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Abstract

New data are reported from analyses of stomach contents from 114 long-finned pilot whales

mass-stranded at four locations around Tasmania, Australia from 1992–2006. Identifiable

prey remains were recovered from 84 (74%) individuals, with 30 (26%) individuals (17

females and 13 males) having empty stomachs. Prey remains comprised 966 identifiable

lower beaks and 1244 upper beaks, belonging to 17 families (26 species) of cephalopods.

Ommastrephidae spp. were the most important cephalopod prey accounting for 16.9% by

number and 45.6% by reconstructed mass. Lycoteuthis lorigera was the next most impor-

tant, followed by Ancistrocheirus lesueurii. Multivariate statistics identified significant differ-

ences in diet among the four stranding locations. Long-finned pilot whales foraging off

Southern Australia appear to be targeting a diverse assemblage of prey (�10 species domi-

nated by cephalopods). This is compared to other similar studies from New Zealand and

some locations in the Northern Hemisphere, where the diet has been reported to be primar-

ily restricted to�3 species dominated by cephalopods. This study emphasises the impor-

tance of cephalopods as primary prey for Southern long-finned pilot whales and other

marine vertebrates, and has increased our understanding of long-finned pilot whale diet in

Southern Ocean waters.

Introduction

Cephalopods comprise a major portion of the diets of many marine vertebrates (cetaceans,

seals, birds and fish), and are a key trophic link in the Southern Ocean ecosystem [1–6].

Marine mammals spend their lives at sea and afford little opportunity for direct observation of

feeding. Subsequently, indirect methods are often used in an attempt to reconstruct diet, such
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as analysis of stomach contents from stranded and by-caught individuals [7], and analysis of

tissue lipid profiles [8–11] or stable isotopes [12–14].

Cetaceans frequently strand along the Tasmanian coastline, with published records since

1945 [15–18]. Between 1990 and 2008, a total of 336 stranding events occurred, totalling 2273

individuals. The most commonly stranded cetacean (by number of individuals) is the long-

finned pilot whale, Globicephala melas (LFPW), where of 1568 individuals stranded (69% of all

individuals during this time period), only 30 (8.9%) of the 336 stranding events were LFPWs.

Although LFPWs strand in Tasmania throughout the year (except May and June), there is a

distinct stranding peak during summer, from September to December (DPIPWE unpublished

data). This apparent seasonality is also observed in LFPWs that strand along the New Zealand

coastline [2, 3, 19, 20], and be as a result of long-distance migrations of LFPWs past Tasmania

during summer, or reflective of seasonal changes in prey distribution from offshore areas onto

the continental shelf and near-shore waters.

LFPWs occur in oceanic and coastal waters in temperate and subpolar zones [21]. In the

Northern Hemisphere, they are found in the North Atlantic Ocean (including the Western

Mediterranean and North Sea) north of 20˚N [22]. In the Southern Hemisphere, they range in

the Southern South Pacific, South Atlantic and mostly across the Southern Ocean as far south

as the Antarctic Polar Front, sometimes to 68˚S [21, 23]. The Southern Hemisphere subspecies

(G. m. edwardii) are taxonomically and geographically separated from those in the Northern

Hemisphere (G. m. melas) [22, 24, 25]. LFPWs occur in relatively stable, maternally based

pods with a polygynous mating system [24]. The species’ strong social structure makes it par-

ticularly vulnerable to herding in drive fisheries, such as occurs off the Faroe Islands [26], and

to mass-stranding events, such as occur on Cape Cod, Massachusetts, USA [27], Farewell Spit,

New Zealand [28], and Tasmania, Australia [18]. Although LFPWs are currently considered

circumglobal in the Southern Hemisphere, potential foraging differences may assist in eluci-

dating distribution and potential stock structure differences, as well as the potential for fisher-

ies interactions, which is fundamental knowledge for effective management of the species.

Diet studies have analysed the stomach contents obtained from LFPWs in many parts of

the world [3, 4, 29–31], where in general, cephalopods are a main component of LFPW diet,

although fish may also be important in some areas [32–34]. Previous reports of LFPW food

habits have yielded three dietary patterns: (1) diverse diet (�10 prey species) dominated by

cephalopods [4, 29, 30]; (2) restricted diet (�3 species) dominated by cephalopods [35, 36];

and (3) restricted diet (�3 species) dominated by fish [34, 37, 38]. There is little known about

the foraging behaviour of LFPWs in the Southern Hemisphere. Two LFPWs stranded on the

Freycinet Peninsula on the East coast of Tasmania were found to have had a diverse diet (�10

prey species) dominated by 14 cephalopod species [4]. Sepioteuthis australis was the most com-

mon cephalopod species in the diet of these animals (35.7% by number and 48.5% dry weight).

Similar investigations into the diet of 14 LFPWs stranded in two events along the New Zealand

coastline found a restricted diet (�3 species) dominated by Nototodarus spp. and Octopus
maorum [3, 20, 39]. The diet of Southern Hemisphere LFPWs has also been investigated in

Chile [40], Argentina [41], southern Brazil [42], South Africa [43] and Antarctic/Sub-Antarctic

[44]. In all studies cephalopods were found to constitute the main prey.

In this study, we examined the stomach contents of LFPWs mass stranded along the Tasma-

nian coastline. We characterise LFPW diet and compare the results to other global studies, par-

ticularly from the Southern Hemisphere. This study aims to assess what prey are important for

LFPWs utilising Tasmanian waters, and subsequently consider the conservation implications

of these dietary preferences.

Long-finned pilot whale diet from Tasmania
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Materials and methods

Sample collection

Samples were collected from 114 LFPWs that did not survive mass stranding events along the

Tasmanian coastline between September 1992 to December 2006 (Fig 1; Table 1).

Morphometric data, tissue samples and stomach contents were collected from each of the

deceased whales (where logistically possible), following the protocols of Geraci and Lounsbury

[45]. In the absence of life history data for Southern Hemisphere LFPWs, individuals were

classified into age groups based on total length measurement, following Bloch et al. [46] and

Desportes and Mouritsen [29] for Northern Hemisphere LFPWs from the Faroe Islands.

These categories were: (1) newborn/calf (not fully weaned: male 1.78–2.20 m, female 1.74–1.90

m), (2) subadult (nutritionally independent, but sexually immature: male 2.20–4.80 m, female

2.00–3.75 m), or (3) adult (mature—male: >4.80 m, female >3.75 m). Sexual maturity is

reported to be attained at an average age of eight years for females and 17 years for males [47,

48]; longevity is 35 to 45 years for males and can exceed 60 years for females [46]. It is acknowl-

edged that these life history parameters may differ for Southern Hemisphere LFPWs. In addi-

tion, age estimates were available for some individuals using standard tooth aging

methodologies [49], based on counts of the number of growth layers in a tooth taken from that

animal (DPIPWE unpublished data).

Laboratory analysis

Stomachs were excised on site and frozen until further analysis. Prior to analysis, the stomach

contents were thawed, rinsed through a 1.0 mm sieve and sorted. When present, parasites

were collected and preserved in 70% ethanol. Cephalopod remains were fixed in 5% buffered

formalin solution, and then preserved in 70% ethanol. Cephalopod beaks were separated from

other cephalopod hard part remains and sorted into upper and lower beaks. The lower beaks

were identified to the lowest possible taxonomic level using Xavier and Cherel [50] and with

the aid of cephalopod reference collections held at the Centre d’Etudes Biologiques de Chizé,

France (specimens identified by Drs. Yves Cherel and Jose Xavier); Auckland University of

Technology (specimens identified by Drs. Steve O’Shea and Emma Betty); and the Institute for

Marine and Antarctic Studies, University of Tasmania (specimens identified by Dr. Karen

Evans). Identification of the teleost otoliths was carried out using Furlani et al. [51].

Sample analysis

To estimate the original size of the cephalopod prey, lower rostral lengths (LRLs) for decapods

and lower hood lengths (LHLs) for octopods were measured with digital callipers to the near-

est 0.1 mm, or (for very small beaks) with a micrometer under a binocular microscope (n = 2).

Regression equations were used as constructed by Clarke [52], Rodhouse and Yeatman [53],

Lu and Ickeringill [54], Beatson and O’Shea [55], Horstkotte [56] and Xavier and Cherel [50]

(S1 Table). The relative importance of prey items was quantified by: (1) frequency of occur-

rence (FO), defined as the proportion of stomachs that contained a particular prey species,

regardless of mass or abundance; (2) proportion of numerical abundance (%Num), the per-

centage of the total number of prey items recovered from all stomachs represented by a partic-

ular prey category; (3) proportion of reconstructed prey mass (%Mass), the percentage of

reconstructed mass of prey recovered from all stomachs represented by a particular prey cate-

gory; and (4) index of relative importance (IRI), which combines the above three methods and

is calculated using the formula: IRI = FO x (%Num + %Mass) (sensu [57]). The reconstructed

mass of prey for each stranding was obtained by totalling the reconstructed prey mass for each

Long-finned pilot whale diet from Tasmania
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individual from that stranding. We acknowledge that there are several potential biases of using

the reconstructed prey mass (RPM) where, (1) the final RPM may be an underestimation since

broken, upper only or unidentified beaks did not contribute to the total estimate prey mass

[20], (2) the final RPM may be an overestimation as a result of the potential for accumulation

of prey items over time [58], and (3) many regressions are based on small sample sizes and do

not include a comprehensive coverage of size distributions, which results in an inherent uncer-

tainty in the mass calculated [5].

Statistical analysis

Classification Trees (CTs) were used to identify prey species that distinguished LFPWs

stranded between the four locations and between sexes, using R package rpart [59]. CTs use

tree-building algorithms which examine each response variable (prey species), one at a time,

selects one variable that minimizes the classification error, splits the predictor into two groups,

decides when a branch is terminal (stopping rules) and predicts multiple classes or a binary

class at end points [59]. The CT was pruned at a node that minimized the overall classification

error. Due to missing values, five prey species were excluded from the analysis. Twenty-one

Fig 1. Location of LFPW mass-strandings around Tasmania from 1992 to 2006. The size of the location icon is representative of the number of

individuals that stranded at that location (see Table 1): 24 individuals stranded at Bicheno (26/09/92), 41 at Maria Island (29/11/04), 161 at Marion Bay

(25/10/05) and 27 at Ocean Beach (01/12/2006). At total of 24, 19, 49 and 22 stomach samples were available from these sites respectively.

https://doi.org/10.1371/journal.pone.0206747.g001
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prey species were subsequently used in the analysis. The prey species that were identified as

important in the CT were then examined in Kruskal-Wallis rank sum test for significance test-

ing. Age class was not examined statistically as adults dominated samples collected from Mar-

ion Bay and Ocean Beach, sub-adults were mostly from Ocean Beach, and there was no

information on age class from Bicheno.

Results

A total of 253 LFPWs mass-stranded at four locations around Tasmania from 1992–2008

(Bicheno, Maria Island, Marion Bay and Ocean Beach) (Fig 1). Of these LFPWs, 213 subse-

quently died, while 40 were released alive. Stomach contents were collected from 114 LFPWs,

representing 54% of all deceased whales that mass stranded and died, in these four events. Out

of the 114 individuals, prey remains were recovered from 84 (74%) individuals, with 30 (26%)

individuals (17 females and 13 males) having empty stomachs (Table 2). The one calf (Ocean

Beach), and three juveniles (two from Ocean Beach and one from Marion Bay) did not have

any recognisable stomach contents.

Out of the 84 stomachs with prey contents, 69 (82%) contained identifiable lower cephalo-

pod beaks. The remaining stomach samples contained unidentified/broken lower beaks and

Table 1. Summary of sex, body length and age (where available) of LFPWs for each stranding event from 1992 to 2006, with mean ± SD (range) (n = total individual

included in sample size).

Bicheno Maria Island Marion Bay Ocean Beach

Date of stranding 26/09/92 29/11/04 25/10/05 01/12/2006

Number of individuals stranded (alive and dead) 24 41 161 27

Number of dead individuals 24 19 145 25

Number of individuals with stomach contents 24 19 49 22

Total length of all dead individuals (m) — 4.7 ± 0.53

(4.1–5.9)

4.3 ± 0.71

(2.3–6.1)

4.2 ± 0.11

(2.0–5.6)

- Females — 4.4 ± 0.13

(4.1–4.5) (n = 12)

4.3 ± 0.47

(2.7–4.8) (n = 38)

3.8 ± 0.89

(2.0–4.4) (n = 10)

- Males — 5.2 ± 0.50

(4.2–5.9) (n = 7)

4.6 ± 0.12

(2.3–6.1) (n = 11)

4.6 ± 0.11

(2.1–5.6) (n = 12)

Total length of dead individuals with some stomach contents (m) — 4.7 ± 0.51

(4.2–5.6) (n = 12)

4.3 ± 0.58

(2.7–5.7) (n = 43)

4.4 ± 0.80

(2.5–5.6) (n = 15)

- Females — 4.4 ± 0.90

(4.2–4.5) (n = 8)

4.3 ± 0.49

(2.7–4.8) (n = 35)

3.9 ± 0.65

(3.8–4.4) (n = 8)

- Males — 5.3 ± 0.42

(4.7–5.6) (n = 4)

4.5 ± 0.89

(3.3–5.7) (n = 8)

4.85 ± 0.69 (4.0–5.6) (n = 7)

Age estimates of dead individuals (years)� — — 17 ± 8.1

(2–32) (n = 32)

19 ± 12.4

(1–51) (n = 21)

- Females — — 17 ± 8.1

(2–32) (n = 32)

20 ± 13.6

(1–51) (n = 10)

- Males — — 15 ± 8.1

(2–23) (n = 10)

17 ± 11.6

(1–42) (n = 11)

Age estimates of dead individuals with some stomach contents (years) — — 17 ± 8.1

(2–32) (n = 36)

21 ± 11.1

(9–51) (n = 14)

- Females — — 18 ± 8.4

(2–32) (n = 29)

23.6 ± 12.93 13–51 (n = 8)

- Males — — 15 ± 7.1

(6–23) (n = 7)

17 ± 7.0

(9–27) (n = 6)

� Age estimated using growth layer patterns from teeth

https://doi.org/10.1371/journal.pone.0206747.t001
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upper beaks, and/or squid eye lenses only (Table 3). In addition to cephalopod beaks, other

cephalopod remains recovered included complete and partial eye lenses and sucker rings and

hooks. No buccal masses were present. Out of the 114 stomachs recovered, 43% of stomachs

contained intestinal nematodes.

Cephalopod species composition

Cephalopod prey remains comprised 966 identifiable lower beaks (an additional 65 lower

beaks were broken and unidentifiable) and 1244 upper beaks, representing species from two

cephalopod orders; Octopoda (Octopodiformes), and Teuthida (Decapodiformes). Octopoda

were represented by two species from two families (O. maorum and Ocythoe turberculata) and

Teuthida by 24 species from 15 families (Table 4). An average of 12 ± 5.5 (4–16) taxa were

recovered from each stranding event, with a minimum of four cephalopod species present

from Maria Island samples, and a maximum of 16 species from Bicheno samples. Only two

cephalopod species: Lycoteuthis lorigera and Ommastrephidae spp., were present in the stom-

ach of at least one whale from all four stranding locations.

Ommastrephidae spp. included several species whose beaks cannot be easily differentiated

by their morphology, namely Nototodarus gouldii, Ommastrephes bartrami and Todarodes sp.

(including T. filippovae). Allometric equations were therefore used at the family level to esti-

mate their body length and mass.

Cephalopod prey size and total biomass consumed

The reconstructed prey mass was highest for an adult male whale from Bicheno, with an esti-

mated prey mass of 42.6 kg. The average LRL, Mantle Length (ML) and Biomass (BM) for

each squid species are summarised in Table 5. The smallest squid recovered (by BM) was an O.

Table 2. Summary of the percentage of LFPW stomachs with prey contents, empty stomachs and parasites only in stomach. For stomachs with prey contents, the

percentage of identifiable cephalopod beaks, and upper or broken beaks is also shown.

Dietary group n Prey Contents Empty Stomachs Parasites Only Identifiable Lower Cephalopods Beaks Upper or Broken Beaks Only

All 114 84 (74%) 9 (18%) 9 (8%) 69 (82%) 15 (18%)

Bicheno 24 22 (92%) 2 (8%) 0 20 (91%) 2 (9%)

Maria Island 19 12 (63%) 7 (37%) 0 8 (67%) 4 (33%)

Marion Bay 49 35 (71%) 6 (12%) 8 (17%) 29 (83%) 6 (17%)

Ocean Beach 22 15 (68%) 6 (27%) 1 (5%) 12 (80%) 3 (20%)

Females (total) 78 61 (78%) 9 (12%) 8 (10%) 49 (80%) 15 (20%)

Males (total) 36 23 (64%) 12 (33%) 1 (3%) 20 (87%) 3 (13%)

https://doi.org/10.1371/journal.pone.0206747.t002

Table 3. Summary of the percentage of cephalopod, cephalopod eyeball, fish and nematode remains found in LFPWs, separated by stranding event, and sex.

Dietary group n % Containing Cephalopods % Containing Eyeballs % Containing Fish % Containing Nematodes

All 114 72.8 28.0 0.9 43.0

Bicheno 24 87.5 83.3 0.0 20.8

Maria Island 19 38.7 9.7 3.2 25.8

Marion Bay 49 71.4 10.2 0.0 55.1

Ocean Beach 22 68.2 18.2 0.0 40.9

Females (total) 78 76.9 29.5 0.0 50.0

Males (total) 36 72.2 25.0 2.8 27.8

https://doi.org/10.1371/journal.pone.0206747.t003
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Table 4. Measured lower rostral lengths, and calculated mantle lengths and wet weight ± SD (range) of cephalopod species in the stomachs of LFPW from

Tasmania.

Species (n) LRL (mm) ML (mm) Wet mass (g)

Ancistrocheiridae

Ancistrocheirus lesueurii (n = 101) 7.8 ± 1.1 (3.3–9.8) 360 ± 45 (177–440) 1346 ± 470 (60–2763)

Architeuthidae

Architeuthis dux (n = 3) 8.5 ± 0.9 (7.8–9.5) 448 + 52 (406–507) 3173 + 1557 (2015–4943)

Brachioteuthidae

Brachioteuthis linkovskyi (n = 8) 3.5 ± 0.4 (3.1–4.3) 87 + 8 (79–102) 10 ± 2 (9–13)

Chiroteuthidae

Chiroteuthis capensis (n = 13) 4.8 ± 0.4 (4.2–5.4) 140 ± 34 (101–209) 55 ± 13 (38–74)

Chiroteuthis sp. F (Imber) (n = 1) 5.4 143 74

Chiroteuthis veranyi (n = 13) 6.1 ± 1.2 (4.3–7.6) 161 ± 29 (117–196) 113 ± 54 (41–184)

Cranchiidae

Galiteuthis sp. (n = 2) 4.4 ± 1.09 (3.6–5.2) 217 ± 9 (211–223) 70 ± 39 (42–97)

Megalocranchia sp. (n = 13) 8.8 ± 0.96 (7.6–10.4) 491 ± 60 (402–627) 344 ± 107 (230–531)

Teuthowenia pellucida (n = 110) 4.3 ± 0.35 (2.9–5.0) 151 ± 10 (110–172) 35 ± 5 (16–47)

Enoploteuthidae

Enoploteuthis sp. (n = 8) 3.4 ± 0.32 (3.2–4.0) 84 ± 9 (76–100) 24 ± 6 (19–35)

Histioteuthidae

Histioteuthis atlantica (n = 82) 4.3 ± 0.44 (2.9–5.6) 96 ± 11 (66–133) 139 ± 47 (47–334)

Histioteuthis macrohista (n = 1) 3.28 53 69

Histioteuthis miranda (n = 3) 2.5 ± 0.16 (2.3–2.6) 59 ± 4 (54–62) 36 ± 7 (29–42)

Loliginidae

Sepioteuthis australis (n = 5) 5.0 ± 0.43 (4.4–5.5) 321 ± 29 (279–351) 262 ± 60 (177–327)

Lycoteuthidae

Lycoteuthis lorigera (n = 397) 5.1 ± 0.51 (3.2–5.9) 163 ± 20 (76–192) 190 ± 49 (44–286)

Mastigoteuthidae

?Mastigoteuthis A (Clarke) (n = 1) 5.9 131 2

Neoteuthidae

Nototeuthis dimegacotyle (n = 3) 3.5 ± 0.12 (3.4–3.6) na na

Octopoteuthidae

Octopoteuthis sp. 13.7 ± 1.88 (9.6–15.3) 237 ± 33 (165–265) 513 ± 142 (217–645)

Ommastrephidae

Martialia hyadesi (n = 2) 4.9 ± 0.78 (4.4–5.5) 246 ± 23 (263–230) 275 ± 87 (213–336)

Ommastrephidae sp. (n = 163) 10.2 ± 2.32 (4.4–15.0) 406 ± 88 (226–742) 1552 ± 852 (149–3829)

Onychoteuthidae

Onychoteuthis banksii complex (n = 2) 2.9 ± 0.24 (2.7–3.0) 96 ± 23 (91–102) 19 ± 4 (16–22)

Onykia robsoni (n = 1) 8.44 622 3175

Notonykia africanae (n = 2) 3.5 ± 0.81 (2.9–4.1) na na

Pholidoteuthidae

Pholidoteuthis massyae (n = 19) 10.8 ± 1.81 (6.2–13.6) 454 ± 74 (267–571) 2368 ± 1007 (470–4292)

Octopodidae

Octopus maorum (n = 7) 5.1 ± 0.53 (4.4–5.8) 106 ± 15 (84–126) 512 ± 130 (339–692)

Ocythoidae

Ocythoe turberculata (n = 3) 5.9 + 1.09 (5.0–7.1) 37 + 6 (31–44) 32 + 15 (20–49)

https://doi.org/10.1371/journal.pone.0206747.t004
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Table 5. A summary of the species composition and relative importance of prey items (FO, %Num, %Mass and IRI), for all four strandings combined. ‘Count’ is the

number of whale stomachs that the cephalopod species were recovered from.

Species Total N Count FO %Num BM (g) %Mass IRI

Ancistrocheiridae

Ancistrocheirus lesueurii 101 24 0.3 10.5 135983 24.5 12.2

Arthiteuthidae

Architeuthis dux 3 3 0.0 0.3 9520 1.7 0.1

Brachioteuthidae

Brachioteuthis linkovskyi 8 7 0.1 0.8 81 0.0 0.1

Chiroteuthidae

Chiroteuthis capensis 13 6 0.1 1.3 723 0.1 0.1

Chiroteuthis sp. F (Imber) 1 1 0.0 0.1 74 0.0 0.0

Chiroteuthis veranyi 12 6 0.1 1.2 1473 0.3 0.1

Cranchiidae

Galiteuthis sp. 2 2 0.0 0.2 139 0.0 0.0

Megalocranchia sp. 13 8 0.1 1.3 4474 0.8 0.2

Teuthowenia pellucida 105 22 0.3 10.9 3648 0.7 3.7

Enoploteuthidae

Enoploteuthis sp. 8 6 0.1 0.8 189 0.0 0.1

Histioteuthidae

Histioteuthis atlantica 82 19 0.3 8.5 11427 2.1 2.9

Histioteuthis macrohista 1 1 0.0 0.1 77 0.0 0.0

Histioteuthis miranda 3 3 0.0 0.3 167 0.0 0.0

Loliginidae

Sepioteuthis australis 5 3 0.0 0.5 1308 0.2 0.0

Lycoteuthidae

Lycoteuthis lorigera 397 44 0.6 41.1 75465 13.6 34.9

Mastigoteuthidae

?Mastigoteuthis A (Clarke) 1 1 0.0 0.1 2 0.0 0.0

Neoteuthidae

Nototeuthis dimegacotyle� 3 3 0.0 0.3 na na na

Octopoteuthidae

Octopoteuthis sp. 9 6 0.1 0.9 4616 0.8 0.2

Ommastrephidae

Martialia hyadesi 2 1 0.0 0.2 549 0.1 0.0

Ommastrephidae sp. 163 43 0.6 16.9 252996 45.6 38.9

Onychoteuthidae

Onychoteuthis banksia complex 2 2 0.0 0.2 37 0.0 0.0

Onykia robsoni 1 1 0.0 0.1 3175 0.6 0.0

Notonykia africanae� 2 2 0.0 0.2 na na na

Pholidoteuthidae

Pholidoteuthis massyae 19 13 0.2 2.0 44994 8.1 1.9

Octopodidae

Octopus maorum 7 3 0.0 0.7 3582 0.6 0.1

Ocythoidae

Ocythoe turberculata 3 3 0.0 0.3 96 0.0 0.0

Total Lower Cephalopod Beaks 966 100.0 554792 100.0

� regression equations not available

https://doi.org/10.1371/journal.pone.0206747.t005
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turberculata with an estimated BM of 19.9 g (ML = 31.4 mm). The largest squid recovered was

Architeuthis dux (giant squid), with an estimated BM of 4943 g (ML = 507 mm) (Table 4).

A summary of the species composition and relative importance of prey items (FO, %Num,

%Mass and IRI) is presented in Table 5. For all strandings combined, Ommastrephidae spp.

were the most important cephalopod prey accounting for 16.9% by number and 45.6% by

reconstructed mass. L. lorigera was the next most important (41.1% by number and 13.6% by

reconstructed mass), followed by Ancistrocheirus lesueurii (10.5% by number and 24.5% by

reconstructed mass; Fig 2). The percent reconstructed prey mass for the four stranding loca-

tions are shown in Fig 3. As discussed above, it is important to highlight that the Ommastre-

phidae spp. grouping included at least three different species, which would have upwardly

biased the relative importance of this category when compared to other single species

categories.

Variations in cephalopod consumption

Sex variation. Among the 69 individuals with identifiable prey contents, no differences in

total reconstructed prey mass were observed in diet between males (n = 19) and females

(n = 55) (Kruskal-Wallis rank sum test: Chisq = 0.76, df = 1, p = 0.38). Females consumed a

reconstructed prey mass average per individual of 5.4 kg ± 8.8 (0.1–38.2 kg), while males con-

sumed a similar reconstructed prey mass average of 4.1 kg ± 7.5 (0.1–30.6 kg). For both sexes,

Ommastrephidae spp. was the most important cephalopod prey, followed by L. lorigera and A.

lesueurii (Table 6). These three species together comprised 75% and 86% reconstructed mass

of prey ingested, for males and females, respectively. These results were supported by the CT

analysis, where no nodes were identified in the classification tree. Because of a lack of diet dif-

ference between males and females, all subsequent results were pooled to include both males

and females.

Age-class variation. When separating individuals according to age class, no total length

information was available from individuals at the Bicheno stranding. Therefore the age-classes

of these 20 individuals were unknown and excluded from further age-class variation analysis.

Of the remaining 49 individuals with recognisable prey contents (subadults and adults), 35

(71%) individuals were aged by conventional aging techniques using growth layer groups

(GLGs), and the remaining 14 (29%) individuals were assigned an age class based only on total

length [46]. Age-class variation analysis therefore consisted of 6 (12%) subadults (2 females

and 4 males) from Marion Bay and Ocean Beach, and 43 (88%) adults (33 females and 10

males), from all stranding sites except Bicheno (Table 7). Because of the low number of sub-

adults from Marion Bay (n = 1), age-class comparisons could only be undertaken for Ocean

Beach.

There were no apparent differences in the diversity of cephalopod species consumed by

LFPWs stranded at Ocean Beach, with 12 species consumed by both adults and subadults.

According to the IRIs, the most important cephalopod species for adults and subadults were

Ommastrephidae sp., followed by H. atlantica (Table 7). The small sample size of subadults

precluded any reliable multivariate statistical analysis; however the total reconstructed weight

was not significantly different between adults and subadults from Ocean Beach (Kruskal Wallis

rank sum test: Chisq = 1.27, df = 1, p = 0.26).

Size of cephalopods. Comparison of size frequency distributions of the three most impor-

tant cephalopod species: Ommastrephidae spp., L. lorigera and A. lesueurii showed a consistent

preference for adults. Average LRLs were 10.2 mm ±2.28 (5.5–15.0), 5.2 mm +0.42 (3.7–5.9)

and 7.8 mm ±1.10 (3.3–9.8), respectively (Fig 3), with wings darkening at a LRL of 5.2–7.8

mm, range unknown and 4.0–6.0 mm, respectively [60] (Fig 4).
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Stranding location variation. All stranding sites varied in the diversity and proportion of

cephalopod species present, as well as the most important cephalopod species (Table 8).

According to the resulting IRIs, Ommastrephidae spp. was the most important cephalopod

prey item for Maria Island (East coast) and Ocean Beach samples (West coast), while L.

Fig 2. (A) Percent numerical abundance (%Num) and (B) percent reconstructed prey mass (%BM) of cephalopod

genera found in the diet of LFPWs stranded along the Tasmanian coastline from 1992 to 2006. Species where the %

Num and %BM were<1% are not included.

https://doi.org/10.1371/journal.pone.0206747.g002
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lorigera was the most important for Marion Bay and Bicheno samples (both East coast). The

greatest total reconstructed prey mass was from whales in Bicheno (mean = 13.4 kg, SD = 12.2

kg), followed by Ocean Beach (mean = 5.1 kg, SD = 6.3 kg), Marion Bay (mean = 1.7 kg,

SD = 3.8 kg) and Maria Island (mean = 1.1 kg, SD = 3.0 kg) (Table 9).

A CT comparing locations resulted in the decision tree showing four nodes, however with a

high prediction error of 65%, probably due to a large number of zeros (Fig 5). The CT split was

confirmed by subsequent univariate analysis. LFPWs stranded at Bicheno had significantly

higher biomass of A lesueuri than the other three locations (Kruskal Wallis rank sum test:

Chisq = 54.45, df = 1, p<0.0001). LFPWs stranded at Ocean Beach had significantly higher

biomass of Histioteuthis atlantica than Marion Bay and Maria Island (Kruskal Wallis rank

sum test: Chisq = 30.45, df = 1, p<0.0001). Although the CT node separated the Marion Bay

Fig 3. Percent reconstructed prey mass (%BM) of cephalopod families found in the diet of LFPWs stranded along the Tasmanian coastline from

the four stranding locations. Species where the %BM are<1% are not included.

https://doi.org/10.1371/journal.pone.0206747.g003

Table 6. Summary of the three most important cephalopod species recovered for each sex.

Sex n IRI Species %Num %Mass Total Mass (kg)

Female 50 30.3 Ommastrephidae sp. 17.4 47.9 336.6

28.64 L. lorigera 43.2 14.9

9.08 A. lesueurii 9.7 23.2

Total %Num and %Mass 70.3 86.1

Male 19 9.54 Ommastrephidae sp. 15.4 44.5 111.1

6.81 L. lorigera 35.4 11.6

2.29 A. lesueurii 12.3 19.3

Total %Num and %Mass 63.1 75.4

https://doi.org/10.1371/journal.pone.0206747.t006
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stranded from the Maria Island stranding based on Ommastrephidae spp. biomass, further sta-

tistical analysis showed no significant difference (Kruskal Wallis rank sum test: Chisq = 0.02,

df = 1, p = 0.88), thereby indicating that there was no difference in the prey composition from

LFPWs stranded in Marion Bay and Maria Island.

The greatest proportion of cephalopod beaks by numerical abundance (65%) were recov-

ered from individuals stranded at Bicheno, followed by Ocean Beach, Marion Bay and Maria

Island. A total of 16 cephalopod species (62% of the total number of cephalopod species recov-

ered) were recovered Bicheno samples, with four species (Chiroteuthis capensis, C. sp. F

(Imber), Nototeuthis dimegacotyle and Notonykia africanae) only found at Bicheno and not

recovered from other sites. Fifteen cephalopod species (58%) were recovered from Ocean

Beach samples, amongst which were four cephalopod species that were not recovered at other

sites: H. miranda, H. macrohista, O. turberculata and Onykia robsoni. Thirteen cephalopod

species (50%) were recovered from Marion Bay samples, including Martialia hyadesi (a

Table 7. Summary of the three most important cephalopod species recovered for each age class at Ocean Beach.

Age-class Location n # prey species IRI Species %Num %Mass

Subadult Ocean Beach 5 12 7.71 Ommastrephidae sp. 38.4 50.3

2.95 H. atlantica 38.4 2.3

0.53 P. massyae 4.7 13.5

Total %Num and %Mass 81.5 66.1

Adult Ocean Beach 7 12 6.3 Ommastrephidae sp. 26.9 81.7

2.5 H. atlantica 38.5 5.3

0.2 Octopeteuthis sp. 3.9 2.9

Total %Num and %Mass 69.3 89.9

https://doi.org/10.1371/journal.pone.0206747.t007

Fig 4. (A) Frequency histograms of the lower rostral lengths (LRLs) of the three most important squid species in the diet of LFPWs stranded in

Tasmanian waters: Ommastrephidae spp., Lycoteuthis lorigera and Ancistrocheirus lesueurii, for all four stranding locations combined. Shaded areas

show the young beaks with undarkened wings (unknown LRL for L. lorigera). (B) Average LRL (±SD) of the three most important squid species in the

diet of LFPWs stranded in Tasmanian waters, separated by stranding location.

https://doi.org/10.1371/journal.pone.0206747.g004
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Subantarctic squid species), which was not recovered from any other stranding site. Only four

cephalopod species were recovered from Maria Island samples, with two neritic cephalopod

species, S. australis and O. maorum, being recovered that were not recorded from other sites.

Correlation between LFPW body size and the three most important

cephalopod prey

Location correlations. There was an overall negative correlation between LFPW body

size and Ommastrephidae spp. average LRL (i.e. the larger the LFPW body size, the smaller the

prey size consumed: Pearson’s correlation coefficient = -0.422: t = -2.324, df = 25, p = 0.028)

(S1 File). When comparing stranding locations separately, a negative correlation was found

between LFPW body size and Ommastrephidae spp. average LRL in Marion Bay (Spearman’s

rank correlation coefficient = -0.72: S = 492, p = 0.011) but not in Maria Island (Spearman’s

rank correlation coefficient = 0.10: S = 18, p = 0.95) or Ocean Beach (Spearman’s rank correla-

tion coefficient = -0.21: S = 200, p = 0.554) (S1 File). No total length information was available

for the Bicheno stranding, so Bicheno is not discussed further within these comparisons.

No correlation was found between LFPW body size and L. lorigera average LRL in Marion

Bay (Spearman’s rank correlation coefficient = -0.357: S = 2747, p = 0.09) (S1 File). Correlation

was not estimated for other locations because Maria Island had only one data point and Ocean

Beach only two data points.

No correlation was found between LFPW body size and A. lesueuri average LRL in Marion

Bay (Spearman’s rank correlation coefficient = -0.543: S = 54, p = 0.297) (S1 File). Correlation

was not estimated for other locations because Maria Island had no data points and only one

data point for Ocean Beach.

Sex correlations. For all sexes combined, there was a small negative correlation between

LFPW body size and Ommastrephidae spp. average LRL (S1 File). For female LFPWs, their

body size was negatively correlated with Ommastrephidae spp. average LRL (Spearman’s rank

correlation coefficient = -0.65: S = 1886, p = 0.002) but not for male LFPWs (Spearman’s rank

correlation coefficient = -0.62: S = 136, p = 0.10) (S1 File).

Table 8. Summary of the three most important cephalopod species recovered from each site. Data from Gales et al. (1992) are also presented.

Location Coastline Month Year n stomachs n species present Important three % Num % Mass Total Mass

Bicheno East Coast September 1992 22 16 L. lorigera 46.2 22.1 88.1

A. lesueurii 14.7 32.2

Ommastrephidae sp. 10.1 33.8

Maria Island East Coast November 2004 8 4 Ommastrephidae sp. 62.8 74.2 97.8

O. maorum 16.3 17.3

S. australis 11.6 6.3

Marion Bay South East Coast October 2005 29 13 L. lorigera 61.9 27.7 89.8

Ommastrephidae sp. 16.3 48.7

A. lesueurii 5.0 13.4

Ocean Beach West Coast December 2006 12 15 Ommastrephidae sp. 34.1 78.2 92.2

H. atlantica 38.4 6.6

P. massyae 3.6 7.4

Freycinet Peninsula East Coast (Gales et al. 1992) July 1986 2 14 S. australis 35.7 43.4 125.8

N. gouldi 23.6 30.1

Sepia apama 12.1 17.9

https://doi.org/10.1371/journal.pone.0206747.t008
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No correlation between whale body size and L. lorigera average LRL in both females (Spear-

man’s rank correlation coefficient = -0.208: S = 1606, p = 0.38) and males Spearman’s rank cor-

relation coefficient = -0.20: S = 42, p = 0.71)(S1 File).

No correlation between LFPW body size and A. lesueuri average LRL in females (Spear-

man’s rank correlation coefficient = -0.543: S = 54, p = 0.297) (S1 File). Correlation was not

estimated for males because there was only one data point.

Non-cephalopod species composition

From 114 stomachs, only three otoliths were recovered from an adult male stranded at Maria

Island on 30 November 2004 (TMAG Number = A2103). Two otoliths (from different individ-

uals) were from the red cod, Pseudophycis bachus a temperate fish species which reaches 800

mm in length, and is distributed from New South Wales south to Tasmania, primarily in

Table 9. Prey species and mean reconstructed mass of prey recovered from stomachs of LFPWs stranded in Bicheno, Maria Island, Marion Bay and Ocean Beach.

The plus sign (+) indicates the presence of a prey species in the stomach of at least one whale.

Location, Month and Year

Bicheno Maria Island Marion Bay Ocean Beach

Species Sept 1996 Nov 2008 Oct 2009 Dec 2010

Ancistrocheirus lesueurii + + +

Architeuthis dux + +

Brachioteuthis linkovskyi + +

Chiroteuthis capensis +

Chirotethis sp. F (Imber) +

Chiroteuthis veranyi + + +

Galiteuthis sp. + +

Megalocranchia sp. + + +

Teuthowenia pellucida + + +

Enoploteuthis sp. + +

Histioteuthis atlantica + +

Histioteuthis macrohista +

Histioteuthis miranda +

Sepioteuthis australis +

Lycoteuthis lorigera + + +

?Mastigoteuthis A (Clarke) +

Nototeuthis dimegactyle +

Octopoteuthis sp. + +

Martialia hyadesi +

Ommastrephidae sp. + + + +

Onychoteuthis banksii +

Notonykia africanae +

Onykia robsoni +

Pholidoteuthis massyae + + +

Octopus maorum +

Ocythoe turberculata +

Number of individual whales 24 19 49 22

Mean and SD reconstructed

prey mass (kg)

13.4 (12.2) 1.0 (3.0) 1.7 (3.8) 5.1 (6.3)

Stomach contents Cephalopod beaks and eye

lenses, empty

Cephalopod beaks and eye lenses,

otoliths, parasites, empty

Cephalpod beaks and eye

lenses, parasites, empty

Cephalpod beaks and eye

lenses, parasites, empty

https://doi.org/10.1371/journal.pone.0206747.t009
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shallow sandy areas through to 375 m depth. The otolith lengths were 11 mm and 12 mm, indi-

cating that the fish consumed were 351 mm and 383 mm, respectively [51]. The third otolith

was too eroded to permit species identification.

Nematode parasites (of unknown species) were found in 49 stomachs (43%). The high prev-

alence of stomach nematodes from all stranding events is not discussed further within this

paper; however it may be important for future investigation into factors causing LFPWs to

strand [61, 62]. Similarly high numbers of intestinal nematodes were recovered from sperm

whales stranded in Tasmanian waters in February 1998 [5, 63].

Discussion

Of the 17 cephalopod families (26 species) identified in this study, the three most important

cephalopod taxa in the diet of LFPW from Tasmanian waters are Ommastrephidae spp., L. lor-
igera and A. lesueurii. Additionally, S. australis/O. maorum, and H. atlantica/P. massyae were

considered important prey for LFPWs recovered from Maria Island and Ocean Beach, respec-

tively. A total of 226 cephalopod species have been recorded from Australian waters [64],

therefore these 26 species represent only a small portion of species potentially available for

consumption by LFPW.

Fig 5. The pruned classification tree which splits prey items consumed by LFPWs stranded in four locations.

https://doi.org/10.1371/journal.pone.0206747.g005
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All cephalopod species recovered have wide distributions outside Tasmanian waters, with

some species not being found in Tasmanian waters (i.e. M. hyadesi). Therefore, there is incon-

clusive evidence to determine whether the whales were foraging in Tasmanian waters before

they stranded. However, there are indications that some LFPWs may have been feeding in Tas-

manian waters based on the presence of non-digested cephalopod remains (i.e. complete and

partial eye lenses and sucker rings and hooks) in 28% of stomachs, and the presence of the

near-shore cephalopod species S. australis and O. maorum in Maria Island/Ocean Beach and

Maria Island stranding events, respectively.

Variation by location, sex and age-class

Variations in cephalopod prey at each stranding location is likely confounded by temporal var-

iations in cephalopod distribution, abundance and growth rates resulting from environmental

factors, rather than differences in LFPW foraging behaviour. Acknowledging this potential

bias, differences were apparent in the cephalopod assemblages between stranding location, but

not between sex or age classes. This result corresponds with LFPW strong socially cohesive

groups, with males and females of different age classes commonly foraging together [24].

Size of cephalopods

Based on the reconstructed size, biomass and known morphometric growth curves of the

cephalopods recovered, LFPWs occurring in Tasmanian waters appear to primarily target the

adult stages of the majority of cephalopod species consumed. This may indicate foraging pref-

erences for adult-sized cephalopods, related to increasing foraging efficiency. These results

support the results of Gales et al. [4], which found a potential selection for larger, mature ceph-

alopods. It is proposed that toothed whales preferentially consume larger, less abundant prey

over smaller, more abundant ones [65], with the quality of prey, rather than quantity being a

major determinant of foraging strategies required to meet specific energetic requirements

[66].

Correlation between LFPW body size and the three most important

cephalopod prey

Previous studies have shown that the size of prey consumed can be dependent on the sex and

size of the predator, where larger predators often consume larger prey [67]. Contrary to these

findings, this study found that for female LFPWs, and the Marion Bay stranding, larger

LFPWs were consuming smaller Ommastrephidae spp. than smaller LFPWs. No correlation

was found in LFPWs stranded at the other two locations. There were no correlations between

LFPW body size and the size of L. lorigera or A. lesueuri consumed. It is acknowledged that

many missing values and small sample size may have confounded these results, highlighting

the importance of recording total length (as a minimum external measure) for all stranded

specimens, when possible [45].

Ecological characteristics of major prey species

The results from this study show that LFPWs utilising Tasmanian waters are feeding on a

diverse range of cephalopods, all of which have complex life cycles, behaviour and habitat

requirements.

Although it appears that adult-sized cephalopods are primarily targeted by LFPWs, some

subadult and juvenile beak remains were also recovered. The most important cephalopods

recovered were: Ommastrephidae sp., L. lorigera and A. lesueurii. These species are widespread
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in epipelagic, mesopelagic and bathypelagic waters, with L. lorigera and A. lesueurii commonly

found over slopes, seamounts and submarine ridges. Ommastrephids are very widespread and

capable of extensive vertical and horizontal migration, while L. lorigera and A. lesueurii inhabit

lower epipelagic to mesopelagic and bathyal depths during the day and migrate into near sur-

face waters at night.

There are three notable discrepancies between species identified in our study and those

recently described by Reid [64]. Brachioteuthis linkovskyi was confirmed from our study but is

not described by [64]. The B. linkovskyi beaks identified in this study are identical to the beaks

from the type specimen described by Marek Lipinsky, which YC identified. Therefore, it is

likely that B. linkovskyi will be confirmed from Australian waters in the future, with the whole

family being in need of revision [64]. Within the family Neoteuthidae, [64] lists Alluroteuthis
antarcticus as the only Australian representative of Neoteuthidae. However, Nototeuthis dime-
gacotyle is listed for this study. YC described Nototeuthis dimegacotyle, which is considered

identifiable from A. antarcticus (mainly an Antarctic species). Similarly, Onychoteuthis banksii
complex is listed for this study, although [64] lists only O. aequimanus and O. meridiopacifica.

This family is also in need of further revision.

Few studies have investigated the diving behaviour of LFPWs, however, Northern Hemi-

sphere LFPWs are known to perform deep foraging dives, up to 800 m depth, during foraging

periods typically consisting of a series of deep dives and intermittent shallow dives [68–72].

During 1999, Baird et al. [73] conducted tracking studies in the Ligurian Sea off the coast of

northwest Italy. Five G. m. melas were tagged for short periods in deep waters (>2000 m),

where during the day all five whales spent their time in the top 16 m of the water column. Tags

remained attached to two whales after dark, and shortly after sunset both whales made several

deep dives (max 360 m and 648 m). It was proposed that these were foraging dives, targeting a

time that vertically migrating prey become more readily available as they move closer to the

surface. Visser et al. [70] found that LFPWs produce more calls during foraging than non-for-

aging periods, with increased vocalisations potentially indicative of mediating spacing between

group members or synchronisation of foraging activity.

Of the three dietary patterns proposed from previous studies, the Tasmanian stranded

LFPWs exhibit a diverse diet, similar to LFPW diet from the Faroe Islands [29, 74], Italy [73],

Argentina [41], Northeast Atlantic [31, 32] and the western North Atlantic [30, 75]. This is in

contrast to LFPWs stranded in New Zealand waters, which appear to have restricted dietary

diversity (�3 species) dominated by squid [3, 19, 20, 39]: despite the numerous cephalopod

species inhabiting New Zealand and surrounding waters. However, sample size for the New

Zealand studies were low, many animals had empty stomachs or few dietary remains, and no

animals appeared to have eaten in close proximity to the stranding location [3, 20, 39]. Cepha-

lopods were the main prey for two LFPWs from the coast of Normandy (88% numerical pro-

portion), however only two cephalopod species were recovered (Sepia sp. and Sepiola
atlantica) [33]. Five LFPWs taken incidental to fishing operations in the Mid-Atlantic region

consumed primarily Atlantic mackerel, Scomber scombrus (71%) and long-finned squid, Loligo
pealei (29%) [34]

One occurrence of red cod remains were recovered from the stomach of a male pilot whale

from Maria Island. Since numerous samples of cephalopod tissue were recovered from stom-

achs from all stranding sites, and the digestion of cephalopod tissue is more rapid than diges-

tion of teleosts [76], our results suggest that LFPWs around the Tasmanian coastline are

targeting cephalopods as their primary prey. This lack of preference for fish as prey is also con-

sistent with previous LFPW diet studies around Tasmania and New Zealand [3, 4, 20].

It is acknowledged that the results from this study are confounded by spatial and temporal

variation in: (1) stranding events (i.e. each stranding occurred in a different month, a different
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year, and different location), and (2) cephalopod distribution, movements and life history

related to changes in environmental variables [77, 78]. Therefore, any evident differences

between the diet of LFPWs from each location may be driven by intra- and inter-annual (and

decadal) variability, rather than any real differences. Future diet studies from Tasmanian sites

described in this study (i.e. Bicheno, Maria Island, Ocean Beach and Marion Bay) would begin

to address some of the variability considerations. Gaps in current knowledge and future cepha-

lopod research priorities should also be addressed, such as linking distribution and abundance

to environmental effects on biological processes, and using such knowledge to provide envi-

ronmental indicators to underpin fishery management [78].

Potential bias of dietary studies

Although our analysis found minimal remains from non-cephalopod prey items, potential

biases of the methods should be considered, including differential digestion of prey items,

retention of hard part remains, lack of representation of temporal variability in prey items, and

inability to discern primary from secondary digested prey [4, 5, 75, 79, 80].

Other limitations of dietary studies based on stomach content analysis of stranded ceta-

ceans are well known, where the results could be biased towards near-shore prey, perhaps not

characteristic of normal foraging behaviour, and by sick whales whose diet does not necessarily

represent that of healthy whales; see Pierce and Boyle [81] for a review. Although these limita-

tions likely still apply to mass strandings, they may be minimised since the majority of animals

are probably healthy, and still actively foraging prior to death [82, 83].

As a result of the above biases, the estimated importance of particular prey items cannot be

guaranteed to reflect that of the true diet of the individuals, or stranded group. However, the

analysis of identifiable prey remains confirms the presence of these prey items in the diet of

LFPWs, and a relative importance can be estimated. Traditional dietary studies using analysis

of stomach contents can also be complemented by novel new techniques such as analysis of

faecal DNA [84], tissue lipid profiles [85], fatty acid signature analysis [86], and stable isotope

analysis [14, 87, 88] where associated identification of hard part remains from the same indi-

viduals may provide a more comprehensive insight into the complete diet of top predators.

The identification of cephalopods using their beaks is a difficult technique, and due to ero-

sion, similarity of beaks, and a lack of taxonomic work on certain families, some species can be

easily confused [50]. Comparison of genetic material from identified beaks to known genetic

sequences may also be an effective confirmation method to ensure identifications are correct

for species known to be easily confused. As an example, for this study most Ommastrephidae

spp. were grouped together due to the difficulty to differentiate species, which hindered com-

parisons of the most important species.

As described above, there are known and well-documented biases that should be consid-

ered for diet studies. However, irrespective of the biases, it is clear that cephalopods are an

important component of LFPW diet in South Australian waters (i.e. 26 species from 17 fami-

lies confirmed to be consumed), thus providing a unique insight into a component of the for-

aging ecology of LFPW.

Conservation implications

This study shows that cephalopods are the main prey for LFPWs that utilise Tasmanian waters.

However, it remains unknown whether LFPWs are migrating through Tasmanian waters, or

are resident in nearby offshore waters and occasionally forage inshore, such as during cephalo-

pod inshore migration events described by Desportes and Mouritsen [29]. Recent molecular

analysis of worldwide stock structure of LFPWs (i.e. samples from New Zealand, Tasmania
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and the North Atlantic) showed low haplotype and nucleotide diversity compared to other

abundant widespread cetaceans, but strong mtDNA differentiation between ocean basins [89].

Tasmanian samples exhibited the highest diversity at the haplotype and mtDNA level [89]. Of

particular significance for this study was the strong differentiation observed among LFPW

populations from Tasmanian waters compared to adjacent New Zealand waters [89]. Such

strong differentiation was unexpected, because LFPWs are considered widely distributed and

nomadic [24, 89]. However, it was suggested that maternal fidelity driven by social organisa-

tion or habitat/behavioural specialisation may explain the population structure [89]. These

population structure differences may partially explain the apparent differences in diet between

the two regions.

As there is no direct catch known for LFPWs in the Southern Hemisphere, the immediate

conservation concerns for LFPWS inhabiting Australian waters are a reduction in prey, oce-

anic pollution and climate change [90, 91]. Effective management of commercial and recrea-

tional squid fisheries will assist towards ensuring an adequate prey base for the variety of

marine vertebrates (including marine mammals) that rely on cephalopods as a major compo-

nent of their diet.
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