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The human amygdala parametrically encodes
the intensity of specific facial emotions and their
categorical ambiguity
Shuo Wang1,2, Rongjun Yu3,4, J. Michael Tyszka5, Shanshan Zhen4, Christopher Kovach6, Sai Sun4, Yi Huang4,

Rene Hurlemann7, Ian B. Ross8, Jeffrey M. Chung9, Adam N. Mamelak9, Ralph Adolphs1,2,5 & Ueli Rutishauser5,9

The human amygdala is a key structure for processing emotional facial expressions, but it

remains unclear what aspects of emotion are processed. We investigated this question with

three different approaches: behavioural analysis of 3 amygdala lesion patients, neuroimaging

of 19 healthy adults, and single-neuron recordings in 9 neurosurgical patients. The lesion

patients showed a shift in behavioural sensitivity to fear, and amygdala BOLD responses were

modulated by both fear and emotion ambiguity (the uncertainty that a facial expression is

categorized as fearful or happy). We found two populations of neurons, one whose response

correlated with increasing degree of fear, or happiness, and a second whose response

primarily decreased as a linear function of emotion ambiguity. Together, our results indicate

that the human amygdala processes both the degree of emotion in facial expressions and

the categorical ambiguity of the emotion shown and that these two aspects of amygdala

processing can be most clearly distinguished at the level of single neurons.
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T
he human amygdala has long been associated with
recognizing faces and facial emotions1–3. Subjects who
lack a functional amygdala can have a selective impairment

in recognizing fearful faces4–6, and blood-oxygen-level dependent
functional magnetic resonance imaging (BOLD-fMRI) shows
activation within the amygdala that is often highest for fearful
faces7–9. While the large majority of work has focused on fearful
faces1, the human amygdala is also responsive to neutral or happy
faces measured using BOLD-fMRI10 and single-neuron
recordings11–14. Indeed, in some studies the amygdala responds
to some extent to all facial expressions15. Similarly, amygdala
neurons in non-human primates16,17 respond to faces, face
identities, facial expressions, gaze directions and eye contact18–20.
Nonetheless, recent neuroimaging studies still argue for a
disproportionate amygdala response to facial expressions related
to threat (fear and anger21) and lesion studies provide strong
support for a role in recognizing fear2,4–6. It is worth noting that
the above-mentioned lesion studies encompass damage to both
basolateral and centromedial nuclei. In contrast, patients with
lesions involving only the basolateral, but sparing the
centromedial nuclei, have revealed diverging results from those
with such complete lesions, typically showing a hypersensitivity
to fear22,23. In the three amygdala lesion patients we study here,
most of the basolateral complex of the amygdala was lesioned but
the centromedial nucleus was spared, and we thus hypothesized
that these patients would show an increased sensitivity to fear in
faces.

On the other hand, in addition to encoding facial emotions, an
alternative hypothesized function of the amygdala is to identify
ambiguous stimuli and modulate vigilance and attention as a
function thereof24–26. Here we tested the hypothesis that the
amygdala encodes aspects of perceptual ambiguity when making
judgments about facial emotions. Throughout this study, by
ambiguity we refer to the closeness to the perceptual boundary
during categorical decision between two emotional facial
expressions. Note that in studies of decision-making, the term
‘ambiguity’ usually refers to an absence of information about a
stimulus above and beyond categorical uncertainty. In contrast,
the term ambiguity here refers exclusively to categorical
uncertainty, because all information about the stimulus was
always available and the task was deterministic (see Discussion
section for details). Previous neuroimaging work indicates that
the amygdala can differentiate stimuli that vary in their
perceptual ambiguity. For instance, the amygdala responds
strongest to highly trustworthy and untrustworthy faces but less
to faces of intermediate (ambiguous) trustworthiness27–29, even if
the faces are perceived unconsciously27. Furthermore, for both
faces varying along a valence dimension and faces varying along
an orthogonal non-valence dimension, the amygdala responds
strongest to the anchor faces30. Consistent with this idea, it has
been found that emotional stimuli of any type lead to greater
amygdala activity compared to neutral stimuli, with comparable
effect sizes for most negative and positive emotions31. Together,
these findings argue that the amygdala plays a key role in
processing categorical ambiguity of dimensions represented
in faces.

To test these two theories of human amygdala function, we
performed three separate studies to investigate this question at
three levels of abstraction: (i) human epilepsy patients with
single-neuron recordings in the amygdala, (ii) healthy subjects
with fMRI, and (iii) subjects with well-defined lesions of the
amygdala for behavioural analysis. All subjects performed the
same task, in which we asked them to judge the emotion of faces
that varied systematically as a function of both ambiguity and the
degree of fear or happiness. The behavioural and neuroimaging
results revealed a role of the amygdala in processing of both

emotion degree and ambiguity. At the single-neuron level, in
contrast, we found clear evidence for a segregation of these two
functions: we identified two separate populations of neurons, one
whose response correlated with the gradual change of fearfulness
or happiness of a face and a second whose response primarily
correlated with decreasing level of categorical ambiguity of the
emotion. This separation of function was only visible at the level
of individual neurons but not at the level of BOLD-fMRI. This
highlights the utility of directly recording single neurons, which
enabled us to, for the first time, reveal two separate human
amygdala neuron populations who signal the degree of emotion
and levels of emotion ambiguity during decision making about
faces. Together, our work indicates that both signals are likely
used for computations performed by the amygdala.

Results
Emotion judgments. We asked subjects to judge emotional faces
as fearful or happy. Faces were either unambiguously happy or
unambiguously fearful (‘anchors’) or graded ambiguous morphs
between these two emotions (Fig. 1a,b and Supplementary Fig. 1).
Subjects were 3 patients with focal bilateral amygdala lesions
(Supplementary Fig. 2), 9 neurosurgical patients (14 sessions;
Supplementary Table 1) and 19 healthy subjects for the fMRI
study, as well as another 15 healthy control subjects. In the three
amygdala lesion patients, most of the basolateral complex (lateral,
basal and accessory basal nuclei) was lesioned bilaterally but the
central, medial and cortical nuclei of the amygdala were
intact (see Supplementary Fig. 2 and Methods for details). This
pattern of amygdala damage has been previously reported to
result in possibly exaggerated (‘hypervigilant’) responses to fear
stimuli22,23,32 (see Discussion for details).

For each session, we quantified behaviour as the proportion of
trials identified as fearful as a function of morph level (Fig. 1c and
Supplementary Fig. 1b–e). We found a monotonically increasing
relationship between the likelihood of identifying a face as fearful
and the proportion of fear shown in the morphed face (Fig. 1c).
We quantified each psychometric curve using two metrics derived
from the logistic function: (i) xhalf—the midpoint of the curve
(in units of %fearful) at which subjects were equally likely to
judge a face as fearful or happy, and (ii) a—the steepness of the
psychometric curve. Based on these two metrics, the behaviour
of the neurosurgical patients was indistinguishable from the
control subjects (Fig. 1d,e; xhalf: unpaired two-tailed t-test:
t(27)¼ 1.10, not significant (NS); a: t(27)¼ 1.98, NS). In contrast,
the amygdala lesion patients (xhalf¼ 44.2±1.88%) were more
likely to judge faces as fearful, with xhalf significantly lower
than neurosurgical patients (Fig. 1d; xhalf¼ 53.2±4.97%;
t(15)¼ 3.00, P¼ 0.0089, effect size in Hedges’ g: g¼ 1.81,
permutation Po0.001) and controls (xhalf¼ 51.1±5.16%;
t(16)¼ 2.23, P¼ 0.040, g¼ 1.34, permutation P¼ 0.058) and a
significantly steeper (Fig. 1e; t(15)¼ 3.85, P¼ 0.0016, g¼ 2.33,
permutation P¼ 0.002). We also confirmed these behavioural
results with a logistic mixed model (Supplementary Notes).
Together, our results suggest that amygdala lesion patients had an
abnormally low threshold for reporting fear, a finding consistent
with prior reports22,33 (see Discussion section).

Confidence judgments. We defined emotion ambiguity as the
variability in judging the emotion of a given morphed face. The
more variable the judgment, the more ambiguous is the face
(Fig. 1b,c). After reporting a face as fearful or happy, we asked
subjects to report their confidence in their decisions (Fig. 1a).
Subjects reported significantly higher levels of confidence for
anchor faces (no ambiguity) compared to the ambiguous faces
(Fig. 1f,j,n; one-way repeated-measure analysis of variance
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(ANOVA) of morph levels; lesion: F(6,12)¼ 3.22, P¼ 0.040,
Z2¼ 0.36; neurosurgical: F(6,72)¼ 16.6, P¼ 6.15� 10� 12, Z2¼ 0.11;
control: F(6,84)¼ 27.2, P¼ 8.26� 10� 18, Z2¼ 0.40). Also,
reaction times (RT) for the fearful/happy judgment were faster
for anchor faces compared to ambiguous faces (Fig. 1g,k,o; lesion:
F(6,12)¼ 2.20, NS, Z2¼ 0.13; neurosurgical: F(6,78)¼ 9.09,
P¼ 1.56� 10� 7, Z2¼ 0.059; control: F(6,84)¼ 12.3, P¼ 7.12
� 10� 10, Z2¼ 0.14; Supplementary Fig. 3a; fMRI: F(6,108)
¼ 8.45, P¼ 1.59� 10� 7, Z2¼ 0.044). For further analyses, we
grouped all trials into three levels of ambiguity (Fig. 1b; anchor,
intermediate (30%/70% morph), and high (40–60% morph)),
which showed the expected systematic relationships with con-
fidence (Fig. 1h,l,p) and RT (Fig. 1i,m,q and Supplementary
Notes). Notably, this relationship was similar in all subject groups
including the amygdala lesion patients, arguing that amygdala
lesion patients were not impaired in judging ambiguity and
confidence, even though they were atypical in how they judged
the degree of fear.

Functional neuroimaging. We next conducted a fMRI study
with 19 healthy subjects using the same morphed face stimuli
and task (Fig. 1a). Each subject first performed a separate face
localizer task to identify a functional region of interest (ROI)
within the amygdala sensitive to faces (Supplementary Fig. 4a).

We first compared the response of voxels within the functional
ROI as a function of emotion degree. We found that activation

correlated with the degree of emotion (interestingly, increasing
activation correlated positively with the degree of happiness,
negatively with the degree of fear) specifically within the left
amygdala (Fig. 2a; peak: Montreal Neurological Institute (MNI)
coordinate: x¼ � 21, y¼ � 6, z¼ � 15, Z¼ 3.22, 6 voxels,
family-wise error (FWE) Po0.05, small volume corrected
(SVC)). The average BOLD signal within the entire ROI in the
left amygdala was significantly negatively correlated with
increasing fear levels (Fig. 2b; Pearson correlation: r¼ � 0.79,
P¼ 0.034; see Supplementary Fig. 4b and Supplementary Table 2
for whole-brain results).

Next, we investigated whether the amygdala BOLD signal
correlated significantly with ambiguity. This time we found a
significant increase of activity in the right, but not the left,
amygdala with decreasing level of ambiguity (Fig. 2c; peak:
x¼ 30, y¼ 0, z¼ � 21, Z¼ 3.17, 17 voxels, FWE Po0.05, SVC)
(see Supplementary Fig. 4c and Supplementary Table 2 for other
areas). The time course of the BOLD signal in the right amygdala
as a function of different ambiguity levels revealed that
anchor faces elicited the strongest BOLD response while the
most ambiguous faces elicited the weakest response (Fig. 2d,e;
one-way repeated ANOVA of parameter estimate (beta values):
F(2,36)¼ 7.10, P¼ 0.0025, Z2¼ 0.062; average % BOLD change
of TR 3 and 4: F(2,36)¼ 2.55, NS, Z2¼ 0.051). The difference
between anchor versus intermediate ambiguous faces was no
greater than that between intermediate versus the most
ambiguous faces (paired t-test on beta values: t(18)¼ 1.44, NS,
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Figure 1 | Behavioural results. (a) Task. A face was presented for 1 s followed by a question asking subjects to identify the facial emotion (fearful or happy).

After a blank screen of 500 ms, subjects were then asked to indicate their confidence in their decision (‘1’ for ‘very sure’, ‘2’ for ‘sure’ or ‘3’ for ‘unsure’).

Faces are not shown to scale. (b) Sample stimuli of one female identity ranging from 0% fear/100% happy to 100% fear/0% happy. (c–q) Behavioural

results. (c) Group average of psychometric curves. The psychometric curves show the proportion of trials judged as fearful as a function of morph levels

(ranging from 0% fearful (100% happy; on the left) to 100% fearful (0% happy; on the right)). Shaded area denotes ±s.e.m. across subjects/sessions

(n¼ 3, 14, 15). The top bars illustrate the points with significant difference between amygdala lesion patients and neurosurgical patients (green; unpaired

two-tailed t-test, Po0.05, corrected by FDR for Qo0.05) and between amygdala lesion patients and healthy controls (yellow). (d) Inflection point of the

logistic function (xhalf). (e) Steepness of the psychometric curve (a). Individual values are shown on the left and average values are shown on the right.

Error bars denote one s.e.m. across subjects/sessions. Asterisks indicate significant difference using unpaired two-tailed t-test. *Po0.05, and **Po0.01.

NS: not significant (P40.05). (f–q) Confidence ratings for lesion (f–i), neurosurgical (j–m) and control (n–q) subjects. (f,j,n) Explicit confidence ratings

showed highest confidence for anchor faces and lowest for the most ambiguous (50% fear/50% happy) faces. (g,k,o) The RT for the fear/happy decision

can be considered as an implicit measure of confidence because it showed a similar pattern as the explicit ratings. For the neural analysis, we grouped the

seven morph levels into three levels of ambiguity (anchor, 30%/70% morph, 40–60% morph). Both explicit (h,l,p) and implicit (i,m,q) confidence

measures varied systematically as a function of ambiguity. The behavioural patterns of all three subject groups were comparable. Error bars denote one

s.e.m. across subjects/sessions.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14821 ARTICLE

NATURE COMMUNICATIONS | 8:14821 | DOI: 10.1038/ncomms14821 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


g¼ 0.58), suggesting that different levels of ambiguity were
encoded with similar strength. Note that when modelling with
four ambiguity levels (anchor, 30%/70% morph, 40%/60%
morph and 50% morph), and/or when adding RT as another
orthogonalized parametric modulator, we derived essentially the
same results (Supplementary Fig. 4f–n). Thus the observed
correlation with ambiguity appeared to track the degree of
ambiguity parametrically and could not be attributed simply to
different RTs. Note that the above results remain qualitatively the
same when using an anatomical ROI of the entire amygdala
(Supplementary Fig. 4d,e).

Confirming the lateralized results described above, the average
BOLD signal within the entire functional ROI of the amygdala
showed a marginally significant interaction between the laterality

of activation and the aspect of emotion coding (Fig. 2f; repeated-
measure ANOVA of laterality (left versus right)� emotion aspect
(degree versus ambiguity): F(1,18)¼ 4.04, P¼ 0.060, Z2¼ 0.0018).
Finally, the fusiform face area also tracked the emotion degree
and ambiguity (Supplementary Notes).

In conclusion, we found that both emotion degree and
ambiguity modulated the BOLD signal of the amygdala, with
the left amygdala primarily tracking the degree of happiness and
the right amygdala primarily tracking ambiguity.

Amygdala neurons encode the degree of fear or happiness.
Finally, we investigated the amygdala’s role in emotion and
ambiguity at the single-neuron level. We recorded from 234
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Error bars denote one s.e.m. across 19 subjects. (c) Ambiguity levels were correlated with the BOLD activity in the right amygdala (functional ROI defined

by localizer task). (d) Time course of the BOLD response in the right amygdala (averaged across all voxels in the cluster) in units of TR (TR¼ 2 s) relative to

face onset. Error bars denote one s.e.m. across subjects. One-way repeated ANOVA at each TR: *Po0.05. (e) Parameter estimate of the GLM for each
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(g) Peak voxel activity within the basolateral nuclei (BLA) and central nuclei (CeA) for each aspect of the emotion coding.
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single neurons (40.2 Hz mean firing rate) in the amygdalae of
9 neurosurgical patients implanted with depth electrodes
(Supplementary Table 1; see Supplementary Fig. 5 for spike
sorting quality metrics) while they performed the same task
(Fig. 1a). In total, we recorded 14 sessions (as is customary in
analyses of human single-unit recordings, neurons from each
individual recording session were considered independent even if
they were from the same patient because it was not possible to
reliably record the same neurons across sessions).

We quantified the response of each neuron based on the
number of spikes observed after stimulus onset (1.5 s window,
starting 250 ms after stimulus onset, as is customary given the
long latencies of human amygdala neurons34,35). Ninety-six
neurons (41.0%) were responsive to the onset of faces (response
versus firing rate at baseline 1 s before stimulus onset; paired
two-tailed t-test, Po0.05; 59 increased and 37 decreased activity
compared to baseline; binomial test on the number of significant
cells: Po10� 20). This substantial proportion of face-responsive
neurons in the amygdala is similar to previous studies13. We next
investigated whether neurons were modulated by emotion degree.
We found that the response of 33 neurons (14.1%; binomial
Po10� 7; 15 were also face responsive; see Supplementary
Fig. 7e,f for chance levels and Supplementary Notes for control
analysis) was correlated with morph levels (averaged separately
for each morph level, linear regression with %fearful at Po0.05).
In the following, we refer to this group of neurons as
‘emotion-tracking’. There were two subtypes of such responses:
21/33 neurons increased their firing rate as a function of the
degree of fear (Fig. 3a and Supplementary Fig. 7a,c), whereas
12/33 increased their firing rate as a function of the degree of
happiness (Fig. 3b and Supplementary Fig. 7b,d).

The linear model we used revealed that a substantial pro-
portion of variance was explained by a continuous response as a
function of the degree of fear or happiness (see Fig. 3c for R2),

with an average absolute slope of 0.80±0.75 Hz/100%fear
(Fig. 3d; 0.71±0.72 for positive slope and � 0.95±0.80 for
negative slope). We also compared our linear model to more
complex models but found that a linear relationship fitted our
data better. In particular, our data were not best described by a
step-like threshold model (Supplementary Notes).

Overall, these findings argue that some human amygdala
neurons parametrically encoded gradual changes of facial
emotions. This is a significantly more fine-grained representation
relative to the binary discrimination between fearful and happy
facial expressions we and others have previously reported in
studies that did not explicitly test for a more continuous
representation7,35.

Amygdala neurons encode emotion ambiguity. We next
investigated whether the responses of amygdala neurons might
also be modulated by the level of categorical ambiguity of the
emotion, regardless of the specific emotion. Comparing the firing
rate between anchor faces (regardless of emotion) and morphed
faces revealed a subset of 36 neurons (15.4%; binomial Po10� 9;
unpaired two-tailed t-test at Po0.05), most of which (30/36) had
a higher firing rate for the anchor compared to the morphed
faces. The pattern of response of these ‘ambiguity-coding’
neurons suggests that they differentiated ambiguity levels but not
individual facial emotions.

To directly investigate this hypothesis, we next used a linear
regression to identify neurons whose firing rate correlated
trial-by-trial with three levels of ambiguity (anchor, intermediate
(30%/70% morph) and high (40–60% morph)). Thirty-two
neurons showed a significant trial-by-trial correlation (13.7%;
binomial Po10� 7; Fig. 4a,b and Supplementary Fig. 6; see
Supplementary Fig. 7h,i for chance levels and Supplementary
Notes for control analysis), most (29/32) of which had the
maximal firing rate for the anchors (which have low ambiguity).
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We refer to this group of cells as ambiguity-coding neurons.
Neurons with higher firing rate for less ambiguous faces had a
U-shaped response curve as a function of morph levels (Fig. 4c,e)
and thus decreasing levels of activity as a function of
ambiguity levels (Fig. 4f). The difference between anchor versus
intermediate ambiguous faces (mean normalized firing rate:
0.53±0.44; mean±s.d.) was greater than that between inter-
mediate versus the most ambiguous faces (0.23±0.24; paired
t-test: t(28)¼ 2.96, P¼ 0.0062, g¼ 0.86; Fig. 4c,f), indicating a
sharper transition from anchor face to ambiguity. In contrast,
neurons with higher firing rate for more ambiguous faces had
inverted U-shaped response curves as a function of morph levels
(Fig. 4d,g) and thus increasing the levels of activity as a function
of ambiguity levels (Fig. 4h). Since most ambiguity-coding
neurons responded least to high ambiguity but most to
unambiguous anchor faces (w2-test: Po10� 10; Fig. 4e–h), the
overall population response (n¼ 32) was, as expected, maximal
for the least ambiguous faces.

Did ambiguity-coding neurons also carry information about
the specific emotion of a face? We performed a single-neuron

receiver-operating characteristic curve (ROC) analysis, consider-
ing only correctly identified anchor faces, to answer this question
(Methods section). The area under the curve (AUC) of the ROC
specifies the probability by which an ideal observer could predict
the choice (fear or happy) of a subject by counting spikes in an
individual trial. Ambiguity-coding neurons had an average AUC
of 0.58±0.052 (mean±s.d.; Fig. 4i,k), significantly lower than
emotion-tracking neurons (0.64±0.069; Kolmogorov–Smirnov
test: P¼ 0.0052) but similar to neurons that were neither selected
as ambiguity coding nor emotion tracking (0.56±0.047; NS
versus AUC of 0.58±0.052). This shows that ambiguity-coding
neurons did not encode emotion degree. Note that chance
performance here was 40.5 due to the symmetry of the response
(see Methods section). Thus we used the unselected neurons to
empirically estimate chance performance (which was 0.56).
As expected, emotion-tracking neurons had significantly higher
AUC values than unselected neurons (P¼ 4.91� 10� 8; Fig. 4j,k).
Furthermore, only two ambiguity-coding neurons were also
emotion-tracking neurons. A w2-test of independence showed
that emotion-tracking and ambiguity-coding neurons were two
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Figure 4 | Ambiguity-coding neurons. (a,b) Two example neurons that fire most to the anchors and least to the most ambiguous stimuli (linear regression:

Po0.05). Each raster (top), PSTH (middle) and average firing rate (bottom) is colour coded according to ambiguity levels as indicated. Trials are aligned to

face stimulus onset (left grey bar, fixed 1 s duration) and sorted by RT (black line). PSTH bin size is 250 ms. Shaded area and error bars denote ±s.e.m.

across trials. Asterisk indicates a significant difference between the conditions in that bin (Po0.05, one-way ANOVA, Bonferroni-corrected). Bottom left

shows the average firing rate for each morph level 250- to 1,750-ms post-stimulus-onset. Bottom right shows the average firing rate for each ambiguity

level 250- to 1,750-ms post-stimulus onset. Asterisks indicate significant difference between levels of ambiguity using unpaired two-tailed t-test. **Po0.01

and þ : Po0.1. Waveforms for each unit are shown at the top of the raster plot. (c,d) Average normalized firing rate of ambiguity-coding neurons that

increased (n¼ 29) and decreased (n¼ 3) their firing rate for the least ambiguous faces, respectively. Asterisk indicates a significant difference between the

conditions in that bin (Po0.05, one-way ANOVA, Bonferroni-corrected). (e,f) Mean normalized firing rate at each morph level (e) and ambiguity level (f)

for 29 units that increased their spike rate for less ambiguous faces. (g,h) Mean normalized firing rate at each morph level (g) and ambiguity level (h) for 3

units that increased their spike rate for more ambiguous faces. Normalized firing rate for each unit (left) and mean±s.e.m. across units (right) are shown at

each level. Asterisks indicate significant difference between conditions using paired two-tailed t-test. ***Po0.001. (i) Histogram of AUC values for

ambiguity-coding neurons (orange) and unselected neurons that are neither ambiguity coding nor emotion tracking (grey). (j) Histogram of AUC values for

emotion-tracking neurons (purple) and unselected neurons that are neither ambiguity coding nor emotion tracking (grey). (k) Cumulative distribution of

the AUC values. (i–k) Ambiguity-coding neurons did not differentiate fearful versus happy emotions with anchor faces (similar AUC values as unselected

neurons) but emotion-coding neurons did (greater AUC values than unselected neurons).
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independent populations (NS; that is, the overlap of 2/234 was no
different than expected by chance). There was also a difference in
the distribution of the two populations of neurons (see the last
section of Results).

We performed additional experiments to show that amygdala
neurons not only encoded emotion ambiguity along the fear–
happy dimension but also along the anger–disgust dimension.
For this control, we recorded in total 57 neurons (mean firing
rate 40.2 Hz) from two patients. Using the same selection
procedures, we found 9 amygdala neurons (15.8%; binomial
Po0.0001) with a significant trial-by-trial correlation with the
three levels of ambiguity. This suggests that the amygdala encodes
emotion ambiguity in a domain-general manner. Similar to
fear–happy morphs, there were also more neurons (7/9) with
maximal firing rate for anchor faces than for ambiguous
faces (2/9).

Finally, additional behavioural control analysis showed that the
ambiguity signal was not primarily driven by valence or intensity
dimensions (Supplementary Fig. 1f–q and Supplementary Notes).
Adding the mean intensity ratings from the control subjects as
covariate in the regression model used to select ambiguity
neurons revealed qualitatively similar results (Supplementary
Notes). Furthermore, some amygdala neurons responded to the
specific identity of faces36 and our four facial identities did not
have exactly the same valence and intensity judgments
(Supplementary Fig. 1h,k,n,q). However, a separate control
analysis for each facial identity showed that encoding of
emotion degree and ambiguity was not driven by differences in
facial identity (Supplementary Notes).

Together, this single-neuron analysis reveals two populations
of neurons in the human amygdala: one encoding emotion
ambiguity, and the other encoding the degree of emotions.
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Regression analysis of emotion degree and ambiguity. The
electrophysiological results presented so far show that there are
independent sets of single neurons that track emotion degree and
ambiguity. How representative were the subsets of cells described
so far of the entire population of amygdala neurons recorded? We
next conducted a population regression analysis of all recorded
cells, regardless of whether they were selected as emotion tracking
or ambiguity coding. Note that this approach is not sensitive to
the direction of modulation (that is, which condition had a
greater firing rate) because it relies on an effect-size metric.

We first constructed a moving-window regression model
(window size 500 ms, step size 100 ms) for every neuron
(n¼ 234) and used this model to estimate how much of the
trial-by-trial variability in firing rate could be attributed to the
factors of time, morph levels and ambiguity levels. We quantified
the proportion of variance explained using a metric of effect size,
o2(t) (see Methods section). As expected, the population
conveyed information about both the emotion degree (Fig. 5a)
and emotion ambiguity (Fig. 5b). This was further confirmed by
the average effect size within a 1.5-s window starting 250 ms after
stimulus onset (Fig. 5c,d). Comparing the observed effect size
against the null distribution revealed above-chance performance
for both emotion tracking (Fig. 5c, permutation test with 500
runs: Po0.001) and ambiguity coding (Fig. 5d; permutation test
with 500 runs: Po0.001). Notably, population regression analysis
confirmed that amygdala neurons as a population from both
brain sides encoded both emotion degree and ambiguity (but
right amygdala had a weaker effect) (Supplementary Fig. 8k–n).
Therefore, without selection of significant neurons, amygdala
neurons as a population encode both emotion degree and
ambiguity.

Population regression analysis of decision and confidence.
A key goal of our study was to create sufficiently ambiguous
stimuli such that, for the identical stimulus (sensory input),
decisions vary between trials. This was the case for the most
ambiguous morph levels, for which a trial had an approximately
50% chance of being classified as fearful or happy (Fig. 1c).
We therefore next examined how the neuronal activity for this
subset of stimuli correlated with the decision.

For this, we used the previously constructed regression model
but with the decision (fear or happy) as the independent variable
rather than stimulus properties as used before. Note that, during
unambiguous trials, the stimulus property (ground truth) is
identical to the decision, but for ambiguous stimuli, the decision
varies independently of the stimulus. As expected, this model
explained a significant proportion of variance when considering
all trials (Fig. 5e; permutation test with 500 runs: Po0.001).
Crucially, however, this model also explained a significant
proportion of variance when only considering all faces other
than the anchors (all morphed faces; Fig. 5f; permutation test
with 500 runs: Po0.001) as well as when only considering the
most ambiguous faces (40–60% morph; Fig. 5g; permutation test
with 500 runs: P¼ 0.006) and even with a subset of the most
ambiguous trials with equal numbers of fear/happy responses for
each facial identity (Fig. 5h; permutation test with 500 runs:
P¼ 0.002). Subjective confidence judgments can also co-vary
independently for identical stimuli and we therefore next
investigated whether stimulus-evoked neuronal activity co-varied
with confidence. The regression model revealed that neuronal
responses significantly co-varied with levels of confidence both
for all trials (Fig. 5i; permutation test with 500 runs: Po0.001)
and at individual morph levels (Fig. 5j–l). As a control, we used
identical numbers of trials for both decisions and found
qualitatively the same results for both emotion judgment and

confidence judgment (Supplementary Fig. 8). Together, this
shows that the response of human amygdala neurons co-varied
with two subjective decision variables, even for identical stimuli:
fear/happy and confidence.

Comparisons between approaches. Based on mapping of the
lesions in the amygdala lesion patients (showing lesioned baso-
lateral nuclei but spared centromedial nuclei) as well as the
functional organization of the amygdala, the abnormal emotion
judgements, but intact confidence judgements, given by amygdala
lesion patients suggested that emotion-tracking neurons might be
located in the basolateral nucleus while ambiguity-coding neu-
rons might be located in the centromedial nucleus. We therefore
next mapped the single-unit recording sites from our neuro-
surgical patients onto these amygdaloid nuclei (see Methods). We
found that basolateral nuclei (BL and La) not only contained
emotion-tracking neurons as expected, but also ambiguity-coding
neurons (Supplementary Table 1). Differential anatomical dis-
tribution of neuronal response types thus does not explain the
lesion results. However, notably, our fMRI data suggested that the
activation by emotion degree (Fig. 2a) was centred primarily in
the basolateral nucleus (only 1 voxel in the central nucleus; using
the atlas of ref. 37), consistent with the altered emotion
judgement in lesion patients and the distribution of emotion-
tracking neurons (both of which also involved primarily the
BLA). Also, activation by emotion ambiguity (Fig. 2c) also
appeared in the basolateral nucleus (all voxels), consistent with
the distribution of ambiguity-coding neurons (also see Fig. 2g for
peak voxel activity). These commonalities should, however, be
considered cautiously, given the limited spatial resolution to
differentiate individual amygdala nuclei across all our measures,
especially fMRI.

With the fMRI study, we were able to detect effects of emotion
ambiguity and effects of fear degree in the right and left
amygdala, respectively (Fig. 2a–e). Here we found consistent
results also with our single-neuron recordings: consistently, the
distribution of emotion-tracking neurons showed a similar
difference in laterality. A significantly higher proportion of
emotion-tracking neurons was in the left versus right amygdala
(left: 16.6%, right: 6.9%; w2-test: P¼ 0.018; Supplementary
Table 1), and interestingly, 11 out of the 12 neurons showing
increasing firing rate with the degree of happiness were in the left
amygdala, consistent with the BOLD signal in the left amygdala
that increased as a function of happy degree. Although different
sides of the amygdala might focus on encoding different aspects
of the emotion, it is worth noting that both sides of the amygdala
encoded both aspects to some extent (Fig. 2f), even though the
BOLD signal did not reach statistical significance in all cases. This
is consistent with the observation of both types of neurons
bilaterally and that ambiguity-coding neurons were observed in
approximately equal proportions (left: 11.8%, right: 13.8%; NS;
note the average BOLD response encoding ambiguity in the left
amygdala in Fig. 2f). Furthermore, population regression analysis
showed that amygdala neurons as a population encoded both
emotion degree and ambiguity without selection of significant
neurons, consistent with the parametric modulation of fMRI
BOLD responses (Fig. 2).

Above, we have analysed two types of amygdala neurons:
emotion-tracking and ambiguity-coding neurons. However, the
majority of neurons were not be classified as either (73.1%).
Finally, we analysed the overall mean firing rate of all recorded
neurons (n¼ 234) to investigate the overall activity of amygdala
neurons in response to faces and how this response compared to
the BOLD signal in our fMRI study, a directional approach
(unlike population regression analysis) that can show which
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condition has a greater normalized firing rate. This revealed that,
after stimulus onset, the overall mean firing rate increased most in
response to the anchor faces but least to the most ambiguous
faces (one-way repeated ANOVA on the mean firing rate:
F(2,466)¼ 25.9, P¼ 2.12� 10� 11, Z2¼ 0.038; Supplementary
Fig. 9). Similarly, the population of all recorded neurons
also differentiated the two levels of ambiguity (paired
t-test: t(233)¼ 4.93, P¼ 1.58� 10� 6, g¼ 0.21; Supplementary
Fig. 9c,d,g,h), but the difference between anchor versus
intermediate ambiguous faces was similar to that between
intermediate versus the most ambiguous faces (paired t-test:
t(233)¼ 1.31, NS, g¼ 0.13). Together, this shows that the average
activity was dominated by ambiguity: neural activity was
strongest for the least ambiguous faces. Similar BOLD activation
profile was observed for the parametrical modulation by emotion
ambiguity as we presented earlier (Fig. 2c–e).

Discussion
We used happy–fear morphed faces to test for neural representa-
tions of emotion degree and emotion ambiguity in the human
amygdala across three different approaches. Patients with
amygdala lesions had an abnormal sensitivity to the degree of
fear but showed normal metrics of ambiguity (confidence and
RT). By contrast, our fMRI study showed that the BOLD signal
within the amygdala decreased with both the degree of fearfulness
and the categorical emotion ambiguity, albeit on different sides of
the brain. Finally, our electrophysiological study revealed one
population of neurons that tracked the degree of fear or happiness
in a face while another population of neurons primarily tracked
decreasing categorical ambiguity (the uncertainty that a stimulus
is either fear or happy). Taken together, these findings argue for
the coding of both emotion intensity and categorical ambiguity in
the amygdala. Crucially, we found that these effects could only be
fully disentangled at the level of single neurons.

We used a unique combination of approaches to address the
debate of whether the human amygdala encodes the degree of fear
and happiness and/or categorical ambiguity between emotions.
Different methods measure different signals and have therefore
often pointed to somewhat different conclusions, likely accounting
in good part for discrepant conclusions in the literature. Although
we used identical stimuli and task, our three different methods still
produced somewhat different conclusions. Since our single-unit
data clearly shows that the amygdala encodes both emotion degree
and ambiguity, more macroscopic methods (fMRI, lesion) can
provide evidence for either emotion degree or ambiguity coding—
given that both types of neurons are intermingled, there is in
principle signal to produce either interpretation.

It is important to note that the relationship between the
BOLD-fMRI signal and neuronal population activity in general
remains unclear. For example, there is a marked dissociation
during perceptual suppression in non-human primates38, and we
found that the neuronal population activity matched the direction
of BOLD signals for emotion ambiguity but not degree. An
estimation of the exact proportion of each type of emotion-
tracking neurons and the coupling between the BOLD and
electrophysiological signals was limited by the number of neurons
that we could sample; future studies with substantially more
recording of neurons will be necessary to answer these questions.

We previously used sparsely sampled ‘bubbled faces’ to argue
that neurons in the human amygdala encode subjective
fear/happy judgments rather than objective stimulus properties35.
However, with those stimuli, different random parts of faces are
revealed in every trial. This makes it difficult to determine the
relationship between stimulus input and behavioural output,
because both variables change trial-by-trial. In the present study,
we used morphed stimuli that disambiguate stimulus properties

and subjective behavioural judgments, because in different trials,
different decisions are made for the same stimuli. Using this
approach, we here conclusively demonstrated that responses of
human amygdala neurons reflect the subjective decision in trials
where only the decision, but not the sensory input, is variable.
Note that, when selecting neurons based on a contrast such as
fear versus happy or ambiguity level, the two variables (sensory
input and decision) co-vary and such selections are therefore not
appropriate to disambiguate these two scenarios. Instead, our
approach was to use a model that considers the activity of all
recorded neurons, regardless of selection.

Our conclusions rest on comparing two emotions (fearful and
happy), and we chose the fear/happy contrast because of the large
existing literature on this pair of emotions, which has been used
in a series of prior studies of the amygdala7,9,22,35. As a control,
we also tested another pair of emotions (anger versus disgust) and
found similar conclusions. It remains an open question whether
our results generalize to other emotions, or indeed might
generalize to ambiguity about stimuli other than facial
emotions, or about decisions that do not involve emotions.

The existing literature uses the term ambiguity for two entirely
different constructs, and it is important to distinguish the two to
properly frame our results. The first definition, which we used
throughout, refers to the closeness to categorical boundaries (see
ref. 39 for a classical example of perceptual ambiguity that uses
the same meaning of ‘ambiguity’ as we did here). The second
definition, which we did not refer to here, is related to missing
information about stimuli in economic decision-making. In
studies of face processing such as ours, the probability of stimuli
belonging to one or the other category (that is, fear/happiness,
trustworthy/untrustworthy) is known. Indeed, increased
amygdala responses to the second type of ambiguity have been
found in studies on decision-making that do not involve
ambiguous choices between two facial attributes24,26,40,41. In
contrast to this finding, other studies find increased amygdala
responses to certainty in tasks where an ambiguous choice is
made between two options for a face27–31. Thus fMRI studies on
categorical ambiguity are consistent with our present result by
showing that the amygdala tracks the categorical certainty and
often shows a minimal response when categorical ambiguity is
highest. Therefore, our results fit with a subset of studies on the
amygdala’s role in coding perceptual ambiguity/certainty,
specifically those studies that investigate the same construct of
‘ambiguity’ as ours27–31.

Notably, emotion ambiguity and certainty are closely related
and inversely correlated, and these neurons might encode
emotion certainty or confidence in emotion judgment. Here we
interpret any change in firing rate, or in BOLD signal, as carrying
information, and therefore do not further interpret the sign of
that change. Although all our stimuli should be equally attended
given the task demands of having to make judgments about them,
we acknowledge that task difficulty, attention, mental efforts and
RT are of course all intercorrelated to some extent, and future
studies will be needed to further distinguish the possible
contribution of attentional effects in our study. Furthermore,
future studies will be necessary to investigate whether ambiguity-
coding neurons are from a circuit separate from the emotion-
tracking neurons. Alternatively, ambiguity-coding neurons might
pool the activity of emotion-tracking neurons to generate the
ambiguity signal, that is, ambiguity-coding neurons effectively
code for the absolute degree of emotions. The second hypothesis
predicts that ambiguity-coding neurons would respond later in
time relative to emotion-tracking neurons, a hypothesis that
remains to be tested.

In our three amygdala lesion patients, most of the basolateral
complex of the amygdala was lesioned but the centromedial
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nucleus was intact, an important difference to the complete
amygdala lesion that has been studied in detail in patient S.M.
(refs 32,42). The BLA is the primary source of visual input to the
amygdala and the centromedial amygdala is a primary source of
output to subcortical areas relevant for the expression of innate
emotional responses and associated physiological responses43.
The centromedial amygdala provides most of the amygdala
projections to hypothalamic and brainstem nuclei that mediate
the behavioural and visceral responses to fear44–46. Furthermore,
the projection neurons in the central nucleus are mostly
inhibitory, and are, in turn, inhibited by inhibitory intercalated
cells in the lateral and basal amygdala. Disinhibition through this
pathway is thought to lead to the expression of emotional
responses43. Although direct evidence of the role of amygdala
subregions in threat and fear processing comes predominantly
from rodent lesion research47 and optogenetics48, our present
finding of a lowered threshold for reporting fear for morphed
faces is consistent with prior human amygdala lesion results:
patient S.M., who has complete amygdala damage including both
basolateral and centromedial nuclei, showed an increased
threshold for reporting fear (the opposite of our finding)2,
while another group of five patients with only BLA damage
demonstrated a hyper-vigilance for fearful faces (similar to our
finding)22,23. A putative mechanism explaining this difference
between the two types of amygdala lesion patients comes from
optogenetic work in rodents. Specific activation of the terminals
that project from the BLA to the central nucleus reduces fear and
anxiety in rodents, whereas inhibition of the same projection
increases anxiety49. It is thus possible that the partial amygdala
lesions in our three subjects removed a normal inhibitory brake
on fear sensitivity and resulted in exaggerated sensitivity to
emotion mediated by the disinhibited central nucleus, just like in
the prior studies22,23.

It is worth noting that the intact judgment of ambiguity in
amygdala lesion patients suggests that the amygdala’s response to
ambiguity is not an essential component for behavioural
judgments of emotion ambiguity and that such judgments may
sufficiently rely on structures elsewhere in the brain that also
represent information about ambiguity. Future studies could
further probe this issue by conducting fMRI studies like ours but
in patients with lesions to the amygdala.

Decisions about faces are frequently ambiguous, including
those about facial emotions, and optimal decision-making thus
requires an assessment of ambiguity. We thus expect that an
assessment of uncertainty is a crucial variable represented in areas
concerned with decision-making about faces. We have further
shown that the activity of amygdala neurons correlates with the
confidence in emotion judgment. Together, this shows that two
closely related variables with meta-information about the decision
itself (fear/happy) are represented in the amygdala, one based on
objective discriminability of the stimuli and the second based on
the subjective judgment of their discriminability: ambiguity and
confidence.

Functional neuroimaging and electrophysiological studies of
the amygdala frequently report lateralized amygdala activity,
indicating a clear hemisphere-specific processing difference
between the left and right amygdalae. Such lateralization has
been observed in a wide range of tasks, with diverse approaches,
and across species, such as category-specific single-neuron
responses to animals in the right human amygdala50,
differential electrophysiological and biochemical properties of
the amygdala neurons in pain processing in rats51 and left
amygdala BOLD-fMRI activation to fearful eye whites in
humans9. In the present study, we also found lateralized fMRI
activation: the left amygdala by emotion degree and the right
amygdala by emotion ambiguity. The left amygdala activation is

consistent with the left-lateralized response reported to fearful
eyes9,52, and the right amygdala activation by ambiguity may be
related to findings showing that the right amygdala BOLD signal
correlates with the overall strength of a face’s trustworthiness27.
A possible caveat to the study of lateralization of single-neuron
responses with epilepsy patients is that people with epilepsy have
a higher rate of abnormal lateralization of function, with often
more bilateral representations than people without epilepsy53.
It is also worth noting that the laterality of neuronal response
matched BOLD-fMRI in some aspects but not the others in the
present study. High-resolution fMRI, precise localization of the
electrodes and more neurons recorded will be necessary in future
studies to further address this question.

In conclusion, our electrophysiological results demonstrate that
neurons in the amygdala can signal both the categorical
ambiguity and the degree of emotional facial expressions and
that they do so in largely non-overlapping neuronal populations.
Findings from fMRI would thus be expected also to show coding
of these two parameters, depending on the details of task
demands and statistical power. Notably, both the fMRI and
the single-unit recordings suggested a relatively lateralized
representation of emotion degree in the left amygdala (primarily
tracking the degree of happiness in the face), a finding that may
be related to the lexical demands of classifying our stimuli into
discrete emotions. A methodological contribution of our study is
that, while all three methods we used support a role for the
amygdala in processing facial emotion, the detailed conclusions
about such a role may look quite different, depending on the
method used. While unrealistic in most cases, we would
nonetheless advocate for single-neuron electrophysiological
studies as an essential complement to all more macroscopic
approaches in order to help constrain interpretations.

Methods
Subjects. All participants provided written informed consent according to
protocols approved by the institutional review boards of the Huntington Memorial
Hospital, Cedars-Sinai Medical Center, the California Institute of Technology and
the South China Normal University.

There were 14 sessions from 9 neurosurgical patients in total (3 patients did
two sessions and 1 patient did three sessions. Each session was treated as an
independent sample for behavioural analysis. Supplementary Table 1). Nineteen
healthy, right-handed volunteers (15 female, mean age and s.d. 20.9±2.02 years)
participated in the fMRI experiments and an independent sample of 15
undergraduates served as healthy controls.

AP, AM and BG are three patients with selective bilateral amygdala lesions as a
result of Urbach–Wiethe disease54. AM and BG are monozygotic twins, both with
complete destruction of the BLA and minor sparing of anterior amygdaloid and
ventral cortical amygdaloid parts at a rostral level, as well as lateral and medial
parts of the central amygdaloid nucleus and the amygdalohippocampal area at
more caudal levels55. The details of the neuropsychological assessments of these
patients have been described previously42,55. Anatomical scans of the lesions are
shown in Supplementary Fig. 2.

Stimuli and task. We asked subjects to discriminate between two emotions,
fear and happiness, because these emotions are distinguished by particular facial
features56. We selected faces of four individuals (two females) each posing fear and
happiness expressions from the STOIC database57, which are expressing highly
recognizable emotions. Selected faces served as anchors and were unambiguous
exemplars of fearful and happy emotions as evaluated with normative rating data
provided by the creators. To generate the morphed expression continua for this
experiment, we interpolated pixel value and location between fearful exemplar faces
and happy exemplar faces using a piece-wise cubic-spline transformation over a
Delaunay tessellation of manually selected control points. We created five levels of
fear–happy morphs, ranging from 30% fear/70% happy to 70% fear/30% happy in
steps of 10% (see Fig. 1b and Supplementary Fig. 1a for all stimuli). Low-level
image properties were equalized by the SHINE toolbox58 (The toolbox features
functions for specifying the (rotational average of the) Fourier amplitude spectra,
for normalizing and scaling mean luminance and contrast, and for exact histogram
specification optimized for perceptual visual quality). In neurosurgical patients
C26, C27, H42, H43 and H44 (9 sessions in total), in each block, each level of the
morphed faces was presented 16 times (4 repetitions for each identity) and each
anchor face was presented 4 times (1 for each identity). In all other neurosurgical
patients (5 sessions in total) and all other subjects, each anchor face and each
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morphed face was presented the same number of times (12 times, 3 repetitions for
each identity). Neurosurgical patients performed 2–5 blocks, amygdala lesion
patients all performed 4 blocks, fMRI subjects all performed 2 blocks and
behavioural control subjects all performed 3 blocks. All trials were pooled for
analysis.

A face was presented for 1 s followed by a question prompt asking subjects to
make the best guess of the facial emotion, either by pushing the left button (using
left hand) to indicate that the face was fearful or by pushing the right button (using
right hand) to indicate that the face was happy. Subjects were instructed to respond
as quickly as possible. After emotion judgment and a 500 ms blank screen, subjects
were asked to indicate their confidence of the preceeding decision, by pushing the
button ‘1’ for ‘very sure’, ‘2’ for ‘sure’ or ‘3’ for ‘unsure’. For both prompts, subjects
were allowed 2s to respond. If this time was exceeded, the trial was aborted and
there was a beep to indicate a time out. No feedback was displayed after either
question. The intertrial interval was randomized between 1 and 2 s. The order of
faces was randomized for each subject. Subjects practiced 5 trials before the
experiment to familiarize themselves with the task. At the end of each block, the
overall percentage of ‘correct answers’ was displayed. One neurosurgical patient
(C34) did not provide confidence rating due to difficulty in understanding the
instruction.

Using an operational definition of ambiguity—the variability in choices (the
percentage of choices that are not the same as the dominant choice, for example,
the percentage of choosing fear for a 30% fear/70% happy face where happy
judgment is the dominant choice), we found that the variability in choices for three
levels of ambiguity increased in similar steps in neurosurgical patients (anchor:
3.15±3.08 (mean±s.d.), intermediate: 14.1±7.97, high: 32.3±5.55; the difference
between intermediate and anchor: 10.9±7.20, the difference between high and
intermediate: 18.2±10.0; paired t-test on difference: t(13)¼ 1.69, NS).
Furthermore, the psychometric curves were symmetric demonstrating that our
grouping of ambiguity levels was not biased.

Analysis of behaviour. We used a logistic function to obtain the smooth psy-
chometric curves shown in Fig. 1c:

PðxÞ ¼ Pinf

1þ e� aðx� xhalf Þ

where P is the percentage of trials in which faces were judges as showing fear, x is
the morph level, Pinf is the value when x approaches infinity (the curve’s maximum
value), xhalf is the symmetric inflection point (the curve’s midpoint) and a is the
steepness of the curve. Pinf, xhalf and a were fitted to the observed data (P and x).
We derived these parameters for each subject or recording session.

Flatter curves (smaller a) suggest that subjects were less sensitive to the change
in emotion degree and vice versa for steeper curves (larger a).

Analysis of spikes. Only units with an average firing rate of at least 0.2 Hz (entire
task) were considered. Only single units were considered. Trials were aligned to
face onset, and the baseline firing rate was calculated in a 1 s interval of blank
screen right before face onset. Average firing rates (peristimulus time histogram
(PSTH)) were computed by counting spikes across all trials in consecutive 250 ms
bins. Comparisons between morph levels were made using a one-way ANOVA at
Po0.05 and Bonferroni-corrected for multiple comparisons in the group PSTH.
PSTHs with different bin sizes were analysed and qualitatively the same results
were derived.

Model comparison. We compared the linear regression model to one logistic
model (sigmoidal) and one step-function model using the Akaike Information
Criterion (AIC), which measures the relative quality of statistical models for a given
set of data59. The AIC is founded on information theory and it offers a relative
estimate of the information loss when a given model is used to represent the
process that generates the data. In doing so, it deals with the trade-off between the
goodness of fit of the model and the complexity of the model. Note that the AIC
only estimates the quality of each model relative to the other models in
comparison, providing a means for model selection, rather than the absolute
quality of the model in a sense of testing a null hypothesis.

For each model, we have (see page 63 and 66 of ref. 59):

AIC ¼ n � ln RSS
n
þ 2kþ 2kðkþ 1Þ

n� k� 1

where n is the sample size (the number of observations), k is the number of
parameters of the model and RSS is the residual sum of squares between the
observed data and the fitted data. Note that we here corrected the relatively small
sample size (n/ko40).

Using the same logistic function as to fit the behaviour (see above), we have

DAIC ¼n � ln RSSLogistic

RSSLinear
þ 2 kLogistic � kLinear
� �

þ 2kLogistic kLogistic þ 1
� �

n� kLogistic � 1
� 2kLinear kLinear þ 1ð Þ

n� kLinear � 1

� �

where kLogistic¼ 3, kLinear¼ 2 and n¼ 7 (7 morph levels).

A positive DAIC indicates that the linear model has less information loss
compared to the logistic model, suggesting that the linear fit is more appropriate.

We also fitted a step function of f(x)¼ a when xZc, and f(x)¼ b when xoc.
We fitted the parameters using multidimensional unconstrained nonlinear
minimization (Nelder–Mead) method to minimize the least squares. We used the
same method to compute the DAIC. Note that the step function model also has
three parameters.

Single-neuron ROC analysis. Neuronal ROCs were constructed based on the
spike counts in a time window 250–1,750 ms after stimulus onset (the same time
window as all neuron selections). We varied the detection threshold between the
minimal and maximal spike count observed, linearly spaced in 20 steps. The AUC
of the ROC was calculated by integrating the area under the ROC curve (trapezoid
rule). The AUC value is an unbiased estimate for the sensitivity of an ideal observer
that counts spikes and makes a binary decision based on whether the number of
spikes is above or below a threshold. We defined the category with higher overall
firing rate as ‘true positive’ and the category with lower overall firing rate as ‘false
positive’. Therefore, the AUC value was always 40.5 by definition.

Regression analysis. We used the regression model S tð Þ ¼ a0 tð Þþ a1 tð Þ � L to
estimate whether the firing rate S was significantly related to one of the following
factors (L): morph level (1–7), ambiguity level (1–3), emotion judgment (0/1) and
confidence judgment (1–3). Separate models were fit for each factor. The model
was fit to the total spike count in a 500 ms window that was moved in steps of
100 ms for moving-window analysis and in a 1.5-s window starting 250 ms after
stimulus onset for fixed-window analysis. We estimated the significance of each
factor using o2 as described previously60, which is less biased than percentage
variance explained61. Here, o2

i ¼
SSi � dfi �MSE
SStot þMSE , where SSi is the sum of squares of

factor i, SStot is the total sum of squares of the model and MSE is the mean square
error of the model. Effect sizes were calculated using the effect size toolbox62.
We averaged o2(t) across all neurons. The null distribution was estimated by
randomly scrambling the labels and fitting the same model. This was repeated 500
times to estimate the statistical significance.

Electrophysiology. We recorded bilaterally from implanted depth electrodes in
the amygdala from patients with pharmacologically intractable epilepsy. Target
locations in the amygdala were verified using postimplantation structural MRIs.
At each site, we recorded from eight 40 mm microwires inserted into a clinical
electrode as described previously13. Efforts were always made to avoid passing the
electrode through a sulcus and its attendant sulcal blood vessels, and thus the
location varied but was always well within the body of the targeted area. Microwires
projected medially out at the end of the depth electrode and examination of the
microwires after removal suggests a spread of about 20–30 degrees. Bipolar
wide-band recordings (0.1–9 kHz), using one of the eight microwires as reference,
were sampled at 32 kHz and stored continuously for off-line analysis with a
Neuralynx system (Digital Cheetah; Neuralynx, Inc.). The raw signal was filtered
with a zero-phase lag 300-3 kHz bandpass filter and spikes were sorted using a
semiautomatic template matching algorithm63. Units were carefully isolated and
spike sorting quality were assessed quantitatively (Supplementary Fig. 5).

Electrode mapping. Preoperative and postoperative images were aligned through
an initial automated linear coregistration (using the FLIRT module of FSL64),
followed by manually guided nonlinear thin-plate-spline warping65. Control points
for the nonlinear warping were selected according to local anatomical features that
corresponded unambiguously between preoperative and postoperative images,
which included features bounding the structures of interest as closely as imaging
artifacts allowed. Amygdaloid nuclei were projected into the subject’s volume
through nonlinear warping of structures derived from a stereotactic atlas of the
human brain66. Atlas-derived structures were projected by first aligning the outer
boundary of the atlas-derived amygdala with an amygdala boundary surface
obtained through automated subcortical segmentation (FSL FIRST), with manual
editing of the latter to improve accuracy, when necessary. These respective surfaces
then provided control points for a nonlinear warping from the atlas space to the
subject’s preoperative image.

Lesion mapping. Lesion extents were identified and labeled using ITK-SNAP
(version 3.2, University of Pennsylvania)67. Calcified areas of the lesions appeared
hypointense in the T1-weighted structural images and lesion boundaries were in
most cases well delineated. Internal signal heterogeneity was observed in all
patients’ lesions and was most pronounced in AP. In AM and BG, parts of the
lesion margin were contiguous with cerebral spinal fluid spaces, which is also
hypointense in T1-weighted images. In these areas, the margin was inferred by
extrapolation of local tissue boundaries.

fMRI imaging acquisition. MRI scanning was conducted at the South China
Normal University on a 3-Tesla Tim Trio Magnetic Resonance Imaging scanner
(Siemens, Germany) using a standard 12-channel head-coil system. Whole-brain
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data were acquired with echo planar T2*-weighted imaging (EPI), sensitive to
BOLD signal contrast (31 oblique axial slices, 3 mm thickness; TR¼ 2,000 ms;
TE¼ 30 ms; flip angle¼ 90�; FOV¼ 224 mm; voxel size: 3� 3� 3 mm3).
T1-weighted structural images were acquired at a resolution of 1� 1� 1 mm3.

fMRI face localizer task. We used a standard face localizer paradigm68 to localize
areas activated by faces. The face localizer task consisted of four blocks of faces
interleaved with five blocks of a sensorimotor control task in a fixed order
(CFCACFCAC; C¼ control block, F¼ task block with fear expressions, A¼ task
block with anger expressions). In each face-processing block, six images from the
STOIC database57, three of each gender and target emotion (angry or fearful), were
shown. Subjects viewed a trio of faces (expressing either anger or fear) for a fixed
duration of 5 s and selected one of the two faces at the bottom that had the same
facial expression as the target face at the top by button press (right or left,
within 5 s). Six different sets of geometric forms (circles and vertical and horizontal
ellipses) were used in the sensorimotor control block. Subjects viewed a trio of
simple geometric shapes for a fixed duration of 5 s and selected one of two the
shapes at the bottom that had the same geometric shape as the target shape at the
top by button press (right or left, within 5 s). Each block consisted of six trials (30 s)
and the entire duration of the localizer task was 270 s.

The face localizer task revealed reliable differences in BOLD signal between
faces and geometric shapes in bilateral amygdala (peak: MNI coordinate: x¼ � 24,
y¼ � 3, z¼ � 18, Z¼ 4.27, 43 voxels; x¼ 27, y¼ � 3, z¼ � 21, Z¼ 5.03, 60
voxels, FWE Po0.05, SVC based on an anatomical amygdala ROI; Supplementary
Fig. 4a), consistent with other findings10. We defined the functional ROI in the
amygdala as all voxels in the amygdala identified by the localizer task
(face4objects; 43 voxels for left amygdala and 60 voxels for right amygdala). Other
cortical regions known to be involved in face processing, such as the fusiform face
area, visual cortex, inferior frontal gyrus, superior temporal sulcus/gyrus, dorsal
medial prefrontal cortex and dorsal lateral prefrontal cortex, were also more
activated for faces compared to objects, and objects minus faces activated the
ventral anterior cingulate cortex and posterior cingulate cortex (Supplementary
Fig. 4a), consistent with the face processing network shown in previous studies10.

fMRI face morph task. We used the identical task as used for all other subject
groups (Fig. 1a), except that we omitted the confidence rating part and increased
the duration of intertrial interval from 1–2 s to 2–8 s (jittered randomly with a
uniform distribution). Subjects reported faces as fearful or happy by pressing a
button on the response box with either their left (fearful) or right (happy) index
fingers.

Using the above functional ROI, we again found robust activation of the
bilateral amygdala when comparing face versus baseline (Supplementary Fig. 4o;
peak: x¼ � 21, y¼ � 6, z¼ � 18, Z¼ 4.89, 22 voxels, and x¼ 21, y¼ � 6,
z¼ � 18, Z¼ 3.21, 5 voxels, FWE Po0.05, SVC). No significant activation was
found for the reversed contrast (FWE P40.05).

fMRI imaging analysis. Neuroimaging data were preprocessed and analysed
using SPM8 (www.fil.ion.ucl.ac.uk/spm/). The first four volumes were discarded to
allow the MR signal to reach steady-state equilibrium. The EPI images were sinc
interpolated in time for correction of slice-timing differences and realigned to the
first scan by rigid-body transformations to correct for head movements. Utilizing
linear and nonlinear transformations and smoothing with a Gaussian kernel of
full-width-half maximum 6 mm, EPI and structural images were coregistered to the
T1 MNI 152 template (Montreal Neurological Institute, International Consortium
for Brain Mapping). Global changes were removed by high-pass temporal filtering
with a cutoff of 128 s to remove low-frequency drifts in signal.

In the localizer task, we used a block design and modelled BOLD responses
using a general linear model (GLM), with the two regressors for face and object
conditions modelled as boxcar functions convolved with a 2-gamma hemodynamic
response function.

In the face morph task, we used an event-related design. In the GLM design
matrix, for every subject we estimated a GLM with autoregressive order 1 [AR(1)]
and the following regressors (R): R1 at face presentation; R2 at face presentation
modulated by fear levels: 100%, 70%, 60%, 50%, 40%, 30%, 0%; R3 at face
presentation modulated by ambiguity levels: anchor, 30%/70% morph, 40–60%
morph; and R4 at fixation presentation. Because both the RT and ambiguity levels
were correlated with confidence, we also repeated the analysis by adding the
z-normalized RT (for each subject) as one additional modulator and
orthogonalized it to earlier modulators using the default SPM orthogonalization
function. We derived similar results when adding RT as a modulator
(Supplementary Fig. 4i–n). To compute the time course of ambiguity coding,
we built a second GLM with AR(1) and the following regressors: R1 at face
presentation with anchor; R2 at face presentation with 30%/70% morph; and R3 at
face presentation with 40–60% morph. We found similar results for a model with
four ambiguity levels (anchor, 30%/70% morph, 40%/60% morph, and 50% morph;
Supplementary Fig. 4f–h).

For all GLM analyses, six head-motion regressors based on SPM’s realignment
estimation routine were added to the model (aligned to the first slice of each scan).
Multiple linear regression was then run to generate parameter estimates for each

regressor for every voxel. The contrast (difference in beta values) images of the
first-level analysis were entered into one-sample t-tests for the second-level group
analysis conducted with a random-effects statistical model69. For the localizer task,
we used SVC defined by a priori ROIs of the structural amygdala70. For the face
morph task, we used a functional ROI defined by the parts of the bilateral amygdala
identified in the localizer task. Similar results were found when using the structural
ROIs of the bilateral amygdala. Activations in other areas were reported if they
survived Po0.001 uncorrected, cluster size k410.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request. The data are not publicly
available due to privacy policies relating to clinical recordings.
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