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Abstract: Endfunctional polymers possess significant industrial and scientific importance.
Sulfonyl endgroups, such as tosyl and nosyl endfunctionalities, due their ease of substitution
are highly desired for a variety of polymer structures. The sulfonylation of hydroxyl-terminated
polyisobutylene (PIB-OH), a chemically and thermally stable, biocompatible, fully saturated polymer,
with tosyl chloride (TsCl) and nosyl chloride (NsCl) is presented in this study. PIB-OHs derived from
commercial exo-olefin-ended PIB (PIBexo-OH) and allyl-terminated polymer made via quasiliving
carbocationic polymerization of isobutylene (PIBall-OH) were tosylated and nosylated in the
presence of 4-dimethylaminopyridine (DMAP), pyridine and 1-methylimidazole (1-MI) catalysts and
triethylamine (TEA). Our systematic investigations revealed that the end product distribution strongly
depends on the relative amount of the components, especially that of TEA. While PIBexo-OTs with
quantitative endfunctionality is readily formed from PIBexo-OH, its nosylation is not as straightforward.
During sulfonylation of PIBall-OH, the formed tosyl and nosyl endgroups are easily substituted with
chloride ions, formed in the first step of sulfonylation, leading to chloride termini. We found that
decreased amounts of TEA afford the synthesis of PIBall-OTs and PIBall-ONs with higher than 90%
endfunctionalities. These sulfonyl-ended PIBs open new ways for utilizing PIB in various fields and
in the synthesis of novel PIB-containing macromolecular architectures.

Keywords: isobutylene; tosyl-ended polyisobutylene; nosyl-ended polyisobutylene; quasiliving
carbocationic polymerization (QLCCP); allyl-terminated polyisobutylene; exo-olefin ended polyisobutylene;
hydroxyl-ended polyisobutylene; 4-dimethylaminopyridine (DMAP); trimethylamine (TEA)

1. Introduction

Functional polymers with terminal and or pendant functionalities have significant industrial and
scientific importance, and as a consequence, intensive research and developments have been taking place
with such polymers worldwide. Among these macromolecular materials, functional polyisobutylenes
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(PIBs) have gained remarkable interest in the last couple of years (see e.g., Refs. 1-30 and references
therein). This is mainly due to the demands to increase the average endfunctionality by either
conventional or quasiliving carbocationic polymerizations, or to the utilization of functional PIBs
as building blocks in a variety of new materials with advanced application possibilities. PIB has a
fully saturated, chemically inert backbone with low glass transition temperature, high thermal and
oxidative stability, outstanding barrier properties, etc. Based on these attractive features, functional
PIBs and its copolymers have already gained broad fields of applications, e.g., starting material of butyl
rubbers, oil, fuel and lubricant additives, sealants, adhesives, insulating materials, and the component
of biomedical devices on the basis of its biocompatibility.

In spite of the availability of PIBs with a wide range of endfunctionalities [1–36], a reliable process
for certain highly desired endfunctional PIBs with high extents of reactive chain end functionalities,
for instance, organosulfonates, such as tosyl- or nosyl-ended PIBs, are still lacking. The most
convenient way to obtain PIB-sulfonates is the sulfonylation of hydroxyl-terminated PIBs (PIB-OHs)
by the corresponding sulfonyl chlorides, e.g., tosyl chloride (TsCl) or nosyl chloride (NsCl) as
shown in Scheme 1. PIB-OHs are usually prepared by hydroboration/oxidation of olefin-terminated
PIBs [31,32]. While commercial PIBs with relatively broad molecular weight distributions (MWD)
have about 80% reactive exo-olefin functionality [1,4–6,8,9] (PIB-Exo), the inifer method [33] and
quasiliving carbocationic polymerization (QLCCP) results in PIB-Exo with quantitative vinylidene
endgroups [34,35]. In situ allylation by endquenching of QLCCP of isobutylene with allyltrimethylsilane
yields PIBs directly with allyl termini (PIB-All) [32]. It has to be noted that significant efforts have been
made to increase the exo-olefin functionality in PIB-Exo by conventional carbocationic polymerization in
recent years [1,4–6,9,24–29]. Both PIB-Exo and PIB-All were converted to PIB-OHs [31,32,36], which in
principle can be converted to PIB-sulfonates, e.g., tosylates, nosylates and mesylates. The interest
in such PIBs is based on the fact that alkyl tosylates are among the most versatile compounds for
substitution reactions because the tosyl group is an excellent leaving group. As widely accepted,
tosylates can be prepared by the reaction of tosyl chloride and an alcohol. Typically, bases promote this
process by capturing the generated HCl during the reaction. Catalysts, such as 4-dialkylaminopyridines,
like 4-dimethylaminopyridine (DMAP) and tertiary amines, e.g., triethylamine (TEA), proved to be
effective for a wide range of species [37–39]. Furthermore, imidazole-based sulfonylation was also
described [40,41]. Although these catalysts are efficient in tosylation of alcohols of low molecular
weights in most cases, undesired side reactions were observed for some species and under certain
reaction conditions. Mostly, the formed tosyl group is substituted by the chloride anion yielding
chloride functional group [39,42]. While tosylates are preferred in organic reactions and have a quite
extensive literature background, nosylates, despite their even better synthetic features in substitution
reactions [43–45], have not been explored intensively so far. Based on these characteristics of tosylates
and nosylates, effective tosylation/nosylation of PIB-OHs is expected to lead to PIBs with tosyl and
nosyl endfunctionalities. These can be utilized in a wide range of subsequent substitution reactions
and thus in the preparation of a variety of new macromolecular materials. It has to be mentioned
that tosylates and nosylates can also be applied as macroinitiators, e.g., for quasiliving ring-opening
polymerization of oxazolines [46]. Consequently, PIBs with tosyl or nosyl chain ends would provide
unique opportunities to prepare an array of novel macromolecular materials.

Based on the current literature, very limited knowledge exists on PIBs with sulfonate (tosylate,
nosylate, mesylate) endgroups. In an early attempt, linear and three-arm star PIB-OHs were tosylated
with excess TsCl in the presence of DMAP and TEA as bases in dichloromethane (DCM) [47].
Although complete consumption of the hydroxyl groups was claimed, detailed analysis of the products
was not carried out. However, it was found that using these tosylated PIBs as macroinitiators for
the quasiliving cationic ring-opening polymerization (CROP) of 2-methyl-2-oxazoline resulted only
in 70–80% blocking efficiency, indicating incomplete initiation of the CROP process by the chain
ends, which might be an indication of incomplete tosylation. As found by us recently [48] and
during our preliminary experiments, lower than quantitative endfunctionalization was achieved by
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reacting TsCl with PIB-OH under similar conditions as reported [47]. Converting the hydroxyl group
of PIB-OH prepared from industrial PIB-Exo by methanesulfonyl chloride (mesyl chloride, MsCl)
led to mesylated PIB, which was used as an intermediate for polyisobutylene supported catalyst
systems [49,50]. However, detailed analysis of this process and the resulting polymers or the average
endfunctionality has not been reported in the case of these sulfonylations.
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Scheme 1. The synthesis routes for the preparation of tosyl- and nosyl-ended polyisobutylenes derived
from exo-olefin-ended (PIB-Exo) and allyl-terminated (PIB-All) polymers (PIB-All was obtained by
quasiliving carbocationic polymerization).

Herein, we report on our systematic investigations aiming at to determine the effect of reaction
conditions on the efficiency of tosylation and nosylation of PIB-OHs derived from commercially
available PIB-Exo and laboratory PIB-All prepared by QLCCP. Our definite goal was to reveal the
reaction parameters which result in high tosylation and nosylation yields, i.e., high tosyl and nosyl
endfunctionalities. Thorough experiments were also carried out on the influence of the origin of
the PIB-OH, i.e., PIBexo-OH or PIBall-OH, the ratio of the reagents and the reaction times on the
endfunctionalities of the sulfonylated PIBs.

2. Materials and Methods

2.1. Materials

Dichloromethane (DCM, 99.9%, Molar Chemicals, Halásztelek, Hungary), tetrahydrofuran (THF,
99.9%, VWR Chemicals, West Chester, PA, USA), benzotrifluoride (BTF, ≥99%, Sigma-Aldrich, St. Louis,
MO, USA) and 2-ethyl-2-oxazoline (EtOx, 99+%, Aldrich, St. Louis, MO, USA) were refluxed on CaH2

for a couple of hours and distilled over it under N2 atmosphere freshly before use. Triethylamine
(TEA, ≥99.0%, TCI Chemicals, Tokyo, Japan) and 1-methylimidazole (1-MI, ≥99%, Sigma-Aldrich,
St. Louis, MO, USA) was distilled under N2 atmosphere freshly before use. Glissopal 1000 (BASF SE,
Ludwigshafen, Germany), p-toluenesulfonyl chloride (tosyl chloride, TsCl, ≥99.0%, TCI Chemicals,
Tokyo, Japan), p-nitrobenzenesulfonyl chloride (nosyl chloride, NsCl, 97%, Sigma-Aldrich, St. Louis,
MO, USA) and 4-dimethylaminopyridine (DMAP, ≥99.9%, Sigma-Aldrich, St. Louis, MO, USA) were
used as receive.
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2.2. Characterization

NMR spectroscopy. 1H NMR spectra of all endfunctional PIBs were recorded on a Varian 500 MHz
spectrometer. All measurements were performed in CDCl3 as solvent and at 30 ◦C. For spectra
calibration of the 1H NMR spectra, the chloroform peak was set to 7.26 ppm.

Gelpermeation chromatography (GPC). The GPC equipment was composed of a Waters 515 HPLC
pump, Waters Styragel column set with three columns (HR1, HR2, HR4), and it was equipped with an
Aligent 390 RI detector. THF was used as mobile phase with a flow rate of 1 mL/min. The average
molar masses and the polydispersity (Mw/Mn), were determined by the use of a calibration made with
narrow MWD polystyrene standards in the molecular weight range of 104 to 6 × 105 Da.

2.3. Synthesis of PIB-All

A solution of 2-chloro-2,4,4-trimethylpentane (TMPCl, 4.1 g, 0.03 mol) in n-hexane (1520 mL) and
DCM (1240 mL) was cooled down in a dry ice-isopropanol mixture to −78 ◦C. To this reaction solution,
under continuous stirring, tetramethylethylenediamine (TMEDA, 4.1 mL, 3.2 g, 0.03 mol, 1.0 eq.) was
given. Afterward, TiCl4 (18.2 mL, 31.4 g, 0.17 mol, 6.0 eq.) and isobutylene (IB, 32.6 mL, 23.5 g, 0.42 mol,
15.2 eq.) were carefully added and the mixture was stirred at −78 ◦C for 30 min. After complete
conversion of IB, pre-chilled allyltrimethylsilane (ATMS, 8.8 mL, 8.3 g, 0.06 mol, 2 eq.) was given and
the solution was stirred for 30 min. Finally, the reaction was stopped with the addition of cold MeOH
(200 mL). The mixture was warmed up to room temperature, which resulted a two-phase mixture
(including a higher phase of n-hexane and a lower phase of DCM/MeOH). The n-hexane phase was
separated and washed with a solution of NaHCO3 in H2O (250 mL) three times, dried over MgSO4

overnight and cleaned up via filtering. The solvent was removed under reduced pressure and the
product was dried under vacuum at 60 ◦C until constant weight. PIB-All was obtained as a colourless,
clean, viscous liquid (yield: 22.4 g, 81%). 1H NMR (500 MHz, CDCl3, 30 ◦C): δ = 0.76–1.80 (m, 116H),
1.95–2.07 (d, 2H), 4.92-5.07 (m, 2H), 5.77-5.93 (m, 1H) ppm. GPC: Mn = 820 g/mol, D = 1.16).

2.4. Synthesis of PIBall-OH

PIB-All (7.0 g, 7.78 mmol) was dissolved in dry THF (35 mL) under nitrogen atmosphere.
Afterwards, 0.5 M solution of 9-borabicyclo[3.3.1]nonane in THF (9-BBN, 0.5 M, 78 mL, 0.039 mol,
5 eq.) was added dropwise and the mixture was stirred for 5 h at room temperature. Into this mixture,
KOH (6.5 g, 0.12 mol, 15 eq.) in MeOH solution (43 mL) was carefully added, then the reaction mixture
was cooled down with an ice bath, and aqueous H2O2 (30%, 13.2 mL, 4.0 g, 0.12 mol, 15 eq.) was
dropped under constant stirring. The reaction mixture was stirred overnight at room temperature.
After this, n-hexane (70 mL) and H2O (20 mL) were added, and the organic phase of the two-phase
mixture was separated, washed with a solution of NaHCO3 in H2O (20 mL) three times, dried over
MgSO4 overnight and cleaned up via filtering. The solvent was removed under reduced pressure and
the product was dried under vacuum at 60 ◦C until constant weight. PIBall-OH was obtained as a
colourless, clean, viscous liquid (yield: 6.9 g, 99%). 1H NMR (500 MHz, CDCl3, 30 ◦C): δ = 0.78–1.91
(m, 130H), 3.55–3.68 (t, 2H). GPC: Mn = 1160 g/mol, D = 1.18.

2.5. Synthesis of PIBexo-OH

PIB-Exo (50.0 g, 50.0 mmol) was dissolved in dry THF (250 mL) under nitrogen atmosphere.
Afterward, 0.5 M solution of 9-borabicyclo[3.3.1]nonane in THF (9-BBN, 0.5 M, 500 mL, 0.250 mol,
5 eq.) was added dropwise and the mixture was stirred for 4 h at room temperature. Into this mixture,
KOH (70.1 g, 1.25 mol, 25 eq.) in MeOH solution (440 mL) was carefully added, then the reaction
mixture was cooled down with an ice bath, and aqueous H2O2 (30%, 29.3 mL, 42.5 g, 1.25 mol, 25 eq.)
was dropped under constant stirring. The reaction mixture was stirred overnight at room temperature.
After this, n-hexane (250 mL) and H2O (100 mL) were added, and the organic phase of the two-phase
mixture was separated, washed with a solution of NaHCO3 in H2O (100 mL) three times, dried over
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MgSO4 overnight and cleaned up via filtering. The solvent was removed under reduced pressure and
the product was dried under vacuum at 60 ◦C until constant weight. The final product was resulted
after precipitation from THF to tenfold excess of MeOH. PIBexo-OH was obtained as a colorless, clean,
viscous liquid (yield: 43.6 g, 86%). 1H NMR (500 MHz, CDCl3, 30 ◦C): δ = 0.88–1.80 (m, 216H), 3.26–3.53
(m, 2H), 4.77–4.86 (*coupled, m, 1H), 5.09–5.19 (*endo, m, 1H). GPC: Mn = 1360 g/mol, D = 1.53.

2.6. Experiments on the Tosylation of PIBexo-OH and PIBall-OH

0.1 g or 0.2 g of PIB-OH was dissolved in dry DCM and the solution was added to a previously
heat-dried small glass vial equipped with a magnetic stirrer. The vial was carefully closed with a
septum cap and nitrogen was transferred through solution for several minutes. Afterwards, calculated
amount of TEA and the catalyst (DMAP or 1-methylimidazole in DCM solution) were added with
constant stirring. Finally, tosyl chloride in DCM solution was given dropwise to the reaction
mixture. Reaction was conducted at room temperature; samples were withdrawn at defined times
and precipitated into large excess of MeOH. Polymer was isolated, washed with MeOH and dried
under vacuum at 40 ◦C until constant weight. Dry product was analyzed by 1H NMR spectroscopy to
determine the conversion of hydroxyl endgroup.

2.7. Experiments on the Nosylation of PIBexo-OH and PIBall-OH

0.1 g or 0.2 g of PIB-OH was dissolved in dry THF and the solution was added to a previously
heat-dried small glass vial equipped with a magnetic stirrer. The vial was carefully closed with a septum
cap, and nitrogen was transferred through solution for several minutes. Afterward, calculated amount
of TEA and the catalyst (DMAP or 1-methylimidazole in THF solution) were added with constant
stirring. Finally, nosyl chloride in THF solution was given dropwise to the reaction mixture. Reaction
was conducted at room temperature; samples were withdrawn at defined times and precipitated into
large excess of MeOH. Polymer was isolated, washed with MeOH and dried under vacuum at 40 ◦C
until constant weight. The dry product was analyzed by 1H NMR spectroscopy to determine the
conversion of the hydroxyl endgroup.

2.8. Synthesis of PIBall-OTs

PIBall-OH (37.0 g, 30.8 mmol) was dissolved in dry DCM (370 mL) under nitrogen atmosphere.
Afterwards, TEA (21.5 mL, 15.6 g, 0.15 mol, 5 eq.) and 1-methylimidazole (4.9 mL, 5.1 g, 62 mmol,
2 eq.) were added under continuous stirring. After complete dissolution of the reagents, tosyl chloride
(58.8 g, 0.31 mol, 10 eq.) in DCM solution was dropped into the reaction mixture carefully while
cooled down with an ice-bath. The reaction content was warmed up to room temperature and stirred
overnight. After the addition of MeOH (50 mL), the mixture was stirred for 30 min, concentrated and
precipitated into tenfold excess of MeOH (2000 mL). Raw product was isolated, washed with MeOH
(100 mL) several times, dried under vacuum at 60 ◦C. Then it was resolved in n-hexane (150 mL),
filtered if necessary, precipitated again into tenfold excess of MeOH (1500 mL), the product was isolated,
washed with MeOH (100 mL) several times and dried under vacuum at 60 ◦C until constant weight.
Precipitation procedure was usually conducted three times, but until the dry product was completely
clear and lost the initial yellowish colour. PIBall-OTs was obtained as a colourless, clean, viscous liquid
(yield: 36.7 g, 88%). 1H NMR (500 MHz, CDCl3, 30 ◦C): δ = 0.65–1.68 (m, 192H), 2.39–2.50 (s, 3H),
3.92–4.07 (t, 2H), 7.31–7.38 (d, 2H), 7.73–7.87 (d, 2H) ppm. GPC: Mn = 1480 g/mol, D = 1.16.

2.9. Synthesis of PIBall-ONs

PIBall-OH (3.45 g, 3.45 mmol) was dissolved in dry THF (50 mL) under nitrogen atmosphere.
Afterwards, TEA (2.4 mL, 1.7 g, 0.017 mol, 5 eq.) and 1-methylimidazole (0.55 mL, 0.67 g, 6.9 mmol,
2 eq.) were added under continuous stirring. After complete dissolution of the reagents, nosyl chloride
(7.65 g, 0.035 mol, 10 eq.) in THF solution was dropped into the reaction mixture carefully while
cooled down with an ice-bath. The reaction content was warmed up to room temperature and stirred
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overnight. After the addition of MeOH (10 mL), the mixture was stirred for 30 min, concentrated
and precipitated into tenfold excess of MeOH (500 mL). Raw product was isolated, washed with
MeOH (20 mL) several times, dried under vacuum at 60 ◦C. Then it was resolved in n-hexane (35 mL),
filtered if necessary, precipitated again into tenfold excess of MeOH (350 mL), the product was isolated,
washed with MeOH (20 mL) several times and dried under vacuum at 60 ◦C until constant weight.
The precipitation procedure was usually conducted three times until the dry product was completely
clear. PIBall-ONs was obtained as a slightly yellow, clean, viscous liquid (yield: 1.55 g, 45%). 1H NMR
(500 MHz, CDCl3, 30 ◦C): δ = 0.78–1.86 (m, 147H), 3.46–3.53 (*PIB-Cl, t, 2H), 4.07–4.16 (t, 2H), 8.07–8.18
(d, 2H), 8.36–8.45 (d, 2H) ppm. GPC: Mn = 1310 g/mol, D = 1.11.

3. Results and Discussion

In order to study the effect of the chain end structure on tosylation and nosylation, both exo-olefin-
and allyl-ended PIBs were used as starting materials. Because the exo-olefin-teminated polymer
(PIB-Exo) is a commercially available inexpensive product, and used widely for research purposes as
well (see e.g., references 48–50 and references therein), we selected this polymer as one of the starting
materials for our studies. As displayed in Figure 1, the commercial PIB-Exo, obtained by utilizing
the chain transfer process in conventional carbocationic polymerization of isobutylene, contains not
only exo-, but endo- and in-chain olefins as well (see also Figure S1 in the Supporting Information).
Considering these double bonds, PIB-Exo has 81% exo-olefin functionality and Mn of 1200 g/mol by 1H
NMR spectroscopy (Mn = 1150 g/mol and Mw/Mn = 1.61 by GPC). The allyl-terminated polyisobutylene
(PIB-All) used in this work was obtained by quasiliving carbocationic polymerization of isobutylene
and in-situ quenching by ATMS [32]. This polymer has 100% allyl functionality according to the
1H NMR spectrum of this polymer (Figure 1 and Figure S2), and Mn of 820 g/mol and Mw/Mn of
1.16. The reaction routes for obtaining hydroxyl-ended PIBs from these olefin-terminated polymers
are depicted in Scheme 1. As expected, hydroboration/oxidation with 9-BBN [31] converts only the
exo-olefin in PIB-Exo to hydroxyl groups as indicated in Figure 2 and Figure S4. The endo-olefin and
in-chain double bonds do not react due to steric hindrance. The allyl endgroup is fully transformed
to hydroxyl group as shown in Figure 3 and Figure S3. The resulting hydroxyl-ended PIBs, that is
PIBexo-OH and PIBall-OH, react with tosyl chloride (TsCl) and nosyl chloride (NsCl) as displayed in
Scheme 1 under various reaction conditions. All reactions were carried out under dry atmosphere at
room temperature.

The first attempts on tosylation of PIBexo-OH were carried out to reproduce previously described
experiments [47] by applying the same reaction conditions (DCM solvent, 2 eq. of TsCl, 2 eq. of DMAP,
13.7 eq. of TEA, room temperature, 10 h reaction time). However, surprisingly these conditions
did not lead to full conversion of the PIBexo-OH. Therefore we tried also pyridine instead of DMAP,
different TsCl concentrations and various reactions times (Entry 1–3 in Table 1). As shown in Table 1,
pyridine alone is not sufficiently effective catalyst of tosylation, leading only to 16% conversion. As the
data indicate in Table 1 and in Figure 2, tenfold excess of TsCl in the presence of 2 eq. DMAP and
10 eq. TEA leads to complete transformation of the hydroxyl groups in PIBexo-OH to PIB with tosyl
endgroups (PIBexo-OTs), even with relatively short reaction time of 7 h (Entry 5 in Table 1). This reaction
time is sufficient to reach only 80% conversion during nosylation under the otherwise same condition,
bu using THF as solvent, as shown in Table 2 (Entry 11). Because the nosyl chloride has limited
solubility in DCM, all nosylation reactions were carried out in THF, which is an appropriate solvent
for both NsCl and PIB. Longer reaction times of nosylation of PIBexo-OH lead to ~90% conversion,
i.e., to the formation of nosyl ended polymers (PIBexo-ONs) as indicated by the 1H NMR spectrum in
Figure 2.
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Figure 1. 1H NMR spectra of the exo-olefin-ended (a) and allyl-terminated polyisobutylene (b).

Table 1. The effect of the reaction conditions on the tosylation of PIBexo-OH at room temperature.

Entry Solvent t (h) TsCl (eq.) Catalyst (eq.) TEA (eq.) -OH (%) -OTs (%)

1 DCM 24 1.25 4 (pyridine) 0 84 16

2 DCM 48 1.25 4 (pyridine) 0 84 16

3 DCM 72 1.25 4 (pyridine) 0 84 16

4 DCM 24 5 2 (DMAP) 10 25 75

5 DCM 7 10 2 (DMAP) 10 0 100

6 DCM 22 10 2 (DMAP) 10 0 100

7 DCM 24 10 2 (DMAP) 10 0 100

8 DCM 29 10 2 (DMAP) 10 0 100

9 DCM 48 10 2 (DMAP) 10 0 100

10 DCM 70 10 2 (DMAP) 10 0 100
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Table 2. The effect of the reaction conditions on the nosylation of PIBexo-OH at room temperature.

Entry Solvent t (h) NsCl (eq.) Catalyst (eq.) TEA (eq.) -OH (%) -ONs (%)

11 THF 7 10 2 (DMAP) 10 20 80

12 THF 22 10 2 (DMAP) 10 11 89

13 THF 29 10 2 (DMAP) 10 12 88

14 THF 70 10 2 (DMAP) 10 10 90
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Figure 3. 1H NMR spectra of PIBall-OH (a), PIBall-OTs (b), PIBall-ONs (c) and PIBall-Cl (d).

The results of the experiments on the sulfonylation of PIBexo-OH indicated that 10 eq. of the
alkyl sulfonyl chloride with the combination of 2 eq. DMAP and 10 eq. TEA results in complete
transformation of the hydroxyl group for tosylation and nearly complete conversion for nosylation.
Because the PIB-Exo has an extra methyl group connected to the chain terminus compared to the lack
of such substituent in the allyl endgroup of PIB-All, it was expected that the latter one has higher
reactivity than PIBexo-OH. However, using smaller excess of tosyl chloride, that is, only 2–5 eq., for the
tosylation of PIBall-OH resulted in only partial conversion even with longer reaction times as shown in
Table 3 (Entry 15–18), on the one hand. On the other hand, alkyl chloride chain end appeared at long
reaction times (72 h). Thus, experiments with tenfold excess of TsCl reagent were carried out by using
the same reaction conditions as for PIBexo-OH with reaction times from 4.5 h to 72 h (Entry 19–24 in
Table 3). These experiments led to interesting results. First, the transformation of the alcohol chain
end is much faster with PIBall-OH, i.e., the reactivity of PIBall-OH is higher than that of PIBexo-OH
with TsCl as expected. Second, not only tosyl endgroups but PIBs bearing a terminal primary chlorine
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group (PIBall-Cl) as side products were also observed as indicated by the signal at 3.50 ppm in the
1H NMR spectra which is assigned to the methylene group next to the chlorine termini (Figure 3).
Furthermore, the amount of PIBall-Cl is increasing, while the amount of tosylated PIB is decreasing with
the reaction time as shown in Table 3 (Entry 19–24) and in Figure 4. Therefore, the occurrence of the
following processes can be considered to take place according to results with low MW compounds [39]
under the applied conditions as depicted in Scheme 2: (1) the initial reaction of the alkyl sulfonyl
chloride with the alcohol yields the main tosylated product, (2) meanwhile the HCl byproduct forms
triethylammonium hydrochloride (TEA*HCl) with TEA, in which the chloride ion has a sufficient
nucleophilicity to displace the alkyl sulfonyl group. As a consequence, as can be seen in Scheme 2,
the first substitution step, i.e., tosylation, is followed by substituting the tosyl group, which is a good
leaving group, with chlorine.

Table 3. The effect of the reaction conditions on the tosylation of PIBall-OH at room temperature.

Entry Solvent t (h) TsCl (eq.) Catalyst (eq.) TEA (eq.) –OH (%) –OTs (%) –Cl (%)

15 DCM 24 2 2 (DMAP) 10 83 17 0

16 DCM 72 3 2 (DMAP) 10 18 61 21

17 DCM 24 5 2 (DMAP) 10 33 67 0

18 DCM 72 5 2 (DMAP) 10 51 29 20

19 DCM 4.5 10 2 (DMAP) 10 0 93 7

20 DCM 22 10 2 (DMAP) 10 0 74 26

21 DCM 28 10 2 (DMAP) 10 0 69 31

22 DCM 46.5 10 2 (DMAP) 10 0 57 43

23 DCM 48 10 2 (DMAP) 10 0 56 44

24 DCM 72 10 2 (DMAP) 10 0 46 54

25 DCM 19 10 2 (DMAP) 2 47 48 5

26 DCM 20 10 2 (DMAP) 5 0 89 11

27 DCM 50 10 2 (DMAP) 5 0 81 19

28 DCM 20 10 3 (DMAP) 3 0 84 16

29 DCM 50 10 3 (DMAP) 3 0 79 21

30 DCM 19 10 2 (1-MI) 2 40 58 2

31 DCM 20 10 2 (1-MI) 5 0 97 3

32 DCM 50 10 2 (1-MI) 5 0 94 6

33 DCM 20 10 3 (1-MI) 3 0 97 3

34 DCM 50 10 3 (1-MI) 3 0 92 8
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tosylation of PIBall-OH (Entry 19–24 in Table 3; the lines are drawn only for directing the eye).
Experiments with lower than 10 eq. TEA were also carried out. It was found that although

2 eq. TEA results in 5% chloride endgroup (Entry 25), which is much smaller than that obtained
with 10 eq. (Entry 20 in Table 3) at similar reaction time. However, only 53% of the hydroxyl group
is consumed in this reaction (Entry 25 in Table 3). Increasing the amount of TEA to 3 eq. and 5 eq.
leads to complete conversion of the hydroxyl groups and nearly 90% tosylate functionality is observed
with 5 eq. of TEA in 20 h reaction time. Summarizing the results of tosylation of PIBall-OH with TsCl
obtained with DMAP catalyst in the presence of TEA in the range of 5–10 eq. it can be claimed that
with 10 eq. TsCl PIB-tosylates with around 90% tosyl functionalities and ~10% of PIBall-Cl can be
prepared. As reported in the literature [40], not only DMAP but 1-methylimidazole (1-MI) is also an
efficient catalyst of acylation of alcohols. Therefore, attempts were made by us to investigate the effect
of 1-MI on the tosylation reaction of PIBall-OH by still keeping the amount of TEA at relatively low
levels as shown in Table 3. As indicated by the results of Entry 30–34, 2 eq. TEA is insufficient to reach
high tosylation yields, but with 3 eq. and 5 eq. of TEA, the consumption of the hydroxyl groups is
complete, the undesired side reaction of chlorination is suppressed to 3–8%, and thus PIBall-tosylates
with 92–97% tosylate endfunctionalities are obtained as confirmed by the 1H NMR spectrum in Figure 3.
These optimal reaction conditions by using 1-MI as catalyst of tosylation of PIBall-OH provide an
efficient tool to prepare tosylate-ended PIBs with high, nearly quantitative endfunctionalities. Due to
the fact that the PIB-All prepolymer with narrow MWD is synthesized by quasiliving carbocationic
polymerization of isobutylene, well-defined PIBall-OTs also with narrow MWD can be obtained by this
process. Thus, the resulting PIBall-OTs can be utilized in various further derivatization reactions and
as a starting material for macromolecular assemblies of complex architectures.

The effect of the reaction conditions on the nosylation of PIBall-OH was also investigated. As shown
in Table 4, the consumption of the terminal hydroxyl groups is complete in the presence of 10 eq.
NsCl, 2 eq. DMAP and 10 eq. TEA after 4 h reaction time (Entry 35–39). However, with this and
longer reaction times from 14% to 30% chlorine endgroups are also present in the resulting polymers.
Decreasing the amount of TEA to 2 eq. gives only 14% nosylation conversion in 19 h. Using reduced
amounts of TEA of 3 eq. and 5 eq. results in complete hydroxyl consumption, and in the case of 5 eq.
TEA 91% and 93% nosyl endfunctionalities are observed (Entry 45 and 46 in Table 4). With 1-MI as
catalyst, PIBall-ONs with 89–94% nosyl endfunctionalities are formed as the 1H NMR spectra and
the data in Table 4 indicate (Figure 3). In these cases, negligible amounts of 2–5% PIBall-ONs with
unreacted hydroxyl termini can also be observed, and the chlorine endfunctionalities fall in the region
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of 4–8%. These results show that PIBall-ONs with higher than 90% nosyl functionalities can be obtained
with either DMAP or 1-MI catalyst by using 5 eq. of TEA and proper reaction times. Based on the
reactivity of the nosyl group, these novel nosyl-ended PIBs, unpublished so far in the open literature
according to the best of our knowledge, are expected to open new ways for the preparation of various
PIB-based polymer architectures.

Table 4. The effect of the reaction conditions on the nosylation of PIBall-OH at room temperature.

9 Solvent t (h) NsCl (eq.) Catalyst (eq.) TEA (eq.) -OH (%) -ONs (%) -Cl (%)

35 THF 1 10 2 (DMAP) 10 8 89 3

36 THF 2 10 2 (DMAP) 10 3 93 4

37 THF 3 10 2 (DMAP) 10 2 94 4

38 THF 4 10 2 (DMAP) 10 2 92 6

39 THF 4.5 10 2 (DMAP) 10 0 86 14

40 THF 22 10 2 (DMAP) 10 0 82 18

41 THF 28 10 2 (DMAP) 10 0 82 18

42 THF 46.5 10 2 (DMAP) 10 0 81 19

43 THF 72 10 2 (DMAP) 10 0 71 29

44 THF 19 10 2 (DMAP) 2 86 9 5

45 THF 20 10 2 (DMAP) 5 1 92 7

46 THF 50 10 2 (DMAP) 5 0 91 9

47 THF 20 10 3 (DMAP) 3 0 81 19

48 THF 50 10 3 (DMAP) 3 0 72 28

49 THF 19 10 2 (1-MI) 2 49 38 13

50 THF 20 10 2 (1-MI) 5 2 94 4

51 THF 50 10 2 (1-MI) 5 2 90 8

52 THF 20 10 3 (1-MI) 3 5 91 4

53 THF 50 10 3 (1-MI) 3 5 89 6

4. Conclusions

Tosylation and nosylation of hydroxyl-ended polyisobutylenes (PIB-OHs) derived from
a commercially available exo-olefin-terminated polymer (PIBexo-OH) and from allyl-ended
macromolecules (PIBall-OH), prepared by quasiliving carbocationic polymerization of isobutylene,
were systematically investigated. A thorough exploration was conducted to reveal the influence of
the ratios of the reagents, such as 4-dimethylaminopyridine (DMAP), pyridine, 1-methylimidazole
(1-MI), and trimethylamine (TEA), and reaction time on the conversion of the hydroxyl termini in these
PIB-OHs. A significant difference in the reactivity between the two hydroxyl-terminated polymers
was found, i.e., the PIBall-OH reacts faster with the sulfonyl chlorides than the PIBexo-OH, presumably
because of steric reasons. While quantitative tosylation was achieved with PIBexo-OH, nosylation
led to PIBexo-ONs with functionality of ~90%. Unexpectedly, it was found that the tosyl endgroup
reacts further with the chloride ion formed during tosylation, and chlorine-ended PIB (PIBall-Cl) is
formed. The conversion of the hydroxyl group and the relative amount of the sulfonyl and chlorine
termini strongly depend on TEA and reaction times. Decreased amounts of TEA in the range of
3–5 eq. and optimal reaction times lead to PIBall-OTs and PIBall-ONs with higher than 90% sulfonyl
functionalities. The resulting tosyl- and nosyl-ended PIBs are capable of subsequent derivatizations,
and thus various novel endfunctional PIBs can be obtained via substitution reactions. This enables the
preparation of an array of PIB-containing new macromolecular architectures not existed before.
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