced and metastatic
NB affects its phosphorylation and disrupts downstream pro-
survival signaling (24). Additionally, a systematic comparison of
N-linked glycomic variations between different neuroblastoma
cell lines revealed that less galactosylated and more sialylated N-
glycan structures were found in MYCN-amplified cell lines
compared with MYCN-nonamplified cell lines (25). And in our
previous study, we revealed the deceases of serum IgG
galactosylation in neuroblastoma, and this distribution may
play a suggestive role for neuroblastoma diagnosis (26).
Therefore, analyzing the levels of expression of N-glycans in
easily accessible body fluids such as serum and plasm may
provide potential biomarkers and facilitate our understanding
of the mechanisms and progression of NB. However, to our
knowledge, there has no study about a comprehensive N-
glycomic profiling of NB patient serum.

In this study, we conducted a comprehensive analysis of the
total serum protein N-glycomics purified from only microliter
volumes of serum samples derived from NB patients and age-
and sex-matched non-malignant controls using matrix-assisted
laser desorption/ionization time-of-fight mass spectrometry
(MALDI-TOF-MS) in order to identify neuroblastoma-related
N-glycan alterations which can provide insights into the
biomarkers and pathophysiology of NB. In total, seventy-eight
N-glycans were identified, from which 60 N-glycans and eight
glyco-subclasses were quantified. Three glyco-subclasses (p <
0.0063, after Bonferroni correction) and six N-glycans (p <
0.00083, after Bonferroni correction) showed significant
alternations. A combination of these six individual glycans
could achieve a strong discrimination performance. What is
more, the detailed summary of serum N-glycomics in NB can
provide useful information of potential disease biomarkers and
new insights of the pathophysiology in NB.
MATERIALS AND METHODS

Study Population and Sample Collection
Serum samples were collected from 33 patients diagnosed with
neuroblastic tumor consisted of 22 neuroblastoma (NB) cases and
11 ganglioneuroblastoma (GNB) cases which were classified
according to the International Neuroblastoma Pathology
Classification (27). In addition, 40 serum samples from age- and
sex-matched non-malignant individuals were enrolled as controls.
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The venous blood samples were obtained preoperatively during
the morning fasting state. After clotting 30 min at ambient
temperature, the tubes were centrifuged at 2,000 × g for 10 min.
The serum samples were aliquoted and stored at −80°C until
analyses. The approvals of this study were obtained from the
Institutional Review Board of the Children’s Hospital of Fudan
University, China [(2019)063] and Shanghai Children’s Hospital,
Shanghai Jiao Tong University, China (2020RY014), and informed
consents from all participants were acquired.

N-Glycans Release
Five microliters of serumwere denatured at 60°C for 10min by adding
2 µL of denaturing solution (2% sodium dodecyl sulfate) (Merck,
Germany). When it cooling to room temperature, 2 µL of glycobuffer
(4% Nonidet P-40, 5×PBS, PH 7.5) (New England Biolabs, USA) and
1mL peptide-N-glycosidase F (New England Biolabs, USA)were added
to the mixture and incubated at 37°C overnight.

N-Glycans Derivatization
The released N-glycans were subsequently derivatized with
ethanol in order to discriminate the ethyl-esterification of 2,6-
linked sialic acids and lactonization of 2,3-linked sialic acids as
described previously (20). Briefly, the released N-Glycans were
added to ethanol (Merck, Germany) which contains 1-ethyl-3-
(3-(dimethylamino) propyl)-carbodiimide (EDC) hydrochloride
(Fluorochem, UK) and 1-hydroxybenzotriazole monohydrate
(HOBt) (Sigma-Aldrich, Germany), each component at a
concentration of 0.25 M. The samples were incubated at 37°C
for 1h. Acetonitrile (ACN) (Merck, Germany) was added and all
samples were further incubated at − 20°C for 15 min to
precipitate the protein as reported previously.

HILIC Solid-Phase Extraction
The derivatized N-Glycans were subsequently enriched using cotton
hydrophilic interaction liquid chromatography (HILIC) solid phase
extraction (SPE) tips as described previously (20, 28). Briefly, twenty
microliter pipet tips (Rainin Instrument, USA) were packed with
3mm cotton thread. The cotton tips were pre-conditioned and
equilibrated with 3×20 mL of Milli-Q water and 3×20 mL of 85%
ACN. The samples were loaded on the cotton by pipetting more
than 20 times. Then, the tips were washed with 3×20 mL of 85%
ACN containing 1% trifluoroacetic acid (Sigma-Aldric, Germany)
and 3×20 mL of 85% ACN. Finally, the N-Glycans were eluted into
the collection plate using 10 mL of Milli-Q water.

MALDI-QIT-TOF MS Analysis
Before MALDI MS analysis, TOFMix (LaserBio Laboratories,
France) containing an eight-peptide calibration standard was
employed to calibrate the MS. One microliter of glycan sample
was spotted on a standard MALDI plate and allowed to dry in air.
Then, 1 mL super-DHB (Sigma-Aldrich, Germany) (5 mg/mL)
1 mMNaOH (Sigma-Aldrich, Germany) in 50% ACN was added
onto the plate and allowed to dry by air. To uniform the spot
surface, 0.2 mL ethanol was added to recrystallize matrix crystals.
Every sample was spotted in triplicate. The samples were analysis
by AXIMA Resonance MALDI-QIT-TOF MS (Shimadzu Corp.
JP) equipped with a 337 nm nitrogen laser in reflector positive
Frontiers in Oncology | www.frontiersin.org 3
ionization mode. Two laser shots were set to generate a profile,
and 200 profiles were accumulated from different points of laser
irradiation into one file for each spectrum. All the spots were
detected with two measurements for the quantitation for the
range of expected N-glycans. In one measurement, the mass
range was set at Mid 850 + with a lower laser power 110 V for
lower m/z ions (approximately m/z 1,000 to 3,000). In another
measurement, the mass range was set at High 2,000 + with a
higher laser power 125 V for higher m/z ions (approximately m/z
2,000 to 4,000). The glycan compositions were assigned
according to previous literatures (20, 29) and known
biosynthetic pathways. The GlycoWorkbench software was
used for the annotation of MS spectra.

Data Processing and Statistical Analysis
The MALDI MS data were acquired and exported as ASCII files
using Launchpad software (Shimadzu Biotech, Japan). The
ASCII files were pre-processed, normalized and extracted using
the software of Progenesis MALDI, and then transferred to
Microsoft Excel as text files. The threshold of Progenesis
MALDI was set at 1,000, thus the signals with low signal to
noise ratio were removed. For the accurate analyses, only N-
glycan signals that were present with S/N (signal to noise) more
than 3 in the spectra were included for further analyses. The
relative area of each N-glycan peak was calculated by setting the
sum of normalized peak areas of each sample to one.

As each serum sample was spotted in triplicate, there
normalized data for each serum sample were averaged before
statistical analysis. Only N-glycans with the coefficient of
variations less than 25% according to the quantitation results
were included in the statistical analyses. For statistical analysis,
the averaged data were performed with GraphPad Prism 7 and
SPSS (version 16.0) to identify possible alterations in the levels of
N-glycans in different groups. The statistically significant
difference was evaluated by performing t-test with Bonferroni
correction. The data were further processed by the receiver-
operator-characteristics (ROC) test to assess the specificity,
sensitivity, and accuracy of the potential diagnostic variable.
Then, the values of area-under-the-curve (AUC) with 95%
confidence intervals (95% CI) was assigned. If the AUC value
was greater than 0.9, the tests were considered “highly accurate,”
while values between 0.8 and 0.9 were deemed “accurate”. When
the AUC value was between 0.7 and 0.8, the test was concluded to
be “moderately accurate”. An “uninformative” test resulted in an
AUC value that was between 0.5 and 0.7. To test the
reproducibility of this methodology, the workflow was repeated
three times for one sample, the average coefficient of variation
(CV) of all the glycans for quantification was 11.42%.
RESULTS

Clinical Samples
In this study, a subset of 33 serum samples was examined from
pat ients wi th neurob las toma (NB) (N = 22) and
ganglioneuroblastoma (GNB) (N = 11) which were classified
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according to the International Neuroblastoma Pathology
Classification (27). They ranged in age from 2 months to 130
months (mean, 52.13 months). The primary sites were
retroperitoneum in 18 patients, adrenal gland in 6 patients,
and mediastinum in 9 patients. Eight of these patients were
diagnosed at stage I and II, twenty-four of them were diagnosed
at advanced stage III and IV, and one of them was diagnosed at
stage IVs according to the International Neuroblastoma Staging
System (INSS) (30). In addition, 40 age- and sex-matched non-
malignant individuals were enrolled as controls ageing from 12
months to 144 months (mean, 66.35 months) including 9 healthy
volunteers, 16 fracture cases, 9 hernia cases, 4 phimosis cases and
2 hydrocele cases. The clinicopathological and baseline
demographic characteristics including age, sex, INSS stage, and
histological types were listed in Table 1.

Serum N-Glycan Profiles
The total serum N-glycans were enzymatically released from
total serum proteins by PNGase F, derivatized by ethanol with
EDC and HOBt which can discriminate linkage-specific sialic
acids, purified by HILIC-SPE, and identified by MALDI-TOF-
MS. All the spots were detected with two measurements for the
quantitation for the range of expected N-glycans according to the
previous study (31). A total of 438 mass spectra were obtained
from low-mass and high-mass measurements of MALDI spots.
The representative spectra of low-mass (Figure 1A) and high-
mass (Figure 1B) measurements from one non-malignant
control are shown in Figure 1. The relative abundances were
normalized to the peak m/z 2301.91 (H5N4E2). In this way, the
low-mass and high-mass spectra of every spot were combined for
Frontiers in Oncology | www.frontiersin.org 4
the quantification of relative peak area (Figure 1C). Ultimately, a
total of 78 N-glycans with S/N (signal to noise) more than three
could be detected and identified based on previous literatures,
ranging from H3N3 (m/z 1136.43) to H7N6F1L2E2 (m/z
3724.40) (Supplemental Table 1).

Analysis of Different N-Glycan Subclasses
in NB and Controls
Of the 78 N-glycans detected in NB and control serum samples,
only 60 N-glycans (labeled with red in Supplemental Table 1)
with the CVs less than 25% according to the quantitation results
were included in the statistical analyses. To investigate the
differences of serum protein N-glycosylation between NB
patients and non-malignant controls, initially, the 60 N-glycan
structures were classified into eight specific subclasses based on
their characteristic structural features. The glyco-subclasses
included terminal-galactosylated N-glycans, fucosylated N-
glycans, high mannose N-glycans, hybrid N-glycans, a2,3-
sialylated N-glycans, a2,6-sialylated N-glycans, bisecting N-
glycans and multi-branched sialylated N-glycans. The eight
specific subclasses were calculated according to the formulas
shown in the Supplemental Table 2.

The statistical analyses were performed following the
summation of the normalized relative abundance of every N-
glycan in each glyco-subclass. The p value < 0.05/8 = 0.0063 was
considered statistically significant after Bonferroni correction.
The comparisons of these eight glyco-subclasses between NB and
controls are displayed in Figure 2. Three of these glyco-
subclasses showed significant alterations in NB patients
including high mannose N-glycans, a2,3-sialylated N-glycans,
and multi-branched sialylated N-glycans. A decrease in the levels
of high mannose N-glycans (Figure 2C) appeared in NB
patients. In contrast, a2,3-sialylated N-glycans (Figure 2E) and
multi-branched sialylated N-glycans (Figure 2H) showed
significantly increased levels in NB patients compared with
non-malignant controls. No significant differences in terminal-
galactosylated N-glycans, fucosylated N-glycans, hybrid N-
glycans, a2,6-sialylated N-glycans, and bisecting N-glycans
were observed between these two groups (Figures 2A, B, D,
F, G).

The discrimination efficiency of these three glyco-subclasses
with significant changes was evaluated through receiver
operating characteristic (ROC) analyses (Figure 3). The glyco-
subclass of a2,3-sialylated N-glycans presented an AUC of
0.6705 (95% CI: 0.5433 to 0.7976) and the glyco-subclass of
multi-branched sialylated N-glycans showed an AUC of 0.6750
(95% CI: 0.5461 to 0.8039), suggesting an uninformative
discrimination of NB. While the AUC value of high mannose
N-glycans was 0.7742 (95% CI: 0.6652 to 0.8833), which
demonstrated the potential utility for NB diagnosis.

Identification of Specific N-Glycan
Structure Differences Between NB
and Controls
A more detailed examination was performed to investigated the
differences of those 60 N-glycans between NB patients and non-
TABLE 1 | Characteristics of neuroblastoma patients and non-malignant
controls.

Characteristic Neuroblastoma
patients

Non-malignant
controls

p-value

No. % No. %

Age (months) >0.05
mean ± SD 52.13 ± 30.24 66.35 ± 33.99
Median 48.5 60
Range 2–130 12–144

Gender >0.05
Male 22 66.67 28 70.00
Female 11 33.33 12 30.00

INSS stage
I,II 8 24.24 – –

III,IV 24 72.72 – –

IVs 1 3.03 – –

Histological type
NB 22 66.67 – –

GNB 11 33.33 – –

Type – –

Healthy cases – – 9 22.50
Fracture cases – – 16 40.00
Hernia cases – – 9 22.50
Phimosis cases – – 4 10.00
Hydrocele cases – – 2 5.00
INSS, International Neuroblastoma Staging System; NB, neuroblastoma; GNB,
ganglioneuroblastoma.
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malignant controls. The glycoforms, relative peak area, p-value
and AUC were listed in Supplemental Table 3. A total of 23 N-
glycans were observed with alterations in their expression levels
between these two groups (p < 0.05). On account of 60 N-glycans
were performed for statistical analysis in this part, the p value <
0.05/60 = 0.00083 was considered statistically significant after
Bonferroni correction.

As shown in Supplemental Table 3, the data of six N-glycans
generated p-values less than 0.00083 including three high
Frontiers in Oncology | www.frontiersin.org 5
mannose structures (m/z 1257.46, 1419.49, and 1905.64), one
fucosylated sialylated biantennary structure (m/z 2128.79), and
two fucosylated tri-branched structures with various levels of
sialylation (m/z 2766.96 and 3086.12). Among these glycans,
those four N-glycans observed at m/z 1257.46, 1419.49, 1905.64,
and 2128.79 significantly decreased in NB patients resulted in
AUC values of 0.7871, 0.7439, 0.7545, and 0.7364. While the
expression levels of those two fucosylated tri-branched structures
(m/z 2766.96 and 3086.12) were elevated by more than two-fold
A

B

C

FIGURE 1 | A typical MALDI-QIT-TOF MS spectrum of serum N-glycan profiles from a serum sample. (A) The representative spectrum of low-mass measurement
(approximately m/z 1,000 to 3,000). (B) The representative spectrum of high-mass measurement (approximately m/z 2,000 to 4,000). (C) Combination of the low
mass (red) and high mass (black) area integration originating from a single spot. The relative areas were normalized to the peak at m/z 2301.91, reflecting the
N-glycan composition [H5N4E2 + Na]+.
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in NB patients compared with non-malignant controls (m/z
2766.96: NB vs. Control, 0.0045 to 0.0022; m/z 3086.12: NB vs.
Control, 0.0241 to 0.0110), presenting AUC values of 0.7735 and
0.7409. The AUC values of all the six glycans were higher than
0.70 (Figure 4) with moderate accurateness, indicating that these
glycans have the potential to detect the presence of NB.

Construction and Evaluation of a
Diagnostic Model Based on N-Glycan
Markers to Discriminate NB and Controls
All of those three glyco-subclasses and six glycans which were
identified as being significantly changed in NB patients showed a
moderately accurateness in discriminating NB from controls.
Frontiers in Oncology | www.frontiersin.org 6
Thus, a more accurate prediction model should be established.
We integrated different glycan panels to better discriminate NB
patients from controls based on the logistic regression analysis.
Indeed, we found that a glycan panel combing these six glycans
played a better discrimination performance for NB patients and
controls. The AUC values of these three glyco-subclasses, six
glycans and the glycan panel were compared so as to compare
their sensitivities and specificities of distinguishing NB patients
from controls (Table 2). For the glyco-subclasses and individual
glycans, the AUC values ranged from 0.6705 to 0.7871, and the
AUC score of the glycan m/z 1257.46 was the largest, with a
A B D

E F G H

C

FIGURE 2 | The relative abundance of eight glyco-subclasses in NB patients and non-malignant controls. The N-glycans were grouped according to their structural
characteristics. (A) Terminal-galactosylated N-glycans; (B) Fucosylated N-glycans; (C) High mannose N-glycans; (D) Hybrid N-glycans; (E) a2,3-sialylated N-glycans;
(F) a2,6-sialylated N-glycans; (G) Bisecting N-glycans; (H) Multi-branched sialylated N-glycans. The p value < 0.05/8 = 0.0063 was considered statistically significant
after Bonferroni correction.
FIGURE 3 | Receiver operating characteristic (ROC) curve analyses for the
three significantly changed glyco-subclasses. The ROC was employed to
evaluate the discrimination efficiency of these glyco-subclasses including High
mannose N-glycans, a2,3-sialylated N-glycans, Multi-branched sialylated
N-glycans. Their AUC values were 0.7742, 0.6750, 0.6705 respectively.
FIGURE 4 | Receiver operating characteristic (ROC) curve analyses for
the six significantly changed individual N-glycan. The ROC was employed
to evaluate the discrimination efficiency of these N-glycans including:
m/z1257.46, 1419.49, 1905.64, 2128.79, 2766.96, and 3086.12.
Their AUC values were 0.7871, 0.7439, 0.7545, 0.7364, 0.7735, and
0.7409 respectively.
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sensitivity of 81.82% and specificity of 67.50%. Significantly, the
AUC score of the combined glycan panel was 0.8477 (Figure 5),
which higher than 0.80, with a specificity of 95.00% and
specificity of 60.61%, indicating its strong discrimination
performance. Thus, it may play a suggestive role for
neuroblastoma diagnosis.
DISCUSSION

To our knowledge, this is the first attempt to quantitatively
evaluate the changes of total serum protein N-glycosylation in
NB patients. The alteration in N-glycosylation is a hallmark of
cancers (32). Here, we employed a fast, easy and mild
esterification method which can discriminate linkage-specific
sialic acids with MALDI-TOF MS to reveal the alterations of
N-glycosylation. And the quantitation of N-glycans was
successfully achieved by using microliter volumes of serum
samples. In total, we identified 78 N-glycans in all serum
samples. From those, 60 N-glycans and eight glyco-subclasses
were statistically analyzed. Our data showed that the expression
levels of three glyco-subclasses and six individual N-glycans were
significantly different between NB patients and non-malignant
controls after Bonferroni correction. What is more, we
constructed a glycan penal which could discriminate NB
patients from controls with an AUC score of 0.8477.
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Although the alterations of high mannose structures have
been reported in different cancers (33–35), the possible changes
of high mannose structures in NB have not been addressed in
existing studies. In our study, the levels of high mannose
structures were found significantly decreased in NB patients.
High mannose structures are the precursor glycans for hybrid
glycans and complex glycans which are more mature types. The
synthesis of N-glycans is initiated in the endoplasmic reticulum,
where a glycan precursor consisting of three glucoses, nine
mannoses, and two N-acetylglucosamines is transferred to the
protein followed by the removal of glucoses to form a high
mannose glycan. Subsequently, the protein is transferred to the
Golgi apparatus, and the high mannose structures can be
decorated by different enzymes to synthesize the hybrid and
complex type glycans (15). The decrease of the relative
abundance of high mannose structures in NB may be caused
by the decreased level of the proteins rich in high mannose
structures such as alpha-2-macroglobulin, apolipoprotein B-100,
immunoglobulin D, immunoglobulin E and immunoglobulin M
(36) or the improvement of the synthesis efficiency of complex
type glycans.

The aberrant alterations in sialylated N-glycans were also
observed in the present study which have been well reported in
various cancers including NB cells (25). a2,3-linked sialic acids
have been reported to contribute to the biosynthesis of sialyl-
Lewis epitopes, which are well-known correlated with malignant
progression and poor prognosis in cancers (37–39). While a2,6-
linked sialic acids promote the survival of tumor cells by their
negative regulation of galectin binding (40, 41). Owing to the
different functions of a2,3 and a2,6-linked sialic acids, we
employed a derivatization method which could provide
linkage-specific sialic acid information. Indeed, we found that
only a2,3-linked sialic acids increased in NB patients compared
with non-malignant controls. Furthermore, increased amounts
of multi-branched sialylated N-glycans were detected in NB. The
formation of a sialyl-Lewis epitope requires an antenna fucose
and an a2,3-linked sialic acid (42). Fucoses mostly present in the
core in di-antennary N-glycans, but in multi-branched N-
glycans, fucoses are usually connected to the antennas (43).
Thus, the elevation of the levels of both a2,3-sialylated N-
glycans and multi-branched sialylated N-glycans might
indicate the increase of the sialyl-Lewis epitopes in NB
patients. And we further investigated the MS/MS behavior of
TABLE 2 | List of the three glyco-subclasses, six specific N-glycans and the glycan panel that were evaluated to be specific for neuroblastoma patients compared with
non-malignant controls by Receiver Operating Characteristic (ROC) curve analysis.

Glycan AUC St. Error 95% CI P value Sensitivity Specificity

a2,3-sialylated N-glycans 0.6705 0.0649 0.5433–0.7976 0.0126 54.55% 80.00%
multi-branched sialylated N-glycans 0.6750 0.0658 0.5461–0.8039 0.0105 66.67% 70.00%
high mannose N-glycans 0.7742 0.0556 0.6652–0.8833 <0.0001 81.82% 67.50%
m/z 1257.46 0.7871 0.0541 0.6812–0.8931 <0.0001 81.82% 67.50%
m/z 1419.49 0.7439 0.0606 0.6251–0.8628 0.0004 72.73% 77.50%
m/z 1905.64 0.7545 0.0571 0.6426–0.8664 0.0002 84.85% 65.00%
m/z 2128.79 0.7364 0.0595 0.6198–0.8529 0.0005 60.61% 82.50%
m/z 2766.96 0.7735 0.0564 0.6630–0.8840 <0.0001 81.82% 72.50%
m/z 3086.12 0.7409 0.0610 0.6213–0.8605 0.0004 72.73% 72.50%
the glycan panel 0.8477 0.0453 0.7589–0.9365 <0.0001 60.61% 95.00%
March 2
021 | Volume 11 | Art
FIGURE 5 | Receiver operating characteristic (ROC) curve analysis for the
glycan panel. The ROC was employed to evaluate the discrimination efficiency
of the glycan panel. Its AUC value was 0.8477.
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the multi-branched a2,3-sialylated N-glycan (m/z 3086.12)
which significantly increased in NB patients to confirm the
glycan structure. As shown in Supplemental Figure 1, the ions
at m/z 807.0 and m/z 969.0 were observed confirming its sialyl-
Lewis epitope.

On account of the insufficient sample size in this study, we
were not able to analyze the differences between different
histological subtypes and clinical stages. Further studies are
still needed to validate the potential of these N-glycans as
biomarkers and reveal the role of protein glycosylation in
NB pathophysiology.
CONCLUSION

In conclusion, we carried out a detailed study of the total serum
protein N-glycosylation in NB patients by MALDI-QIT-TOFMS
with microliter volumes of serum samples. Significant changes in
the expression levels of three glyco-subclasses and six individual
N-glycans were identified in NB patients compared with non-
malignant controls. The combination of these individual glycans
can increase the discrimination accurateness, with an AUC of
0.8477, providing a potential diagnosis biomarker for NB. And
this study provides new insights of the pathophysiology in NB.
Further studies for validation and into the biochemical
mechanisms of the glycomic changes based on our
observations are necessary to improve our understanding of NB.
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