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Deep learning for small and big data in psychiatry
Georgia Koppe1,2, Andreas Meyer-Lindenberg2 and Daniel Durstewitz1

Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying
psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of ‘small’
experimental samples using conventional statistical approaches has largely failed to capture the heterogeneity underlying
psychiatric phenotypes. Modern algorithms and approaches from machine learning, particularly deep learning, provide new hope
to address these issues given their outstanding prediction performance in other disciplines. The strength of deep learning
algorithms is that they can implement very complicated, and in principle arbitrary predictor-response mappings efficiently. This
power comes at a cost, the need for large training (and test) samples to infer the (sometimes over millions of) model parameters.
This appears to be at odds with the as yet rather ‘small’ samples available in psychiatric human research to date (n < 10,000), and
the ambition of predicting treatment at the single subject level (n= 1). Here, we aim at giving a comprehensive overview on how
we can yet use such models for prediction in psychiatry. We review how machine learning approaches compare to more traditional
statistical hypothesis-driven approaches, how their complexity relates to the need of large sample sizes, and what we can do to
optimally use these powerful techniques in psychiatric neuroscience.
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INTRODUCTION
Current diagnostic and prognostic schemes in psychiatry need
improvement. While current diagnostic methods are optimized for
reliability, the underlying neurobiology is complex and variable
[1, 2], both because the etiology of psychiatric disorders is highly
diverse [3], and because the brain and behavior are per se highly
complex systems involving multiple levels of temporal and spatial
granularity and millions of nonlinear feedback loops. It has been
argued that a diverse array of biophysical and biochemical factors
may give rise to similar functionality at the level of the neuronal
dynamics underlying behavior and, vice versa, that the same
changes in neural dynamics may produce different behavioral
outputs depending on the context [4]. These observations may
partly explain why only a subgroup of patients respond to drug
or psychotherapeutic treatment approved for any given disorder
[5–7]. Personalized forms of therapy therefore require a different
characterization that supplements categorical conventional diag-
noses. This approach could be based on the analysis of large
patient cohorts that include sufficient heterogeneity covering a
wider range of personal disease histories, and on trans-diagnostic
and multi-level approaches to the identification of pathological
mechanisms underlying mental illness [8], that is, on the
integration of many different data modalities [9–11], from genetic
and molecular information (‘omics’) to brain and behavioral data.
On the other hand, individual subject-level information needs to
be integrated with such an account when designing personalized
therapies.
There have been high hopes recently that artificial intelligence

(AI) algorithms, in particular from the field of deep learning (DL),

can meet these challenges. DL algorithms excel in processing
highly complex data within which data features may interact at
multiple levels and in highly nonlinear ways. In consequence,
when combined with large amounts of data, they may have an
enormous potential for healthcare services (see [9] for review). For
instance, deep neural networks (DNNs) are remarkably successful
at tasks requiring object or scene recognition [12–14] and natural
language processing [15, 16]. DNNs have shown human to super-
human performance in challenging board games by inferring rules
mostly from ‘own experience’, playing the game against
themselves, rather than from expert knowledge [17]. This ability
to automatically learn relevant higher-level representations from
raw data, also referred to as automatic feature extraction, is one
central aspect which makes the application of DNNs in biomedical
areas attractive [9, 18, 19]. DNNs have for instance already been
successfully adopted to automatize skin and breast cancer
detection [20, 21]. In the sector of mental health, recent studies
have begun to harness the potential of DNNs and ‘big data’,
especially in domains which are particularly data-rich, such as
online social media platforms or smartphone and mobile sensor
based data (e.g., [22–26]). Attempts to collect big data in other
data domains, including for instance data on brain structure and
function, genetics, or behavior on cognitive tasks, have been
actively pushed by different consortia and funders (e.g., ENIGMA,
ABIDE, ADNI, ADHD-200, OASIS, ABCD).
Building big multi-modal data bases is certainly an important

step in identifying coherent patient subgroups in an unsupervised
manner, gaining a better mechanistic understanding by acknowl-
edging interactions and connections between different levels of
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analysis, and for personalizing treatments. But how much data do
we need, when is ‘big’ big enough? Scientific data sets are often
relatively small, carefully harvested in thoughtfully designed
experiments, even when many of them are combined into
common data bases. Even methods that generate a high volume
of data, such as transcriptomics or neuroimaging, are often
applied to a limited number of human subjects. Can DNNs
efficiently be used on such comparatively small data bases? And
how is the apparent conflict resolved between the need to
process huge data sets on the one hand side, yet to construct
subject-level models taking very individual information into
account on the other hand? The present article attempts to
address some of these questions, from a statistical and machine
learning (ML) perspective, and discusses some of the factors that
play a role both on the data side, as well as on the side of the
models used for analysis.

MODELS IN STATISTICS AND ML
As discussed in the previous section, psychiatric research needs to
address a variety of related challenges, including the identification
of biomarkers for robust diagnostics, the identification of
subgroups with shared disease characteristics (biological and
psychological features) and common therapeutic response
profiles, and personalization of treatments through subject-level
predictions of potential outcomes and disease trajectories. These
efforts are underpinned by the search for a deeper understanding
of the neurobiological mechanisms underlying aberrant cognitive
and emotional function across disorders, and the design of
effective medication and intervention strategies based upon these
insights (e.g., [10, 27]). From a statistical point of view, the former
set of challenges may be formulated in terms of regression or
classification problems, or in terms of unsupervised detection of
structure (clustering) [28], while the latter, deeper scientific,
questions may be supported by combining statistical and ML
techniques with computational modeling [29, 30].
For a classification problem, for instance, we may want to

predict treatment responses or symptom severity from brain
activation during a cognitive task, or to distinguish between
individuals diagnosed with different psychiatric disorders based
on structural features of the brain (e.g., [31]). In both of these cases
we can express our problem in terms of a relationship between an
output variable y (e.g., clinical diagnosis), or a set of output
variables y (e.g., severity of different symptoms), and a set of input
variables or features x (e.g., functional activation in different brain
areas). In principle, these input variables or features may come
from different modalities (e.g., measures of structural connectivity
vs. functional activation vs. polygenetic risk scores). If the outputs
y are categorical class labels, e.g., clinical diagnoses, we call this a
classification problem, while a regression problem refers to the
situation where outcomes y are continuously (real-) valued, or at
least bear ordinal relationships (like the natural numbers) as, e.g.,
ratings on scales of symptom severity. Both regression and
classification problems are examples of supervised settings, for
which not just the input data x but also the outputs y are known
for a so-called training set.
In contrast, if, for instance, we question current diagnostic

schemes and would like to identify novel types of clinically
relevant groupings in feature space x unbiased by current
nosological knowledge, we call this an unsupervised setting, a
domain of ML and computational modeling.
In both types of settings we often formulate the problem in

terms of a mathematical model of the data, either in terms of a
functional relationship fθ between x and y in the supervised case,
where θ denotes parameters of this function (e.g., regression
weights), or just in terms of the data itself in the unsupervised
case. An (point) estimate of this function (denoted f̂ ), or more
specifically of its parameters (denoted θ̂), is obtained by changing

these parameters such that some form of loss function is
minimized (or some optimality criterion is maximized), a process
called model training or, in statistical terms, model estimation or
inference (in Bayesian inference, we would seek to determine the
full [posterior] distribution across parameters θ, not just a point
estimate). Such a loss function could be, for instance, the mean-
squared-error (MSE) in the Gaussian case, i.e., the average sum of
squared deviations between true and predicted outputs, or the
negative log-likelihood of the data, which quantifies how likely it is
to observe the current data given some estimate of the
parameters. In the unsupervised case, a loss function may, for
instance, be some type of measure that formalizes an idea of
structure in the data, e.g., specifying the between-group vs.
within-group distances for any possible assignment of data points
to groups.

Hypothesis testing vs. prediction
There is no principal difference between models in statistics and
ML, and both can be used, in principle, for either hypothesis
testing or prediction (see Fig. 1). This distinction between
hypothesis testing and prediction, however, is indeed important:
while traditionally statistics has been more concerned with
hypothesis testing, machine learners have been more interested
in prediction [32]. In classical statistical hypothesis testing, we
evaluate a probabilistic statement about the data, often for-
mulated in terms of parameters of the model (e.g., that certain
regression coefficients are equal to zero), and aim to obtain a
probability for how likely a certain state of affairs (related to the
null hypothesis) holds in the whole population of potential
observations (which may be finite or infinite) given the model
assumptions. This probabilistic inference is based on the observed
training data alone. In prediction, in contrast, we aim to forecast
future previously unobserved outcomes, e.g., the likely output
y(new) given a new observation x(new) (also called test data if used
to formally evaluate the prediction error (PE), see Section ‘Model
complexity, sample size, and generalization’).
Another, related issue here is whether the stated models are

probabilistic or deterministic: For hypothesis testing at some level
there are always random variables and probability distributions
involved, such that relationships between input and output
variables, for instance, are formulated in terms of moments of
probability distributions, e.g., μy :¼ E yjx½ � ¼ fθðxÞ, where fθ is the
function that maps variables x onto the conditional mean
(expectation value) μy of the distribution of y, and θ are its
parameters (e.g., regression coefficients). For prediction, the
function fθ does not necessarily have to express a probabilistic
relationship, i.e., we may just have y = fθ(x), expressing outcomes
y directly as some (deterministic) function of the features x.
However, in modern ML probabilistic models are getting more
and more popular (sometimes termed statistical ML), as they also
provide a sense of the uncertainty associated with predictions.
Although this enables formal hypothesis testing in principle as
well, these models and their associated probability distributions
are often tedious and difficult to handle.
Finally, while in statistics the functions or models fθ are usually

quite simple and/or allow for precise and unique analytical
solutions, meaning that we can obtain an exact and unique
solution to the optimization problem through ‘paper & pencil’
derivations, in ML the functional relationship fθ may be quite
complex, like a DNN. While the latter are potentially much more
powerful in detecting and utilizing complex, higher-order non-
linear feature combinations for prediction, they are unfortunately
also often much less interpretable than if fθ were a simple linear
function.

DNNs and the universal function approximation theorem (UAT)
DNNs likely constitute the most powerful class of ML models, at
least from a mathematical-computational perspective, and in their
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most basic and most commonly employed form are deterministic.
In visual terms, they can be understood as networks of artificial
neurons, units, or nodes arranged in a feed-forward chain of
layers, termed a feed-forward neural network (FNN; Fig. 2a), with
each node computing some nonlinear function f (the so-called
activation function) on the weighted sum of its inputs. Symbo-
lically, this corresponds to a function fθ that may be written as a
deep nesting of multiple nonlinear functions y ¼
f ðf f f ¼ f xð Þ¼ð Þð ÞÞ arranged in a chain.
In a first stage, an input layer receives the information about the

inputs or predictors x (e.g., regional gray volume, or connectivity
between areas [33–35]), which is then propagated forward via
‘synaptic’ connections with specific connection weights through
one or multiple hidden layers, up to an output layer which
represents the prediction ŷ of the true (but unknown) outcome y.
A neural network (NN) is often called ‘shallow’ if it contains just
one or two hidden layers, and ‘deep’ if there are more of them. A
DNN is trained by adjusting all its connection weights (the model’s
parameters θ) such that the error between predicted (ŷ) and true
(y) outcomes is minimized across a training set for which the true
y are known (for reviews see [12, 15, 36]), a process in which
successive hidden layers of the network tend to learn more and
more abstract representations of the data (e.g., edges and corners
on early layers for visual images and fully segmented object
representations on deeper layers, cf. [13, 37, 38]), much like the
ventral visual processing stream of the human brain [39]. There
are several different types of DNN architectures and models, such
as multi-layer perceptrons, convolutional neural networks (CNN),
or deep-belief networks, to some of which we will return below
(see [36]).
Often in neuroscience and psychiatry we deal with sequential or

time series data, where either sequences of inputs and outputs
may have to be mapped onto each other (as in language), or some
informative characteristics of the temporal structure are to be
extracted. Not only do measurements in psychiatric and
neuroscientific research often come as time series, e.g., in the
form of functional magnetic resonance imaging (fMRI), electro-
encephalography (EEG), or mobile sampling data, or as sequential
behavioral responses across trials of an experiment, but mental
illness is a temporally dynamic and evolving phenomenon per se
[4, 40], with quite heterogeneous temporal trajectories across

individuals [3]. Just like classical statistics extends the class of
regression models to the time series domain by also regressing
values y onto their own past, as in auto-regressive moving-
average (ARMA) models or ARMA models with exogenous inputs
(ARMAX), NNs can be extended to the time series domain by
incorporating previous function outputs, yt ¼ fθðyt�1; xtÞ. These
devices are called recurrent neural networks (RNN), since they do
not only include feed forward but also recurrent connections
between units, i.e., activity may propagate back and forward
among units. This means activity can reverberate in RNN just as in
the real brain, and they can produce sequences of outputs
completely on their own, like giving answers to questions as in
common virtual assistants. Mathematically, RNN constitute
discrete-time dynamical systems and they come with a whole
set of novel properties that pure feed-forward NNs lack (see, e.g.,
[4]). Some researchers refer with ‘depth’ in RNN more to their
temporal depth (in contrast to the ‘spatial depth’, i.e., the number
of layers), by which one means the temporal lags or the time
scales across which dependencies among observations and
temporal structure can be detected by the system [41]. Some in
this sense, deep RNN architectures have been purpose designed
to bridge long temporal delays, such as long short-term memory
(LSTM) [15] or gated recurrent unit (GRU)-based networks [42].
NNs with just one nonlinear hidden layer have a surprising

mathematical property that all simpler statistical models, like the
classes of general or generalized linear models, lack: In principle
they can represent or approximate arbitrarily closely any
continuously valued function y = f(x) between predictors and
outcomes, according to the much celebrated universal approx-
imation theorem (UAT) due to Cybenko [43], Hornik et al. [44], and
Funahashi [45] (and similar theorems exist for non-continuous
mappings, like binary outcomes; [46]). That is, whatever the true
underlying functional relation y = f(x) in the real data is, a NN with
just one hidden layer would be able to represent it (see Fig. 2a)!
This of course raises the question why including more than one
hidden layer, as in DNNs, is a sensible thing to do. It turns out that
shallow NNs with just one layer and deep NNs fundamentally
differ in how the number of units required to approximate a given
function grows with the required accuracy of the approximation:
While under some conditions the number of units required to
achieve a given level of accuracy may only grow algebraically in

Fig. 1 Statistical hypothesis testing vs. prediction in machine learning. The philosophy in classical statistical hypothesis testing (bottom
path) is to draw a random sample from a population and estimate parameters of a model, which is assumed to describe the population
sufficiently well (hence does not need to be selected among a larger class of models). Hypotheses about the population are then tested in
terms of the model parameters. For instance, one may test whether there is a linear relationship between a feature and an output by
formulating a null hypothesis on the slope parameter β1. In prediction, in contrast, which is what most machine learning methods aim for, we
should look for the model which is the best in predicting outcomes in new samples (purple dots). Hence, rather than settling on one model a
priori which is believed to describe the statistical properties of the true population, multiple models are trained in order to select the one
which minimizes the loss on an independent validation set (blue dots).

Deep learning for small and big data in psychiatry
G Koppe et al.

178

Neuropsychopharmacology (2021) 46:176 – 190



the number of layers, exponentially more units may be required
within a given layer to achieve that same level [47–50]. Besides
these computational reasons, it has been observed that DNNs are
capable of representation learning or automatic feature extraction,
i.e., can construct the most useful representations of data
themselves directly from the raw data across successive layers.
For instance, when trained on facial images, a DNN will learn to
represent simple features such as edges and nodes in early layers,
then eyes and noses in later layers, and finally entire faces [37].
Without prior knowledge the model identifies noses and eyes as
predictive features of faces.
We conclude by pointing out that similar theorems as for

function representation in feed-forward NNs exist for RNN as well:
RNN can approximate, in principle, arbitrarily closely any
dynamical system that may have generated the true time
series observed [45, 51, 52], and could represent any Turing
machine [53]. While these theorems ascertain that in principle any

feed-forward or time-dependent (dynamical) function could be
implemented in terms of NNs with as little as one hidden layer,
they make no statements about the difficulties involved in finding
that implementation, or how much data are required to achieve
an approximation of satisfying accuracy. Increasing the number of
units or layers, or more generally the complexity of the function fθ,
will enable to approximate more complicated functions to the
degree of accuracy desired, but it will generally also increase the
sample size needed for model estimation or training. This is
because model complexity and sample size are intimately related,
as we will discuss next.

MODEL COMPLEXITY, SAMPLE SIZE, AND GENERALIZATION
In healthcare, when we try to determine a diagnosis or prognosis,
or when we seek to identify novel biomarkers, we ultimately care
less about hypothesis testing but more about prediction. We

β

β

Fig. 2 Feed-forward neural networks (FNNs) and function approximation. a Schematic of a logistic regression model (top) and FNN model
(bottom) to predict an output (here symptom probability) from two types of features (e.g., brain function and structure). While the logistic
regression model directly maps the weighted inputs through a logistic (sigmoid) type function, the FNN first filters the weighted inputs in
successive stages by propagating them through multiple layers of units, with a nonlinear, e.g., sigmoid, activation function. While the logistic
regression model can only separate two features linearly, the recombination of inputs across multiple stages allows the FNN to implement
quite complex (in fact, arbitrarily complex) input output mappings (right panel). b In other words, the FNN has a much larger space of
functions it can implement and thus a higher model complexity, including logistic regression functions as special cases, and may therefore be
able to infer a function (denoted by f̂FNN) closer to the true function f. c FNNs can be constructed with different types of activation functions
such as ReLUs, sigmoids, or radial basis functions (RBFs; top panel). A strength of ReLUs is that their derivative is piecewise constant, whereas
sigmoids and RBFs may have strongly varying gradients and saturate at the extremes (bottom panel).

Deep learning for small and big data in psychiatry
G Koppe et al.

179

Neuropsychopharmacology (2021) 46:176 – 190



demand that a model trained on a set of training data also
performs well if we apply it to new observations not contained in
our previous training set, i.e., helps with the right diagnosis or
prognosis, or with determining the best form of therapy. In other
words, the goal is to select the model which will minimize the
error when predicting outcomes for unseen individuals based on
the learned relationship in the training data. As with the criteria
used for model training, the PE may be based on different types of
loss functions, for instance the MSE loss or a likelihood-based
criterion. There are at least three different types of prediction we
need to distinguish (see Fig. 3): The in-sample PE refers to the
situation where we keep one part of the data fixed, e.g. the
predictors, and aim to determine the expected deviation between
a new set of true and predicted outcomes for this given set of
predictor values (Fig. 3c). A more interesting quantity is the out-of-
sample PE, where we train the model on some data and then draw
a new sample to evaluate the PE (Fig. 3c; [28, 54]). In this process,
we often assume that the new sample has the same statistical
properties as the training sample, i.e., was drawn from the same
probability distribution. This may not be the case, however, with
important implications for clinical practice. Here we call this the
‘out-of-domain’ PE (Fig. 3d), which can only be determined
realistically if we have data from different domains, or if we have a
good mechanistic model of the processes underlying our sample.
When we ask ‘how big is big enough?’, we are really asking how

large a sample should be, and which properties it should have, in

order to be able to infer a model with acceptably low PE. Except
for the simplest types of statistical models, like linear Gaussian
models (GLM), we cannot simply compute the sample size
required to achieve a given PE, since the probability distributions
and expectation values involved in this computation are
analytically intractable. This is because in ML we are usually
dealing with (highly) nonlinear models and consequently more
complex probability distributions. Alternatively, one may think of
numerical sampling (Monte-Carlo) techniques to evaluate the
required expectations, but even these are often out of the
question since in machine and specifically DL we are commonly
dealing with such high-dimensional variable and parameter
spaces that sampling is not computationally feasible [55]. So
explicit determination of required sample sizes is not possible for
most problems of practical relevance, but what we can do is try to
obtain a PE estimate for a given model.

Bias-variance trade-off and model complexity
Why is the training error, which we can compute directly from the
sample at hand, not a good measure for the quality of our model?
For a given model with a given number of parameters it indeed is,
and so it is completely justifiable to determine model parameters
such that the training loss (e.g., the negative likelihood) is
minimized. However, it is not a good estimate of the loss we could
expect when applying our model to a new sample, and hence is
not suitable for selecting among different models with different
numbers of parameters. Reasonably complex models such as
polynomial basis expansions or multi-layer NNs can fit (i.e.,
approximate) any function, and hence any given set of training
data, to an arbitrary degree, making the training error in fact zero
for a sufficient number of parameters (see Fig. 4b, c). This is even
true for simple linear models if the number of predictor variables
and parameters are as large as or larger than the number of
observed outputs (simple example: if you have observed just one
predictor/ output pair fx; yg and consider the linear model y =
β0+ β1x, then you can find infinitely many solutions for
parameters fβ0; β1g that result in an exact fit with zero error;
however, only one of these will be the one that describes the true
relation between predictors and outputs in the population, as
illustrated in Fig. 4c). A regression model with the same number of
outcomes as predictors, or with a sufficiently large number of
parameters in a reasonably powerful model, can produce a curve
that goes through every single data point. At some point such a
model will capture the entire variability in the data including
noise, implying that it will ‘interpret’ pure noise as systematic and
meaningful fluctuation. This phenomenon is also known as
overfitting. Overfitting implies large variance in the predictions
as each time we draw a new sample, we will obtain a new model,
as illustrated in Fig. 4c.
In classical hypothesis testing, we assume that we have a

reasonably accurate model of the data to begin with, and perform
all probability calculations under this assumption (Fig. 1). In many
empirical situations, and particularly in psychiatric research, this
approach has not brought on the desired progress [27, 56].
Recently the focus has therefore shifted toward adopting ML
approaches to infer more complex models directly from data (see
e.g., [9, 27, 31, 56–58] for reviews). A complex model is capable of
learning a broader range of functional relationships between
features and outcomes (Fig. 2b), and is therefore more likely to fit
the training data well (see Fig. 4b). In statistical terms, the model
will exhibit low bias, by which we mean the systematic deviation
between the true data-generating function and the best possible
model estimate of the function, i.e., ðf ðxÞ � E½̂fθðxÞ�Þ2. For squared
error loss and identically and independently distributed (i.i.d.)
data, the expected test error can be precisely decomposed into
this bias, the above mentioned variance, and an irreducible noise
term [54]. One can roughly think of model complexity as a
measure of how versatile and flexible a model may align to the

Fig. 3 Different types of prediction errors. a Contours of two
Gaussian distributions associated with two fictional populations (red
and blue) showing a probabilistic relationship between a feature
and an outcome (e.g., brain volume reduction and age). The ellipses
mark points of equal probability density at standard deviations σ=
1, 2, 3, indicating the spread of the Gaussians. The red population
shows slightly less spread (potentially related to stricter inclusion
criteria or differences in the measurement device used for this
population). b Two random samples of n= 30 points drawn from
both distributions (indicated by corresponding colors). c 50% of the
red sample (depicted in B) is used to fit a linear model (thick skewed
red line). The remaining 50% of sample points (the test set), here
displayed as white circles, are used to evaluate the out-of-sample
error (red vertical lines). Another sample of outcomes is drawn at the
exact same feature values used for training (orange circles) and used
to evaluate the in-sample prediction error (orange vertical lines).
d The model (red line, same as in c) is now employed to predict the
outcome for the blue (more broad) sample (potentially collected at a
different site). The blue vertical lines mark the out-of-domain
prediction error. This error appears to be larger than both the other
errors (c) and indicates a systematic underestimation of the
outcome.
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data (sometimes referred to its capacity [36]; see Fig. 2b and
Fig. 4b). Ideally, we want to select a model as powerful and flexible
as possible, yet balancing bias and variance in an optimal manner.
This is where sample size considerations and ‘big data’ come in.
Larger data sets enable learning ever more intricate relationships
from the data, as they allow for more complex models with lower
bias while keeping the variance down (Fig. 4a). Sample size
effectively shifts the trade-off between bias and variance such that
more complex models could be inferred without compromising
the PE (see Fig. 4a).
While the bias-variance trade-off is a core concept in traditional

statistical learning theory and determines model selection, recent
empirical observations with DL models surprisingly suggest that
once models are strongly over-fit, beyond the point where a
perfect match to the training data is obtained, they may actually
lead to even better generalization [59–62]. That is, quite counter-
intuitively, after the test error first reaches a maximum within the
overfitting regime (Fig. 4a), it tends to decline again as model
complexity is further increased, leading to a ‘double descent’
curve [63]. In this regime all models almost perfectly fit, or
interpolate, the training data. However, importantly, this only
occurs if a so-called regularization term is included in the
optimization function, which leads to ‘smooth’ function fits by
implicitly biasing the training process toward simpler models
which exhibit a smaller norm [63]. However, the precise
mathematical mechanism underlying this phenomenon is still
not fully understood (e.g. [61, 64, 65]).
Model complexity moreover, is not that straightforward a

concept, and different definitions exist [54]. It is not merely related
to the nonlinearity of a model, or the number of its parameters
(except if we stay within a certain model class like GLMs). One can
easily give examples of two models with equal number of
parameters but with different expressiveness in the sense that one
can approximate a larger set of functions than the other. Often
statisticians talk about the effective number of parameters or
degrees of freedom to express the idea that the true degrees of
freedom may depend on the functional relationships and
constraints involved ([54], although this is in itself a tricky topic
[66]). One quite intuitive concept of model complexity proposed
in statistical learning theory, is the Vapnik–Chervonenkis dimen-
sion, which quantifies how many data points a model function can
neatly separate (or ‘shatter’; [67]).

Model selection
To select a specific model, or its number of parameters, among a
larger class of models, we need an estimate of the out-of-sample
PE. Attempts have been made to derive analytical formulae to
obtain such an estimate [68, 69], but mostly numerical methods
based directly on the data need to be used to produce a reliable
estimate. Here we will not review this topic in its entirety, but
rather focus on a few commonly used methods that illustrate how
sample size and model complexity come into play.
Analytical formulae for model selection usually estimate the PE

based on the training error adjusted or penalized by a term that
expresses the (average) optimism of the training error. The idea is
that the training error is an overly optimistic estimate of the
expected test error (as noted above), and so by approximating this
optimism and adding it to the training error we should obtain a
better PE estimate. In fact, the methods around usually only
provide an estimate of the in-sample PE (see above), i.e., the error
evaluated across new outcomes sampled at the same data points
used for training [54].
Popular analytical formulae are the Akaike information criterion

(AIC; [68]) and the Bayesian information criterion (BIC). Denoting by
LMLE the value of the data log-likelihood evaluated at the maximum
likelihood estimator θ̂MLE, the AIC is given by AIC=−2LMLE+ 2k,
from which we immediately see how the number of parameters k
penalizes model complexity. The sample size N affects the AIC
indirectly through the log-likelihood: For a constant number of
parameters k, the likelihood term will gain importance as N
increases (its numerical size will increase) such that the second,
penalizing term becomes less relevant. This example illustrates
quite directly how data fit (training log-likelihood) and model
complexity (number of parameters) are traded off against each
other. Unfortunately, these methods often provide only relatively
crude PE approximations (e.g., [70, 71]), and AIC and BIC have been
observed to overfit and underfit, respectively [72, 73].
Probably the most popular numerical method for estimating the

out-of-sample PE, and somewhat of the current ‘gold standard’, is
cross validation (CV). In CV one trains a model on a larger fraction
of the available data, say 90%, and then tests model performance
on the 10% left-out data that have not been used for model
training, thus obtaining an out-of-sample PE. In K-fold CV, this
process is repeated for each of the K= 10 × 10% data fragments in
turn [74], i.e., each 10% section is put aside once for testing while

Fig. 4 Model complexity and the bias-variance trade-off. a As model complexity is increased (x-axis), variance rises and bias declines, that is,
lower bias is traded for higher variance. We want to select the (optimal) model which balances these two quantities, achieving minimum
prediction error (y-axis, minimum of bias plus variance, black curve). Increasing sample size effectively shifts this minimum to the right (dotted
lines), enabling models of higher complexity. b Illustration of underfitting (top) and overfitting (bottom). Both panels depict the same samples
(gray dots) drawn with noise from the true function (gray). The low and high complexity linear regression models with polynomial basis
expansion of order 1 (top) and 20 (bottom) were fit (thick black lines). Panels depict the model deviation to the true function (blue lines)
illustrating model bias. c Overfitting in detail: Here we assume that the true relation between inputs and outputs is perfectly linear as depicted
by the black line (with 5 data points on that line illustrated). Assuming we have only observed one data point (black solid circle), we can
however fit infinitely many lines (some of them illustrated in color) equally well. In this simple example, increasing the sample size just by one
data point (and assuming there is no noise in the data) will allow us to pick out the correct model.
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training the model on the remaining 90%, in this way making full
use of all the data available for both training and testing across
ten iterations. The final PE estimate is then the average across all
ten runs. Other ratios of training to test set size are of course
possible. The extreme case where only a single data point is left
out for testing is called ‘leave-one-out’ CV. It turns out that CV is
itself subject to the bias-variance-tradeoff with the proportion of
left-out test data as a free parameter [28, 54, 75].
CV could be used to either select a model or assess the out-of-

sample PE [54, 76], but cannot be used for both simultaneously.
When we use K-fold CV to determine the model with lowest CV
error which we select for further use among, say, M tested models,
we need to be aware that its associated CV error will likely be an
overly optimistic PE estimate: Using the CV error both for model
selection and model assessment represents a kind of ‘double-
dipping’ which will lead to an estimated PE lower than the actual
one just by chance, as we had M different attempts to compute a
CV error [28, 54, 77–79]. To compute a true out-of-sample PE
estimate in this case, we should really split the data into three
segments, one for training (training set), one for model selection
(validation set), and put one aside purely for PE assessment (test
set). Alternatively, when data are scarce a nested CV scheme may
be applied in which model assessment and selection are carefully
separated by an outer (assessment) loop which separates the data
into training, validation, and test set, and an inner (selection) loop,
which shuffles only the training and validation set [79]. None-
theless, leaking data used for model selection into the model
assessment step is perhaps the most common mistake made in
the literature (see also [77]).
If we have too few data, we may not be able to afford a separate

test set or just a small test set. The larger the test set, of course, the
lower will be the uncertainty about the mean PE estimate, i.e., its
variance or standard error (see also [80]). In fact, too small test
(and training) samples may be one explanation why we observe a
counterintuitive negative correlation between model classification
accuracy and sample size across psychiatric studies [81–83]. Large
uncertainty in the PE estimate in combination with publication
bias may have resulted in the predominant reporting of high
accuracy estimates for small samples (apart from reasons related
to larger sample homogeneity within small sample size studies).
To summarize, as our sample increases in size, the variance

(standard error) of estimated model parameters will decrease. As a
consequence, we can afford more complex models which come
with lower bias. Where exactly this tradeoff is optimized, needs to
be determined for the specific data and class of models at hand by
formal procedures like CV. Other properties of the data, like the
amount of irreducible noise or the type of distribution the data
were drawn from, will also affect the required sample sizes. If the
distribution is very broad, multi-modal or with long heavy tails, we
may need larger samples.

Cross-site and out-of-domain prediction
When we obtain an out-of-sample PE estimate, we assume that
any new data we would like to use our model on comes with the
same statistical/ distributional properties. Essentially this means
that all sources of variability in the data need to be the same
across samples, that is, we need truly random samples from the
whole population to which we would like to generalize. Variability
in a feature (e.g., reduction in brain volume) may emerge from
multiple sources such as disease heterogeneity (e.g., reduction is
not present across all individuals), biological variability (e.g., brain
volume is itself quite variable and may even correlate with other
confounds such as age), or from measurement noise (e.g., the
assessment of brain volume is noisy). Differences in inclusion
criteria may constrain disease related or biological variability,
while different measurement devices (for example different MRI
machines in multi-site studies) may generate systematically
different errors across samples and can thereby result in violations

of common distributional assumptions (i.i.d., see also Fig. 3). This
in turn may lead to one of the biggest dangers involved in
building clinically relevant prediction models, as amply illustrated
in the recent literature [81–84]: If, for instance, models are trained
and tested on data from the same clinical site or group, or a
consortium which employs common procedures among its
members, the model may learn predictive but disease irrelevant
site-specific characteristics [82, 85]. Of course this reasoning also
applies to inferences drawn through hypothesis-driven
approaches and could explain heterogeneities across studies by
differences in distributional properties of the investigated
samples.

Particular challenges for time series and sequential data
Our goals in time series analysis may be twofold: On the one hand,
we may just want to extract temporal features from a time series,
like the power in different frequency bands or the functional
connectivity, which we would then like to use as predictors in a
classification or regression model. In that case, assuming we have
time series from N independent subjects, we could simply proceed
as outlined earlier, since the model ultimately used for prediction
is not itself a time series model, but a feed-forward model that
simply uses features extracted from N independent time series as
inputs. Often, however, our goal is to forecast a time series, for
instance, we may want to predict stock market shares, or a future
patient trajectory from medical records with sequential entries
across time [86], or from mobile data like various sensors and
ecological momentary assessments [87]. In these cases, we have
to consider that time series and sequential data come with their
own specific problems since consecutive measurements across
time are usually highly dependent, violating the assumption of i.i.
d. data that underlies most of statistical testing. Due to these auto-
correlations (and potentially non-stationarity) in the data, it is not
as straightforward to split the data into K folds and perform CV
[88]. For instance, we cannot just randomly leave out some
fraction of data points, since this would destroy the temporal
contingencies on which time series models rest (they are built to
detect the temporal structure and use it for forecasting). Even if
we leave out temporally contingent time series segments, the
question arises how to train the model across the resulting
temporal gap. Finally, any left-out segment will be highly
correlated with other segments, at least with the directly
preceding one, implying that it will not constitute an independent
test set as is the basis for determining the PE by CV. If time series
from N different subjects (or reasonably independent trials) are
available, we could instead run the same strategy as above and
train models on, say, 90% of the subjects, fix the parameters, and
test their prediction performance on the 10% left-out subjects.
This comes with additional issues that we will only briefly touch
upon here: First, time series data in biology and psychology are
generated by some larger underlying dynamical system, which we
only partially observe [4, 89, 90]. When we apply our trained time
series model to new observations, our estimate of the initial
condition (which we need to run the time series model) may
therefore be highly ambiguous, often implying a prohibitively
large variance in the predictions. Second, especially for time series
generated by dynamical systems it is in fact an open question,
which metric would be most suitable for assessing prediction
performance: In a chaotic dynamical system, for instance,
temporal trajectories quickly diverge even when we have
captured the true underlying system with our model, rendering
conventional MSE or likelihood-based measures directly evaluated
on the time series unsuitable [4, 89–91].

Model training, computational efficiency, and searching complex
optimization landscapes
Another point to consider is computational and numerical issues
involved in inferring statistical and ML models from data. Unlike
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simple statistical models for which analytical or straightforward
and fast numerical procedures with unique solutions often exist,
the optimization landscapes for many ML algorithms, DNNs in
particular, may be highly complex, high dimensional, and rugged,
such that optimization becomes a serious challenge. Potentially,
even if we knew that model A would in principle be the one that
optimizes the bias-variance-tradeoff for a given data set (Fig. 4a),
the specific point in its multivariate loss function that optimizes
this tradeoff may be extremely difficult to find in practice,
requiring a lot of computational resources. In general, more
complex models take (much) longer training times, and while on
the one hand side, big data may be required to sufficiently specify
some complex model, on the other hand, they come with a
particular computational burden especially for complex models.
Hence, one needs to be aware that the applicability of more
complicated models like DNNs is not merely limited by the sample
sizes required to meet the bias-variance-challenge, but also by the
additional issues involved in finding a near-optimal solution
(which is usually not that unique in DNNs, see [92]), and the
computational costs that come with it.
In sum, regression and classification problems in psychiatry will

likely require learning complex mappings between features and
outcomes, to integrate across data from multiple domains, and to
combine both temporal and spatial information. However, sample
size may curtail inferring models of the required complexity by
virtue of the bias-variance tradeoff and computational issues
involved in both finding minima of loss functions for complex
models and in computing hardware and temporal resources.

DL FROM BIG AND SMALL DATA IN PSYCHIATRY
While DNNs are capable of revealing complex but highly
predictive feature combinations, they commonly have a large
number of parameters, somewhere between hundreds into the
many millions. From the discussion in the previous section one
may deduce that for such models a huge amount of data is
needed to battle the bias-variance trade-off. For instance, in image
processing tasks where DNNs with eight hidden layers and over 60
million parameters (and more units) are commonly employed,
over 15 million labeled images are used for training [14]. These are
sample sizes which are just not available in psychiatry, in particular
when expensive and laborious techniques, such as neuroimaging
during cognitive tasks, are involved. However, this does not mean
that we cannot employ DNN-based methods in psychiatry. A DNN
framework for data analysis consists of (1) the model architecture,
(2) a loss function, (3) a training algorithm, and (4) the data itself
on which the DNN is to be trained. We can in fact tune all four of
these components to make DNN approaches applicable to small
or medium sized data sets, as will be briefly reviewed next.

Network architecture
The specific network architecture determines which class of
functions can be computationally efficiently approximated [36].
Choosing a suitable model architecture, by easing the training
process, may therefore help to reduce the demands on sample
size. In a sense, we are making use of prior domain knowledge to
offset potential limitations of the data, a similar strategy as in
Bayesian approaches to model inference.
CNNs are an example of networks deliberately designed for

processing image information in computer vision [36]. Inspired by
the primate visual system [12], CNNs are set up to exploit spatial
invariances in an image for extracting feature maps, using units
with spatial ‘receptive fields’ (i.e., localized spatial filters). Each
feature map is learnt by combining information across multiple
receptive fields, using the same set of shared connection ‘weights’.
This weight-sharing principle, exploiting the insight that images
could be decomposed into features reoccurring at multiple spatial
positions, substantially reduces the number of to-be-trained

parameters. CNNs are probably the most popular class of DNN
models in medicine when developing classifiers on the basis of
imaging data (see [9, 10] for reviews). In psychiatry and neurology
they have been used, for instance, to classify disorders based on
anatomical brain images obtained through MRI (e.g., [93]),
functional brain images or measures derived from it like functional
connectivity (e.g., [94–96]), or for combining structural and
functional neuroimaging data (e.g., [97–99]).
Similar to what CNNs are for the visual domain, in the temporal

domain LSTMs are specifically ‘engineered’ systems that enable to
extract long-term dependencies in the time series through special
‘memory cells’ and multiplicative gates, which control the
information flow into and out of these memory cells [15]. In
psychiatry, LSTMs have for instance been used to forecast
depressive and manic states in bipolar patients based on mobile
data [26], to detect mental disorders from speech [101–103], to
discriminate between psychiatric patients and healthy controls
[104, 105] (see [106] for GRU based approach), or to process text
passages from social media platforms to identify subjects at high
risk for drinking alcohol [22].
Another central property of the NN design is the specific form of

the units’ activation function (Fig. 2c top). For instance, for many if
not most problems rectified-linear unit (ReLU) activation functions
represent a particularly efficient choice because they facilitate the
training process for specific mathematical reasons (see below,
sect. on training algorithms). Luckily, the UAT holds for ReLU
functions as well [107]. In fact, the choice of activation function,
ReLUs in particular, may be more important than any other
network design feature [36, 108].

Choice of loss function and regularization techniques
The choice of loss function is primarily determined by the scale
level of the data (e.g., continuous, ordinal, or categorical data), and
by whether we are working within a statistical framework or in a
more deterministic ML framework. In ‘conventional’ deterministic
ML we often simply go with the MSE criterion, which may be
interpreted as a Gaussian log-likelihood under the assumption of a
constant identity covariance matrix (thus yielding no insight into
true uncertainty). In a statistical framework, we usually desire to
model distributions across data which comes with measures of
uncertainty, and hence use likelihood-based criteria or Bayesian
approaches for model training. Bayesian criteria come with special
benefits that affect required sample sizes, but they also make
model training more tedious such that most NN optimization is
based on likelihood-based approaches (in ML often phrased in
terms of the negative log-likelihood, also referred to as cross-
entropy for categorical data). However, a statistical approach often
entails that we have to treat the network’s hidden activation states
as random variables as well, so-called latent variables [109], which
implies that we often can only use approximations to the log-
likelihood such as the so-called evidence lower bound
[55, 110, 111]. While statistical approaches and criteria often take
(much) longer for model training, they provide full probability
distributions across the data and, in fact, may capture important
relations within the data much better [36].
Besides the general consideration of whether we would like to

work in a statistical or a deterministic ML framework, the loss
function may be modified in particular ways to encourage the
training algorithm to find solutions, which reduce the effective
number of parameters or model complexity in a specific way. This
is called regularization, and more generally has been defined as
‘any modification we make to a learning algorithm that is
intended to reduce its generalization error but not its training
error’ [36]. The most popular techniques are L1 and L2
regularization, the latter also known as ‘weight decay’, ridge or
Tikhonov regularization. L1 regularization adds the sum of
absolute parameter values, λ

PP
j¼1 θj

�
�

�
�, to the loss function, while

L2 regularization adds the squared parameter values, λ
PP

j¼1θ
2
j ,
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where the weight λ > 0 controls the relative importance of the
regularization (or penalty) term in the loss function, e.g. Loss ¼
� log p Xjθð Þ þ λ

PP
j¼1 θj

�
�

�
� for an L1 penalty added to the negative

log-likelihood. L1 and L2 regularizations are also often used even
for simple linear regression models, where the former is known as
the ‘least absolute shrinkage and selection operator’ [112], and the
combination of L1 and L2 regularizatiosn has been termed ‘elastic
net’ [113]. For high values of λ, model parameters will be forced
toward 0, where the L1 penalty will make some of them exactly 0
eventually (hence they drop out from the model), while L2
regularization on the other hand tends to shrink parameters
associated with features which show low covariation with the
outcomes (see e.g., [33, 114] for examples in psychiatry).
L1 and L2 regularizations are common in all types of statistical

and ML models, including FNNs and RNN. For DNNs, however, also
more specific techniques have been developed to prevent
overfitting and encourage sparser and less complex solutions.
One particularly effective method is parameter dropout. Here, a
fraction of units is temporarily removed at random from the
network (e.g., by multiplying their output with 0 and effectively
dropping them from the loss function) such that only a ‘thinned’
network is trained at any one time [115]. For testing, all units are
then reinstated with their outputs weighted by the probability
with which these units were present during training. Dropout
seems to drive units to learn more robust representations [115], is
computationally inexpensive, and works for both FNNs and RNN
[36]. Additional more purpose tailored regularization solutions
have been proposed to solve the long-term dependency problem
in ‘vanilla’ RNN, e.g., by directly modifying the loss function (e.g.,
[89]) or indirectly via specific parameterizations of the weight
matrices (e.g., [117–118]). Importantly, many of these approaches
achieve performance comparable or superior to that of LSTMs
with often far less parameters, and are on top more easily
interpretable, for instance in terms of the underlying dynamical
system and its properties. An intuitive understanding of how
networks represent information, e.g., how RNN store memory and
implement dynamical systems, can sometimes guide such task-
tailored regularization schemes. For instance, by regularizing only
a fraction of RNN parameters toward line attractor configurations,
we can force a network to store both short and long-range
dependencies [89]. Recovering features encoded at both fast and
slow temporal frequencies is imperative to identify signatures of
aberrant brain function, as different frequencies carry different
information (e.g., α or γ-waves in EEG [119]). Likewise, mental
health related features inferable from mobile devices and sensors
can be found at both fast and slow frequencies (e.g., typing
dynamics [24] vs. sleep-wake cycles [120]). Regularization
approaches gain importance as sample size decreases and can
remarkably improve generalization, as seen for instance in terms
of improved dynamical system reconstruction [89].

Training algorithm
We have already identified the training (optimization or inference)
algorithm as another potential bottleneck that could also affect
the required sample size. There are several steps that we can take
to improve finding an acceptable local minimum or solution. First,
any training algorithm begins with an initial draw of parameter
estimates, also referred to as initialization. Naively, one may think
of randomly sampling initial parameter estimates which repre-
sentatively cover the entire (high dimensional) parameter space,
but in most cases this is computationally highly demanding and
infeasible. A great deal of research has therefore focused entirely
on developing efficient initialization procedures in DNNs [36].
Hinton et al. [121] introduced a clever training technique in which
layers are pre-trained one after another such that network
parameters are already sensibly initialized before the full training
of the whole network (see Fig. 5). While this sounds like a rather
minor modification, this insight contributed strongly to the
groundbreaking success of DNN algorithms. Another larger body
of research focuses on so-called annealing approaches [122, 123].
Here, the loss function is gradually modified throughout training
such that the training algorithm is first guided into regions of
parameter space where generally higher likelihood (lower loss)
solutions are to be found, which are then iteratively refined. For
example, in so-called Boltzmann machines, a specific type of
generative NN model, the ‘energy landscape’ is made initially very
flat to encourage the system to escape from local minima, and
then gradually steepened, called simulated annealing [123].
As another example, for fully probabilistic models, meaning

models which treat both the observations and latent (hidden)
variables as random variables, the variational annealing approach
proposes to gradually increase the ratio between observation and
latent variable noise in the loss function, that is, to decrease the
relative noise in the hidden variables across training iterations
[124, 125]. The idea is that initiating the latent variable mappings
with very high noise (i.e., low precision), essentially makes the
optimization criterion (in the limit) a quadratic and convex
function of the observations, and thus easy to solve. As the ratio
is slowly increased, putting a stronger emphasis on the latent
variable model fit, more and more hidden configurations
inconsistent with the data slowly ‘freeze’ out. Rather than
steepening the overall ‘energy landscape’ as in simulated
annealing (i.e. cooling the overall temperature, or variance), this
approach gradually decreases the relative temperature of the
hidden variable loss.
In addition, the specific procedure by which parameters are

updated can have an important impact (cf. section 'Model
complexity, sample size, and generalization'). Perhaps the most
defining aspects of a training procedure are (1) how it scales with
data size and parameters, (2) which information in the data it
exploits, (3) which steps it takes to escape local minima, and (4)

Fig. 5 DNNs for individualized (treatment) predictions. In order to employ more complex FNN or RNN models for person-tailored
predictions, we can pre-train a NN on multiple individuals. We first reduce the input dimensions, e.g., with an autoencoder (step 1), and then
pre-train a DNN on the reduced inputs for a large sample (step 2). The pre-trained network may then be fine-tuned on the specific individual
in a third step (right panel). Future data points could then be used to forecast symptom onset, treatment response, or other mental health-
related variables.
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how it deals with regions of differing slope in the loss function.
Perhaps the most popular training scheme for DNNs is stochastic
gradient descent (SGD) [126]. The idea behind gradient descent in
general is that in order to move toward a local minimum of a
function, we simply need to follow steps proportional to the
negative gradient of that function. SGD makes use of this
principle, but rather than computing the gradient across the
entire data set, it computes the gradient from a small subset of
(randomly drawn) samples, or mini-batches, thus injecting some
noise into the training process that may help to avoid local
minima. Particularly for large amounts of data, SGD is computa-
tionally efficient and comparatively fast. As noted above, SGD
training further profits from certain choices of a neuron’s
activation function, like the ReLU: ReLUs have a (piecewise)
constant gradient everywhere which eases issues with widely
differing slopes in a model’s loss function during gradient-descent
training, while sigmoidal activation functions do not only have
gradients varying quite strongly across their range of inputs
(Fig. 2c bottom), but in particular tend to saturate for very small or
very large inputs, making gradient-based training more difficult
[36].
Widely varying gradients may, however, also be compensated

by taking higher-order information (that is, e.g., 2nd-order
derivatives) into account: Through this, approaches such as
expectation–maximization or Gauss–Newton methods [28, 109],
although computationally (much) more challenging, may be more
efficient in finding minima and may thus benefit function
approximation based on smaller samples. Another strategy to
deal with varying slopes is to adapt the learning rate, a factor with
which the gradient is scaled during each step of SGD, locally or
across training iterations. Various such algorithms with step-size
regulation have been proposed (e.g., Adam or AdaGrad, see also
[127]).
Lastly, we point out that modern DNN research has come up

with some general procedures to promote model generalizability
independent of inference frameworks, which are now part of
many standard protocols. These approaches include early stop-
ping or adversarial training procedures (see [36] for more
examples). In early stopping, training is stopped when the
validation (rather than the training) set error ceases to decrease
for some time. The validation error is evaluated every couple of
steps and a copy of the associated latest parameter settings are
stored such that it can be returned to as training continues [36].
Adversarial training, on the other hand, directly attempts to find
weak spots in a model by searching for slight input perturbations
which will cause large deviations in the output, and thus could
‘fool’ the model [128, 129]. Szegedy et al. [129] show how such
slight (undetectable to humans) distortions of, for example, a dog
image can make a NN falsely predict an ostrich. Deliberately
searching for and training networks against such flaws renders
them more robust to small perturbations around the neighbor-
hood of the training data.
There are also various steps we can take with the data itself to

ease the burden on the model side and encourage solutions that
better generalize to new observations [36]. One idea is to reduce
the dimensionality of the data or pre-process it in some way such
that fewer model parameters are needed and the burden on the
model training framework to discover most useful representations
of the data by itself is reduced. Based on our own domain
knowledge, we may preselect features, which we deem to be
highly informative. For instance, using the average regional gray
matter volume from sMRI images as features will spare the NN the
work of identifying and representing distinct segregated regions
based on individual voxel values. Most psychiatric studies hand-
select features beforehand, for instance, by computing functional
connectivity values from the BOLD time series, saving the NN the
work of learning which temporal representations are relevant [33],
or summarizing crucial genetic information in terms of polygenic

risk scores and therefore bypassing the need to locate or detect
significant genetic variations or polymorphisms based on the
entire genome [130]. In fact, any data processing step may be
seen as a kind of feature selection, including preprocessing,
rescaling, or selection of regions of interest, since each of these
steps involves certain decisions about what is important about
the data.
However, the downside of such preprocessing and feature

selection based on domain knowledge could be that we overlook
important and highly predictive aspects of the data, integrate
them away or average them out in some way. In some sense this
contradicts the spirit of DL which is supposed to find useful data
representations and features on its own [12]. It may therefore be
more fruitful to provide the entire voxel level data to DNNs (e.g.,
[114, 131]).
An alternative and perhaps less biased approach to manual

feature engineering could be to ‘automatize’ the process. This may
include anything from popular linear dimensionality reduction
techniques like principal component analysis, metric or nonmetric
multidimensional scaling [28, 109], or simple latent variable
models like factor analysis, to nonlinear dimensionality reduction
techniques like locally linear embedding [132] and Isomap [133],
or more recent methods like ‘t-distributed Stochastic Neighbor
Embedding’ (t-SNE) [134] or autoencoders [135, 136]. Autoenco-
ders (AE), for instance, are NNs which project higher-dimensional
input data to a lower-dimensional latent space (encoder part),
where this lower-dimensional data representation is optimized
such that the original input is reconstructed from it with least loss
at the output layer (decoder part; Fig. 5, left panel). Hence this
whole design can be thought of as a highly nonlinear
dimensionality reduction technique that aims to produce a latent
representation of most informative nonlinear feature combina-
tions [135, 136]. Gupta et al. [137] were among the first to use an
AE combined with a CNN for classification of a neurological
disorder. The AE effectively extracted low-level image features
later successfully used to assess Alzheimer’s Disease. Pinaya et al.
[138] moreover trained an AE to extract features from brain
volume data on a large sample of healthy individuals (n > 1000).
Interestingly, this trained (unsupervised) AE could predict brain
volume alterations in patients suffering from schizophrenia or
autism (n < 100) as compared to control, suggesting that the AE
did indeed extract mental-health related features. The approach
demonstrates a clever way of making use of (relatively) large
already available and openly accessible data sets from healthy
individuals for disease classification, or potentially even to gain
insight into pathological mechanisms in smaller samples.
Rather than reducing the input dimension, we could also

artificially increase the sample size and variation within the
sample, an approach termed data augmentation. For image data,
this includes rotations, translations, rescaling, flipping, shearing, or
stretching of the original images, or simply adding noise (see also
[140–141] for speech recognition examples). The idea behind
these operations is that they will assist the network in learning
invariant, more general representations, robust under certain
transformations and conditions where data are only partially
observable or noisy. For recognizing a smile on a face, for instance,
it should not matter whether the image is blurry, or the face is
presented upside down (see [143–144] for examples in neuroima-
ging and psychiatry).
Another data augmentation strategy involves generative

models, that is, models which contain probabilistic latent variables
and by virtue of that can—if properly trained—generate data with
the same distributional properties as the original data. One such
framework that recently became popular for this purpose are so-
called generative adversarial networks (GANs) [145]. GANs attempt
to approximate the true data-generating distribution by training
two networks in competition with each other, a generator and a
discriminator network. The generator attempts to create data

Deep learning for small and big data in psychiatry
G Koppe et al.

185

Neuropsychopharmacology (2021) 46:176 – 190



samples as similar as possible to the true data while the
discriminator strives to distinguish true from fake (generated)
samples. The two networks co-evolve throughout training, and by
attempting to fool the discriminator, the generator, if successful,
learns to approximate the data-generating distribution from which
new (simulated) data samples may be generated and used for
training [146]. Similarly, one could use generative models like
GANs to fill in missing values in multi-modal data sets, a common
problem in psychiatry, rather than discarding an entire multi-
variate data point (see e.g., [147]). Along another line, Nguyen
et al. [148] used GANs to unbias MRI images from different sites by
successfully transforming images from one site into those from
another. Such approaches could help to make more efficient use
of larger cross-site data sets which often suffer from site-specific
heterogeneities. In cases in which we have access to a large
unlabeled data set, rather than simulating data, we may also
choose to augment the data set by semi-supervised learning
approaches such as pseudo labeling [149]. Here a network is first
trained on labeled data, then unlabeled data is fed through it to
obtain predictions (pseudo labels), and finally the network is
trained on the entire (augmented) data set.
Transfer learning is another technique for improving the data

situation by transferring knowledge gained in one data domain to
a current problem setting that we expect to share some statistical
characteristics with the transfer domain [150]. For instance, rather
than training a DNN from scratch on an object recognition task
each time one faces a new problem setting, machine learners
frequently make use of already publicly available trained DNN
models like AlexNet [14] or VGGNet [151], and simply fine-tune
parameters on their current task. Lu et al. [152] have extended this
approach to structural brain recordings and apply AlexNet to
identify pathological images. In another example, Thomas et al.
[153] train a DNN to decode cognitive states of participants during
a working memory task. They demonstrate how pre-training their
network on six other unrelated cognitive tasks considerably
improves network performance when compared to random
initialization. This sort of pre-training or transfer learning saves
data resources and training time that would otherwise be required
to learn common (often low level) features which the network
would have needed to extract anyway (like edges and nodes in an
image, [154]). It can also be understood as a feature selection step
conducted by another model rather than the data analyst, and
that is not fixed but will further be adapted to the current setting
through training. There are examples where a CNN designed to
classify a neurological condition based on sMRI images has been
shown to perform even better when pre-trained on natural
images rather than on sMRI data itself, perhaps because natural
images are in a sense richer in low-level features also needed to
classify sMRI images more effectively [137]. In general, pre-training
on any data-rich domain that could be expected to share some
statistical distributional properties with the target data set may
profoundly help in using complex DNN even for smaller samples.
Here, open access data may be of huge assistance. Models could
be pre-trained on similar, or ideally perhaps even the same
disorder as targeted in a current application, and then merely fine-
tuned on the target data (see also [93, 155]).
Pre-training could prove particularly useful when individualizing

models for single subjects in order to provide patient-centered
(treatment) predictions (Fig. 5). Transferring knowledge already
gained from other data sets could prove very valuable in building
complex and nonetheless robust individualized models. For
instance, we could first train models on data sets across
individuals and use the inferred parameters as efficient initializa-
tions, which would help fine-tune quite complex predictive
models at the single subject level (Fig. 5).
Another way to transfer knowledge from other domains or tasks

to the current problem setting is meta-learning. While different
definitions exist, meta-learning is most commonly understood as a

paradigm where the system ‘learns to learn’, that is, which
optimizes the learning process of an algorithm itself via multiple
learning episodes or tasks (see [156] for a recent thorough review).
For instance, Andrychowicz et al. [157] demonstrate how the
optimization procedure of a model can itself be optimized via
gradient descent and thereby outperforms handcrafted optimiza-
tion algorithms in many different settings. The optimization
process of the meta-learning algorithm can refer to almost any
part of the model, including architecture, parameter initialization,
and many more, and may be realized through different
optimization procedures such as gradient descent, reinforcement
learning, or evolutionary algorithms [156]. One particularly
interesting aspect is that such algorithms have succeeded in
designing classifiers, which are capable of learning in only a few
shots, i.e., from few data instances [158]. It is conceivable that
along similar lines pooling multiple psychiatric data sets and using
meta-learning principles could yield sets of classifiers which learn
quickly on new problem settings.
Many of the approaches discussed, like manual feature

engineering, transfer learning, or specific network designs tailored
to particular tasks, may be seen as different ways of utilizing prior
knowledge to facilitate NN training and reduce the sample size
requirements. This aligns with the more general idea in Bayesian
frameworks for model training, where previous knowledge is
incorporated in a statistically principled way through prior
distributions on the parameters [28, 159]. While such approaches
come with the danger of biasing the resulting model or parameter
estimates in the wrong direction, they are on the other hand
known to potentially strongly reduce the variance in the resulting
parameter estimates and to protect to some degree against
overfitting [160]. It turns out, in fact, that some of the common
regularization approaches, like ridge regression, can be derived
within a Bayesian approach that places certain priors on the
parameters [161]. Hence, Bayesian inference strategies can be
used to both import prior knowledge from the same or different
data domains into the current parameter estimation, and to
regularize models.
In sum, the sample size needed to successfully train a DNN will

depend on multiple factors such as the type of data, network size
and architecture, type of stochasticity in the data, dimensionality
of the feature space, regularization schemes, and the actual target
function the DNN is supposed to learn, to name but a few. Power
calculations are simply not available for highly nonlinear models
like DNNs with complicated likelihood functions and probability
distributions, and hence any suggestions regarding sample size
could only be based on examples in the literature employing very
similar architectures. Perhaps the largest bundle of work to date
has been performed in the field of classification based on
neuroimaging data. In this field, samples of several hundred
participants appear to provide a good starting point for
successfully training DNNs, with accuracies roughly around 70%
for multi-site studies and binary classification problems (see [162]
for a recent review). These results raise hope that future DNN
applications may prove valuable for sample sizes available in
psychiatry. Samples below N= 200 produce very heterogeneous
performance results, and usually do not contain data from
multiple sites, making it difficult to judge models in this range
[162]. Recommendations for sample sizes for other applications
are more difficult to provide. In general, we strongly recommend
that authors employing DL techniques conduct thorough evalua-
tion on prediction errors and their standard error themselves, e.g.,
by iteratively increasing the test set size (as done e.g., in [80]).

FUTURE RESEARCH DIRECTIONS
Psychiatry is in urgent need of approaches that enable tailored
precision therapies. For designing efficient treatments, we also
require a better understanding of the neurobiological
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mechanisms underlying pathology at a transdiagnostic level.
While more traditional hypothesis-driven statistical approaches to
these issues have not brought the necessary breakthroughs,
modern ML algorithms like DNNs provide new hope given their
outstanding performance in other medical domains. At first sight,
the complexity (and thus computational strength) of DNNs comes
at a cost—large sample sizes. However, as we tried to discuss here,
there are several ways to make DNNs suitable even for much
smaller sample sizes. We have discussed various concrete steps to
enable the development of efficient schemes using complex
models for individualized person-centered predictions (see also
[9, 87]). Models first trained on group data may provide one future
avenue (Fig. 5), if it can be achieved that these capture sufficient
particularities at the (individualized) single-subject level to yield
meaningful forecasts, and not just reflect common group
characteristics.
A deeper understanding of hidden network representations in

DNNs, i.e. ‘opening the black box’, could on the other hand reveal
new insights or generate new hypotheses regarding pathological
neurobiological mechanisms. Indeed, several studies have already
demonstrated that DNN representations may yield interpretable
features (e.g., [33, 94, 99, 163]). For instance, by examining the
weights of their DNN, Zeng et al. [94] observed that cortical-
striatal-cerebellar functional connectivity features were most
relevant to the classification of schizophrenia. After training a
deep AE on brain volume data from a large set of healthy
individuals, Pinaya et al. [138] assessed the region specific
reconstruction error made by the network when predicting
psychiatric patients to pinpoint the most relevant brain regions
involved in separating patients from controls. Li et al. [163]
developed a visualization framework to decipher regions of
interest important in the detection of individuals with autism
spectrum disorder compared to controls based on fMRI record-
ings. Visualization approaches for assessing DNNs are currently a
hot topic in ML, and future developments in this direction may
help uncover interpretable multi-modal biomarkers of psychiatric
disease. The interplay between the bench and the bedside,
pathophysiological understanding and tailored treatment, con-
tinues in the age of AI, aided by the new tools discussed in
this paper.
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