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Paired associative stimulation (PAS) produces enduring neuroplasticity based on Hebbian associative plasticity. This study
established the changes in spinal motoneuronal excitability by pairing transcortical and transspinal stimulation. Transcortical
stimulation was delivered after (transspinal-transcortical PAS) or before (transcortical-transspinal PAS) transspinal
stimulation. Before and after 40 minutes of each PAS protocol, spinal neural excitability was assessed based on the amplitude
of the transspinal-evoked potentials (TEPs) recorded from ankle muscles of both legs at different stimulation intensities
(recruitment input-output curve). Changes in TEPs amplitude in response to low-frequency stimulation and paired
transspinal stimuli were also established before and after each PAS protocol. TEP recruitment input-output curves revealed
a generalized depression of TEPs in most ankle muscles of both legs after both PAS protocols that coincided with an
increased gain only after transcortical-transspinal PAS. Transcortical-transspinal PAS increased and transspinal-transcortical
PAS decreased the low-frequency-dependent TEP depression, whereas neither PAS protocol affected the TEP depression
observed upon paired transspinal stimuli. These findings support the notion that transspinal and transcortical PAS has the
ability to alter concomitantly cortical and spinal synaptic activity. Transspinal and transcortical PAS may contribute to the
development of rehabilitation strategies in people with bilateral increased motoneuronal excitability due to cortical or
spinal lesions.

1. Introduction

Activity-dependent strengthening of synapses is an important
mechanism underlying neural plasticity in both invertebrates
and vertebrates [1]. In this context, human corticospinal excit-
ability is affected by paired stimuli delivered to a mixed
peripheral nerve of arms or legs and motor cortex based on
the timing between the two associative stimuli [2–9]. For
example, human corticospinal excitability increases when
single electrical stimuli to a mixed peripheral nerve are
followed by transcranial magnetic stimulation (TMS) at an
interval that TMS and afferent volley-mediated inputs to the
motor cortex occur simultaneously [7]. In contrast, corticosp-
inal excitability decreases when the afferent volley from the
periphery reaches the motor cortex after TMS [9]. These
neuromodulatory effects have been ascribed to long-term
potentiation (LTP) and long-term depression (LTD),

resembling largely the spike-timing-dependent plasticity that
has been described extensively in animal models [10].

Plasticity of cortical, corticospinal, and spinal human
neural excitability as a result of paired associative stimulation
(PAS) delivered to a mixed peripheral nerve and motor cor-
tex is well established [8, 11–16]. However, neural excitability
changes beyond the classical peripheral nerve-TMS PAS
protocol have not been studied in detail. We have recently
reported that transspinal and transcortical PAS produces
distinct changes in neural excitability based on the timing
between the two associative stimuli [17]. Specifically, intra-
cortical inhibition decreases and intracortical facilitation
and corticospinal excitability increase when TMS is delivered
after transspinal stimulation (transspinal-transcortical PAS)
[17]. In contrast, cortical feedback mechanisms remain unal-
tered, and corticospinal excitability decreases when TMS
is delivered before transspinal stimulation (transcortical-
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transspinal PAS) [17]. These neuromodulatory effects coin-
cided with directional changes of the excitability threshold
of muscle spindle primary (Ia) afferents [17].

Based on these strong neuromodulatory effects, in this
study we investigated to what extent transspinal and trans-
cortical PAS alters the amplitude of transspinal-evoked
potentials (TEPs) recorded from shank muscles of both legs.
TEPs can be induced in nearly all muscles of both legs simul-
taneously upon electrical stimulation over the thoracolumbar
region of the spine and have been associated with action
potentials travelling in both antidromic and orthodromic
directions along the posterior and anterior root fibers of both
legs [18–20]. We hypothesized that transcortical-transspinal
PAS increases spinal output by strengthening corticospinal
synapses largely due to coincidence of the two stimuli on
spinal alpha motoneurons. The rationale of this hypothesis
was based on the fact that TMS and transspinal stimulation
results in summation of tibialis anterior (TA) TEPs and
motor-evoked potentials (MEPs) when these two stimuli
interact at spinal level [17, 19]. We further hypothesized that
transspinal-transcortical PAS either decreases or has no
significant effects on spinal output. The rationale for this
hypothesis is based on the fact that transspinal stimulation
delivered before TMS has sufficient time to affect spinal neu-
ral circuits before descending motor volleys reach the spinal
cord, while transspinal conditioning stimulation induces
soleus H-reflex depression [18]. To test our hypotheses, we
applied 40 minutes of associative stimulation to the thoracic
spinal cord andmotor cortex in healthy humans. We demon-
strate a nondirectional PAS-mediated plasticity of TEPs and
a directional PAS-mediated changes in TEPs frequency-
dependent depression of several ankle muscles from both
legs. These results constitute the first evidence for a novel
PAS protocol that can be used to alter human motor path-
ways of both legs and may contribute to the development
of rehabilitation strategies in people with bilateral increased
spinal motoneuronal excitability.

2. Methods

2.1. Subjects. Fifteen subjects (5 females; all right leg domi-
nant; mean age 23.67± 2.35 years; mean± SD) without any
history of neurological or musculoskeletal disorder or
contraindication to TMS participated in the present study
after providing written informed consent in accordance with
the Declaration of Helsinki. The study was approved by the
ethics committee of the City University of New York. A total
of 27 experiments were completed on different days and were
separated by a 3-week interval for the same subject. All
subjects participated in a previous study [17], but data
reported here are from a separate experimental session.

2.2. EMG Recordings. Surface electromyography (EMG) was
recorded bilaterally from the TA, medial gastrocnemius
(MG), soleus (SOL), and peroneus longus (PL) muscles via
single bipolar differential electrodes (MA300-28, Motion
Lab Systems Inc., Baton Rouge, LA). EMG signals were
amplified, filtered (10–1000Hz), sampled at 2000Hz via a

1401 plus using Spike 2 software (Cambridge Electronics
Design Ltd., England, UK), and stored for offline analysis.

2.3. Stimulation

2.3.1. Transcortical Stimulation. TMS over the left primary
motor cortex was delivered via a Magstim 200 stimulator
(Magstim, UK) with a double-cone coil (diameter 110mm),
positioned such that the current flowed from a posterior to
an anterior direction. The procedures were similar to those
we have previously utilized [19, 21]. Briefly, with the double
cone coil held at the motor hot spot, the stimulation intensity
was gradually increased from zero, and MEPs recorded from
the right TA and SOL muscles were observed on a digital
oscilloscope (TBS1000, Tektronix). When at low stimulation
intensities, MEPs in the right TA muscle could not be evoked
without concomitant MEPs in the SOL muscle, the magnetic
coil was moved, and the procedure was repeated. When the
optimal position was determined, the right TA MEP resting
threshold was established and corresponded to the lowest
stimulation intensity that induced reproducible MEPs of at
least ~50 μV in 3 out of 5 consecutive single TMS pulses.

2.3.2. Transspinal Stimulation. The Thoracic 10 spinous
process was identified via palpation, and a single cathode
electrode (Uni-Patch EP84169, 10.2 cm± 5.1 cm, Wabasha,
MA) was placed along the vertebrae equally between the left
and right paravertebral sides. Due to its size, the electrode
covered from Thoracic 10 to Lumbar 1-2 vertebral levels.
These vertebral levels correspond to spinal segments and seg-
mental innervation of the muscles from which compound
muscle action potentials were recorded in this study. Two
reusable self-adhered electrodes (anode; same type as the
cathode), connected to function as a single electrode, were
placed bilaterally on the abdominal muscles or iliac crests
based on self-reported discomfort by the subjects upon trans-
spinal stimulation. The cathode and anode electrodes were
connected to a constant current stimulator (DS7A, Digitimer,
UK) that was triggered by Spike 2 scripts (CED Ltd., UK).

2.4. Transspinal and Transcortical PAS. Paired stimulation
included 240 pairs of TMS pulses delivered over the area of
the motor cortex corresponding to the right TA muscle and
cathodal transspinal stimulation delivered to the spine. Both
paired stimuli were delivered at 0.1Hz for 40 minutes with
subjects supine. Knee and hip joints were flexed at 30° and
ankles were in neutral position.

The interstimulus interval (ISI) between transspinal and
transcortical stimuli during PAS was customized for each
subject and was identical to that we have previously utilized
to establish cortical, corticospinal, and soleus Ia afferents
excitability changes after transspinal and transcortical PAS
[17]. The ISI for each subject was estimated using the onset
latencies of the TA EMG responses to TMS (TA MEP) and
transspinal stimulation (TA TEP). The conduction time from
the motor cortex to corticospinal presynaptic terminals was
estimated by adding 1.5ms to the TA TEP latency, and the
resultant value was subtracted from the TA MEP latency
(1). The added 1.5ms is the time required for synaptic trans-
mission and conduction to the lumbar nerve root at the
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vertebral foramina [2, 8]. This calculation resulted in ISIs
that ranged from 8 to 13.5ms (10.82± 0.56ms) across sub-
jects. The same customized ISI was used for each subject
during PAS, while reversing the onset of stimuli with respect
to transspinal and transcortical stimulation (Figure 1).

ISI = TAMEP latency − TATEP latency + 1 5 1

The ISIs used allowed transspinal stimulation to evoke
depolarization of spinal motoneurons before descending
motor volleys arrived at the presynaptic terminals of
corticospinal neurons in the transspinal-transcortical PAS
protocol (Figure 1(a)). Further, transspinal stimulation at
intensities sufficient to evoke TEPs in both leg muscles
produces ascending and descending volleys from muscle
and cutaneous afferents. At the ISIs used, transspinal-
induced ascending volleys reached the primary motor cortex
at times sufficient to affect descending motor volleys at the
cortical level. This is supported by the timing of distal limb

afferent-mediated TA MEP facilitation [22–24] and onset
latency (10 to 15ms) of cortical potentials induced via tho-
racic transspinal stimulation [25]. Thus, in the transspinal-
transcortical PAS protocol, both stimuli likely interacted at
cortical level. Additionally, the ISIs used allowed descending
motor volleys elicited by TMS to arrive at the presynaptic
terminals of corticospinal neurons before transspinal stimu-
lation transsynaptically evoked depolarization in spinal alpha
motoneurons in the transcortical-transspinal PAS protocol
(Figure 1(a)). Consequently, in the transcortical-transspinal
PAS protocol, both stimuli likely interacted at spinal level.
The latter is further supported by the central spinal
conduction time (10.5± 0.9ms) of the TA MEP [26].

In the transspinal-transcortical PAS protocol, TMS was
delivered at 1.13± 0.02 (63.42± 1.26 maximum stimulator
output (MSO)) of the right TA MEP resting threshold, and
transspinal stimulation was delivered at 1.08± 0.05
(48.38± 3.9mA) of the right TA TEP threshold. In the
transcortical-transspinal PAS protocol, TMS was delivered
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Figure 1: Paired associative stimulation (PAS) protocol. (a) Simplified diagram of transcranial magnetic stimulation (TMS volley) and
transspinal stimulation-mediated volleys during paired stimulation. TMS motor volleys are descending, whilst transspinal stimulation
produces both ascending and descending volleys. The ascending volleys are expected to reach both brain hemispheres since transspinal
stimulation delivered alone evokes transspinal-evoked potentials (TEPs) in muscles of both legs. (b) Timing of PAS between transcortical
and transspinal stimulation. PAS was delivered at customized interstimulus intervals for each subject during which corticospinal neurons
activated via TMS arrived at the corticospinal neuron before spinal motoneurons were activated transsynaptically by the transspinal
stimulation (transcortical-transspinal PAS), and during which transspinal-mediated ascending volleys arrived at the motor cortex before
TMS was delivered over the left primary motor cortex leg area (transspinal-transcortical PAS).
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at 1.08± 0.02 (60.24± 2.29 MSO) of the right TA MEP
resting threshold and transspinal stimulation was delivered
at 1.14± 0.05 (54.6± 3.58mA) of the right TA TEP threshold.
Both transspinal and transcortical stimuli during PAS were
set to produce similar in amplitudes right TATEPs andMEPs,
which were evoked on the ascending portion of the associated
recruitment input/output curve and were equivalent to 30%
of the associated maximal values. However, adjustments were
made based on self-reported discomfort by the subjects.

2.5. Neurophysiological Recordings before and after PAS.
With subjects supine, changes in spinal excitability were
assessed based on the recruitment input-output TEP curve
of ankle muscles before and after transcortical-transspinal
(N = 15) and transspinal-transcortical (N = 12) PAS. Trans-
spinal stimulation was delivered at 0.2Hz, and at least 120
responses were recorded at different stimulation intensities,
starting from below TEP threshold for all ankle muscles until
maximal amplitudes were evoked. Four responses were
recorded at each stimulation intensity. TEPs were recorded
from synergistic/antagonistic ankle muscles of both legs,
because TMS at ~1.2 MEP resting threshold creates multiple
descending volleys, activating corticomotoneuronal cells
projecting to agonist and antagonist motoneurons and spinal
inhibitory interneurons [27, 28].

In order to establish whether spinal excitability changes
were mediated at the presynaptic level, 15 TEPs elicited at
0.2Hz and at 1.0Hz stimulation frequencies were recorded.
This approach was selected based on the well-documented
decrease in efficiency of individual synapses when repeatedly
activated at low frequencies, ascribed to transmitter sub-
stance depletion at the presynaptic terminals [29]. To further
assess changes in spinal excitability, TEPs were also recorded
in response to paired stimuli at 50 and 100ms ISIs before and
after each PAS protocol. TEPs recorded at different frequen-
cies and upon paired pulses were evoked at the ascending
portion of the TEP recruitment curve (1.2 TA TEP threshold)
across subjects, but at the same stimulation intensity before
and after each PAS protocol for each subject.

2.6. Data Analysis and Statistics. TEPs from all muscles were
measured as the area of the full-wave rectified EMG signal,
because the area under the curve detects accurately the inhi-
bition of compound muscle action potentials [30]. TEPs
recorded at different stimulation intensities (recruitment
curve) were normalized to the homonymous maximal TEP
observed before PAS. The stimulation intensities were nor-
malized to the intensity required to elicit a TEP equivalent
to 50% of TEPmax (S50) before PAS. The S50 was estimated
based on the sigmoid function fitted to the recruitment curve
(see below). Then, the average normalized TEP was calcu-
lated in incremented steps of 0.05 of S50 for each subject
and across subjects. Data was subjected to Shapiro-Wilk test
for normal distribution, and a 2-way repeated measures anal-
ysis of variance (rmANOVA) was performed to determine
the main effects of time on TEPs amplitude recorded at
different stimulation intensities (recruitment curves). This
analysis was done separately for each muscle from which
TEPs were recorded and PAS protocol. When a statistically

significant difference was found, Bonferroni or Holm-Sidak
post hoc multiples comparisons were performed.

A Boltzmann sigmoid function (2) (SigmaPlot 11, Systat
Software Inc.) was fitted separately to the right and left SOL,
TA, MG, and PL TEPs normalized to the homonymous max-
imal TEP observed before PAS and plotted against the non-
normalized (actual) stimulation intensities for each subject
[19, 31]. The parameters in (2) represent the upper limb of
the TEP recruitment curve to the point that the TEP ampli-
tude is maximal (TEPmax), the slope parameter of the func-
tion m, the S50, and the TEP amplitude at a given stimulus
value (TEP(s)). The slope of curve was constrained to occur
at a stimulus intensity equivalent to S50 and was defined by
the relationship indicated in (3). The stimuli corresponding
to threshold and maximal TEP amplitudes were estimated
based on (4) and (5), respectively. These sigmoid function
predicted parameters were grouped across subjects based
on time of testing, PAS protocol, and muscle. Data was sub-
jected to Shapiro-Wilk test for normal distribution, and a 3-
way rmANOVA was applied to the data to determine the
main effects of time, PAS protocol, and muscle on the pre-
dicted maximal TEP amplitude and slope. When statistically
significant differences were found, post hoc Bonferroni
t-tests were performed.

TEP s =
TEPmax

1 + exp m S50 − s
, 2

TEPslope =
m × TEPmax

4
, 3

TEPth stim =
s − 2
m

, 4

TEPmax stim =
s + 2
m

5

For the low-frequency TEP depression, the percent of
change in TEP amplitudes elicited at 0.2Hz from those elic-
ited at 1.0Hz was calculated for recordings taken before
and after each PAS protocol. A two-way rmANOVAwas per-
formed to determine the main effects of PAS and time of test-
ing on the percent of change of TEPs recorded at 1.0Hz.

For the TEP depression induced upon paired transspinal
stimuli, the mean size of the TEP evoked by the second pulse
(TEP2) was normalized to the mean size of the homonymous
TEP evoked by the first pulse (TEP1). This was done sepa-
rately for each subject, muscle from which TEPs were
recorded, and time of testing. Then, the normalized TEPs
were grouped based on muscle, time of testing, and PAS pro-
tocol for each ISI (50 and 100ms) tested. A 3-way rmA-
NOVA was applied to the data to establish statistically
significant differences among these factors for each ISI tested.
Data are presented as mean± SE.

3. Results

3.1. Changes in Spinal Excitability after Transspinal and
Transcortical PAS. The TEP recruitment input-output curves
from all subjects and muscles recorded before and after
transcortical-transspinal PAS are indicated in Figure 2.
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Figure 2: TEPs recruitment curves before and after transcortical-transspinal PAS. Recruitment input-output curves of transspinal-evoked
potentials (TEPs) recorded bilaterally from the TA, MG, SOL, and PL muscles from all subjects along with the sigmoid function fitted to
the data. The abscissa shows multiples of stimulation intensities corresponding to 50% TEP max (S50). The ordinate shows TEP sizes as a
percentage of the homonymous maximal TEP size obtained before transcortical-transspinal PAS. Red or blue arrows indicate statistically
significant differences (decreased and increased amplitudes, resp.) before and after PAS based on 2-way repeated measures ANOVA. TA:
tibialis anterior; MG: medial gastrocnemius; SOL: soleus; PL: peroneus longus.
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A 2-way rmANOVA with main factors time and stimu-
lation intensities normalized to S50 showed a significant
effect of time (F(1) = 11.81, p < 0 001) for the right TA
TEP (Figure 2(a)), while significant interactions between
time and intensities were found (F(24) = 1.62, p = 0 034). Sig-
nificantmain time effectswere also found for the rightMG, left
MG, left SOL, and leftPLTEPs (p < 0 001 for all).The results of
Holm-Sidak pairwise multiple comparisons before and after
transcortical-transspinal PAS are indicated as arrows in
Figure 2. These findings suggest that transcortical-
transspinal PASdecreased spinal excitability, but this decrease
was not distributed uniformly in the TEPs of both legs.

The TEP recruitment input-output curves from all
subjects and muscles recorded before and after transspinal-
transcortical PAS are indicated in Figure 3. A 2-way rmA-
NOVA with main factors time and stimulation intensities
normalized to S50 showed a significant effect of time
(F(1) = 69.38, p < 0 001) for the right TA TEP (Figure 3(a)),
while significant interactions between time and intensities
were found (F(24) = 2.04, p = 0 003). Significant main time
effects were also found for the left TA, left MG, right/left
SOL, and right/left PL TEPs (p < 0 001 for all). A significant
interaction between time and stimulation intensities normal-
ized to S50 was found for the right/left TA, right/left SOL,
and right PL TEPs (all p < 0 05). The results of Holm-Sidak
pairwise multiple comparisons before and after transspinal-
transcortical PAS are indicated as arrows in Figure 3. These
findings suggest that transspinal-transcortical PAS decreased
most (6 out of 8) of the ankle TEPs.

The estimated parameters from the sigmoid function
fitted to the TEP recruitment input-output curves are shown
in Tables 1 and 2. For the predicted maximal TEP ampli-
tudes, rmANOVA with main factors time, PAS protocol,
and muscle showed a significant effect of time (F(1) = 7.73,
p = 0 006) and muscle (F(7) = 2.57, p = 0 013) and a nonsig-
nificant effect between PAS protocols (F(1) = 0.45, p = 0 5).
Statistically significant interactions between muscle and time
(F(7) = 2.59, p = 0 013) and between PAS protocols and time
(F(1) = 6.55, p = 0 011) for the predicted maximal TEP ampli-
tudes were found. Further, for the predicted slope of the
TEPs input/output curves, rmANOVA with main factors
time, PAS protocol, and muscle showed a statistically signif-
icant effect of time (F(1) = 19.67, p < 0 001) and PAS protocol
(F(1) = 6.99, p = 0 009) but not between muscles from which
TEPs were recorded (F(7) = 0.9, p = 0 5). Statistically signifi-
cant interactions were found only between PAS protocols
and time (F(1) = 8.2, p = 0 004) for the predicted slope of
the TEP curve. These findings suggest that transcortical-
transspinal PAS increases the gain of input-output relation-
ship differently across various motoneurons.

3.2. Changes in Spinal Inhibition after Transspinal and
Transcortical PAS. Figure 4(a) shows waveform averages of
SOL, TA, MG, and PL TEPs from one participant evoked at
0.2Hz and 1.0Hz. In this participant, TEP frequency-
dependent depression was not distributed equally between
the right and left legs (Figure 4(a)). The TEP frequency-
dependent depression is easily recognized by the overall
percent change observed when TEPs were evoked at 1.0Hz

from 0.2Hz before transcortical-transspinal (Figure 4(b))
and transspinal-transcortical (Figure 4(c)) PAS. It is evident
that TEPs evoked at 1.0Hz were reduced by as much as
70% from their respective TEPs evoked at 0.2Hz. rmA-
NOVA with the main factors PAS protocols, muscles, and
time showed that the percent of change of TEPs recorded
at 1.0Hz was significantly different across muscles
(F(7) = 3.53, p < 0 001), but not between PAS protocols
(F(1) = 2.5, p = 0 11) or time of testing (F(1) = 0.22, p = 0 63).
Statistically significant interactions between PAS protocols
and time of testing were found (F(15) = 8.09, p = 0 005). Spe-
cifically, pairwise multiple comparisons showed that the right
TA (t = 2 48, p = 0 013) and left SOL (t = 2 21, p = 0 027)
low-frequency TEP depression was different between
the two PAS protocols. Further, the right MG (t = 2 23,
p = 0 026) and left PL (t = 2 32, p = 0 021) TEP sizes were
significantly different as a function of time. A significant
effect was found for TEPs recorded before and after
transspinal-transcortical PAS (t = 3 12, p = 0 002).

Waveform averages of SOL, TA, MG, and PL TEPs from
one participant recorded in response to paired transspinal
stimuli at ISIs of 50 and 100ms from both legs are depicted
in Figure 5. It is apparent that the TEPs recorded from exten-
sor and flexor ankle muscles of both legs were significantly
reduced upon paired transspinal stimuli pulses.

Figure 6 shows the overall mean amplitude of TEP2 (% of
mean TEP1) elicited by a pulse delivered 50 or 100ms after
TEP1. For TEPs recorded upon paired stimuli at 50ms, rmA-
NOVA with the main factors PAS protocols, time, and mus-
cles from which TEPs were recorded showed a significant
effect between muscles (F(7) = 8.21, p < 0 001) but not
between PAS protocols (F(1) = 0.04, p = 0 84) or time
(F(1) = 0.74, p = 0 39). Similar results were also observed for
TEPs recorded following paired transspinal stimuli at an ISI
of 100ms. These findings suggest that the TEP depression
evoked upon paired stimuli was not the same among muscles
and was not affected by either PAS protocol.

4. Discussion

This study demonstrates that PAS-induced plasticity of dif-
ferent spinal motoneurons for both legs can be achieved by
pairing transspinal and transcortical stimulation. This new
PAS protocol produced an overall depression of spinal motor
output and may constitute a promising neuromodulatory
paradigm especially for people with increased bilateral neural
excitability.

The excitability of most ankle flexor/extensor muscles
from both legs, based on the recruitment TEP input-output
curves, was reduced regardless of the PAS protocol
(Figures 2 and 3). The decreased TEPs amplitude after both
PAS protocols is in contrast to the well-documented
timing-dependent plasticity and synapse-specific following
peripheral nerve-TMS PAS in humans [32]. For example,
15min of paired TMS followed by posterior tibial nerve stim-
ulation at an ISI of 20ms results in soleus H-reflex facilitation
and decreased threshold of soleus Ia afferents [33]. The dif-
ferent effects may be related to the neural elements being
excited following stimulation. Low-intensity stimulation of
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Figure 3: TEPs recruitment curves before and after transspinal-transcortical PAS. Recruitment input-output curves of transspinal-evoked
potentials (TEPs) recorded bilaterally from the TA, MG, SOL, and PL muscles from all subjects along with the sigmoid function fitted to
the data. The abscissa shows multiples of stimulation intensities corresponding to 50% TEP max (S50). The ordinate shows TEP sizes as a
percentage of the homonymous maximal TEP size obtained before transspinal-transcortical PAS. Red arrows indicate statistically
significant differences (decreased amplitudes) before and after PAS based on repeated measures ANOVA. TA: tibialis anterior; MG:
medial gastrocnemius; SOL: soleus; PL: peroneus longus.
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a mixed peripheral nerve selectively excites muscle spindle
Ia afferents, while transspinal stimulation excites fibers of
the spinal cord at their entry to or exit from the spinal
canal generating action potentials that travel antidromic
and orthodromic along the posterior and anterior root
fibers bilateral [34]. Further, excitation of motor axons
and muscle spindle afferents and all of their terminal
branches lead to transsynaptic excitation of motoneurons
and interneurons near and far from the stimulation site
[18, 34–36]. These results support the notion that trans-
spinal stimulation is more complex in nature compared to
a single stimulus delivered to a mixed peripheral nerve,
and thus differences of findings between peripheral-TMS
PAS and transspinal-transcortical PAS can be readily attrib-
uted to dissimilar functional network interactions between
the two associative inputs.

The site of TEPs depression after transspinal-
transcortical PAS is likely cortical, because transspinal
stimulation, through the dorsal spinocerebellar and large
diameter dorsal column fibers [37], can modulate activity of
cortical feedback mechanisms altering the strength of TMS-
induced descending motor volleys at their origin site decreas-
ing thereafter spinal output. The unaltered slope of the TEPs
input-output relationship after transspinal-transcortical PAS

supports further that the transspinal-induced ascending
volleys interacted at the cortical level leaving unchanged the
gain of spinal motoneurons after PAS. Cortico-cortical inter-
neuronal circuits involving low-threshold γ-aminobutyric
acid receptor-dependent inhibitory pathways [38] may
account partly for the TEPs depression after transspinal-
transcortical PAS, since reduced intracortical inhibition
constitutes one of the mechanisms of MEP modulation after
peripheral nerve-TMS PAS [39]. Specifically, GABAA
receptor-mediated short-interval intracortical inhibition
blocks the MEP facilitation produced by peripheral nerve-
TMS PAS [40], while PAS-mediated effects depend largely
on interactions between cortical circuits on the basis that
short-latency afferent inhibition determines the efficacy of
PAS [41]. Further, interhemispheric inhibition, which is
affected by PAS [42], can result in LTD-like effects during
peripheral nerve-TMS PAS [43]. In addition, because trans-
spinal stimulation reached both hemispheres, the decreased
TEPs amplitude after transspinal-transcortical PAS may be
related to the phenomenon of surround organization
whereas response properties of neurons are changed by stim-
ulation outside the neuron’s classical receptive field [44, 45].
Last, when comparing the decreased spinal excitability found
in this study with that of increased corticospinal excitability

Stimulation at 0.2 Hz Stimulation at 1.0 Hz 

SOL Right

Left

TA Right

Left

MG Right

Left

PL Right

Left

25 ms 

(a)

‒70

‒60

‒50

‒40

‒30

‒20

‒10

0

R-TA L-TA R-MGL-MGR-SOLL-SOL R-PL L-PL

Transspinal-transcortical PAS

%
 o

f c
ha

ng
e o

f T
EP

s s
iz

e
1.

0 
H

z f
ro

m
 0

.2
 H

z

Before PAS
After PAS

(b)

Transspinal-transcortical PAS

‒80
‒70
‒60
‒50
‒40
‒30
‒20
‒10

0

%
 o

f c
ha

ng
e o

f T
EP

s s
iz

e
1.

0 
H

z f
ro

m
 0

.2
 H

z 

Muscles from which TEPs were recorded

R-TA L-TA R-MGL-MGR-SOLL-SOL R-PL L-PL

Before PAS
After PAS

(c)

Figure 4: Frequency-dependent depression of TEPs. (a) Nonrectified waveform averages of ankle transspinal-evoked potentials (TEPs)
recorded from one representative subject at 0.2 and 1.0Hz. (b, c) Overall percent change of TEPs recorded at 0.2Hz from the associated
TEP recorded at 1.0Hz before and after each PAS protocol from all subjects. The abscissa shows the muscles from which TEPs were
recorded. Error bars indicate SE.
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after transspinal-transcortical PAS and peripheral nerve-
TMS PAS [7, 16, 17], we can conclude that cortical and spinal
plasticity after transspinal-transcortical PAS occurs in dia-
metrical opposite directions, a phenomenon that has great
potential in neurological disorders with decreased corticosp-
inal drive and increased spinal motoneuronal excitability as
is the case in cerebral and spinal lesions. These findings
support the notion that transspinal-transcortical PAS effects
involved motor cortices, but investigation of changes in
cortical circuits warrants further investigation.

The site of TEPs depression after transcortical-
transspinal PAS is likely spinal, based on the relative conduc-
tion velocities and interactions of MEPs and TEPs [17, 19],
and decreased soleus H-reflex excitability upon transspinal
conditioning stimulation [18]. LTD of synaptic efficacy may
account for depression of TEPs after transcortical-
transspinal PAS, because LTD requires postsynaptic spikes
leading presynaptic spikes [46–49]. This is consistent with
the transcortical-transspinal PAS, during which transcorti-
cal stimulation produced presynaptic volleys to spinal moto-
neurons, and transspinal stimulation produced antidromic
postsynaptic volleys. LTD likely occurred at the synapses
connecting corticospinal neurons with alpha motoneurons

decreasing the overall transsynaptic activation of motoneu-
rons induced by transspinal stimulation. Because long-
lasting voltage-dependent calcium channels are necessary
for LTD, we can suggest that plateau potentials through
changes of homeostatic mechanisms controlling background
network activity level contributed to TEPs depression [32,
50]. The increased TEP slope (Table 1), which is believed to
reflect changes in recruitment gain or transsynaptic excitabil-
ity [51, 52] along with the altered stimulation intensities at
maximal intensities for some TEPs, supports further the
involvement of plateau potentials. Plateau potentials can
change the relationship between input and firing rate [53],
compress the range of thresholds, and alter the input-
output relationship [54]. Another possible mechanism is that
of changes in activity of cortical interneurons on cortico-
motoneuronal cells affecting the size of subliminal fringe
of both cortical and spinal neural cells. This mechanism
is supported by the decreased TA MEP input/output curve
and increased curve slope after transcortical-transspinal
PAS [17]. Nonetheless, in vivo and in vitro studies are
needed to explore the physiological and pharmacological
mechanisms involved in depression of spinal output after
transcortical-transspinal PAS.
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Figure 5: Depression of TEPs in response to paired transspinal stimuli. Nonrectified waveform averages of ankle transspinal-evoked
potentials (TEPs) recorded from one representative subject upon paired pulses at interstimulus intervals of 50 and 100ms at a constant
stimulation frequency of 0.2Hz.
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In this study, transcortical-transspinal PAS increased and
transspinal-transcortical PAS decreased the frequency-
dependent TEP depression in the right TA/MG and left
SOL/PL TEPs (compare Figures 4(b) and 4(c)). These find-
ings support directional changes in the mechanism directly
coupled to the release process of neurotransmitters at the
presynaptic terminals [29]. Furthermore, these findings sup-
port the notion that the effects were distributed simulta-
neously in multiple afferent-motoneuron synapses. Our
current results are consistent with the reduction of soleus
H-reflex frequency-dependent depression after transspinal-
transcortical PAS [17], and reduced presynaptic inhibition
of Ia afferent fibers after peripheral nerve-TMS PAS [13].
Although it is not possible to make certain conclusions
regarding the exact mechanism of the observed opposite
effects on Ia afferent-motoneuron synapses following PAS,
certain possibilities may be considered. PAS-induced plastic
changes in the motor cortex could have potentially affected
the tonic discharge of cortical neurons resulting in altered
corticospinal control exerted on Ia afferent-motoneuron
synapses bilaterally [55]. This mechanism can readily

account for the changes observed after transspinal-
transcortical PAS. In contrast, the changes observed follow-
ing transcortical-transspinal PAS can potentially result from
potentiation of activity of ipsilateral spinal inhibitory inter-
neurons and commissural interneurons, but further research
is needed.

We further theorized that the frequency-dependent and
paired transspinal stimuli-induced TEP depression would
be modulated in a similar manner after PAS. However,
the paired transspinal stimuli-induced TEP depression was
not affected by transcortical-transspinal or transspinal-
transcortical PAS (Figure 6). At this point, we should
consider whether the TEP depression in response to low
frequency and paired stimuli is mediated by similar neural
circuits or mechanisms [29, 56, 57]. The TEPs depression
upon paired transspinal stimuli may be partly due to post-
synaptic Ib inhibition or reciprocal Ia inhibition. This is
supported by the bilateral contraction of leg muscles at inten-
sities sufficient to induce TEPs. Thus, contraction-induced
group I afferent discharges of multiple afferent terminals that
synapse with spinal interneurons [29], such as Ia and Ib
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Figure 6: Depression of TEPs in response to paired transspinal stimuli before and after transspinal and transcortical PAS. Overall amplitude
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No changes in TEPs depression upon paired pulses before and after transspinal and transcortical PAS were found.

12 Neural Plasticity



inhibitory interneurons, may contribute to the TEP depres-
sion. Studies on the neurophysiological properties of TEPs
relative to different spinal inhibitory circuits are lacking;
however, it is apparent that transcortical-transspinal and
transspinal-transcortical PAS have distinct effects on differ-
ent types of spinal inhibitory mechanisms.

PAS protocols assessing cortical and/or spinal neuromo-
dulation after peripheral-TMS PAS have traditionally
recorded changes from the targeted muscle [10]. In this
study, we recorded changes bilaterally from synergistic and
antagonistic muscles in order to delineate the effects of our
novel PAS protocol on cortical and spinal synapses control-
ling output of multiple leg muscles. The TEP depression after
transspinal-transcortical and transcortical-transspinal PAS
was apparent not only in the right TA muscle, targeted by
the TMS, but also in synergistic and antagonistic muscles of
the ipsilateral and contralateral legs (Figures 2 and 3). The
TEP depression after transspinal-transcortical PAS was
distributed to the same muscles in the right and left legs
(Figure 3). In contrast, the TEP depression after
transcortical-transspinal PAS was not distributed equally
between muscles, since the decreased right TA/MG TEPs
amplitude did not coincide with decreased left TA/MG
TEPs (Figure 2). Similarly, although a similar effect on
low-frequency TEP depression was evident after both PAS
protocols, the effect was not of equivalent strength between
muscles (Figure 4 and Results). Taken altogether, this study
for the first time has provided evidence that PAS can produce
simultaneously different changes in many synapses at corti-
cal and spinal levels.

5. Limitations of the Study

In this study, PAS was delivered in a single session for 40
minutes. Because the neurophysiological tests were not
conducted at different times after PAS termination, and mul-
tiples sessions of PAS were not delivered, future studies are
needed to assess the time course of the effects incorporating
multiple sessions of this new PAS protocol. Furthermore,
for both PAS protocols, single 1-ms pulses at 0.1Hz were
used based on previous human and animal studies [16, 58].
It is known that PAS-induced plasticity depends on the
frequency of pulse trains [47, 59]. While the application of
PAS at a low-frequency might have reduced the strength of
plasticity, it cannot account for the neurophysiological differ-
ences we observed between the two PAS protocols.

6. Conclusion

Pairing transspinal and transcortical stimulation alters the
excitability of different motoneuron pools of both legs in
healthy humans. TEP recruitment input/output curves
revealed a generalized depression in most ankle TEPs after
both PAS protocols, while a directional-dependent PAS effect
was found for the frequency-dependent TEP depression.
These findings support the notion that transspinal and
transcortical PAS has the ability to alter activity of multiple
cortical and spinal synapses, and thus it may contribute to
the development of rehabilitation strategies in people with

bilateral increased motoneuronal excitability due to cortical
or spinal lesions.
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