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Comparing DNA, RNA and protein 
levels for measuring microbial 
dynamics in soil microcosms 
amended with nitrogen fertilizer
Luis H. Orellana1,10, Janet K. Hatt1, Ramsunder Iyer   2,3, Karuna Chourey2, Robert L. Hettich2, 
Jim C. Spain4, Wendy H. Yang   5,6, Joanne C. Chee-Sanford7, Robert A. Sanford5, 
Frank E. Löffler   8,9 & Konstantinos T. Konstantinidis1*

To what extent multi-omic techniques could reflect in situ microbial process rates remains unclear, 
especially for highly diverse habitats like soils. Here, we performed microcosm incubations using 
sandy soil from an agricultural site in Midwest USA. Microcosms amended with isotopically labeled 
ammonium and urea to simulate a fertilization event showed nitrification (up to 4.1 ± 0.87 µg 
N-NO3

− g−1 dry soil d−1) and accumulation of N2O after 192 hours of incubation. Nitrification activity 
(NH4

+ → NH2OH → NO → NO2
- → NO3

−) was accompanied by a 6-fold increase in relative expression 
of the 16S rRNA gene (RNA/DNA) between 10 and 192 hours of incubation for ammonia-oxidizing 
bacteria Nitrosomonas and Nitrosospira, unlike archaea and comammox bacteria, which showed 
stable gene expression. A strong relationship between nitrification activity and betaproteobacterial 
ammonia monooxygenase and nitrite oxidoreductase transcript abundances revealed that mRNA 
quantitatively reflected measured activity and was generally more sensitive than DNA under these 
conditions. Although peptides related to housekeeping proteins from nitrite-oxidizing microorganisms 
were detected, their abundance was not significantly correlated with activity, revealing that meta-
proteomics provided only a qualitative assessment of activity. Altogether, these findings underscore the 
strengths and limitations of multi-omic approaches for assessing diverse microbial communities in soils 
and provide new insights into nitrification.

Even though the central role of microbes in the cycling of nitrogen is recognized, the dynamics and controls of the 
interrelated microbial nitrogen pathways in agricultural soils are not completely understood. This knowledge gap 
limits the development of accurate, predictive models of nitrogen flux that encompass the role of microbes in the 
generation and consumption of nitrogen substrates, as well as the emission of greenhouse gases, including nitrous 
oxide (N2O)1. In agricultural soils receiving large inputs of nitrogen fertilizer, nitrifiers such as ammonia-oxidizing 
bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) collectively are respon-
sible for the conversion of ammonium to nitrate2,3. In addition, the recent discovery of Nitrospira bacteria capable 
of complete oxidation of ammonia to nitrate (comammox) has suggested that the process of nitrification in nat-
ural environments might be carried out by a single taxon4,5. Under anoxic conditions (e.g., water saturated soils), 
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nitrate (NO3
−) can be reduced to gaseous forms such as dinitrogen (N2), nitric oxide (NO) or N2O by denitrifying 

organisms and consequently be lost to the atmosphere. It has also been reported that nitrification is a major N2O 
source under low oxygen concentrations3,6, although detailed mechanistic understanding is lacking7. Despite the 
importance of nitrification in the generation of N2O and NO3

−, the relative contributions of AOA, AOB and NOB 
populations in this process, especially during soil fertilization events, are still subjects of intensive research8, and 
the relative contribution of the comammox bacteria to the process is not clear9. Thus, understanding the niche 
specialization and diversity of nitrifiers in terrestrial ecosystems is essential for better prediction of the contribu-
tions of these microbial taxa to the nitrogen cycle and the modeling of the corresponding activities and products. 
High-throughput sequencing and proteomic approaches can characterize the diversity of nitrogen pathways in 
the environment. However, to what extent these omic approaches could also reflect microbial activity is less clear.

Although DNA, RNA, and protein abundances all reflect microbial potential and responses to environmen-
tal changes and thus, could be used to study nitrogen cycling in soils, each measurement generally offers dif-
ferent types of information. For instance, metagenomics (DNA level) offers a comprehensive overview of the 
functional potential of microbial communities but does not reflect active community members or functions. 
Short-term microbial responses to external changes (e.g., nitrogen addition) can be tracked by analyzing the 
actively expressed genes (i.e., metatranscriptomics). For instance, the relationship between measured nitrification 
processes and the ammonia monooxygenase (amoA) transcripts have revealed differences between archaeal and 
bacterial activity in acidic soils10. Proteomics provides a third level of molecular information by reflecting synthe-
sized enzymes that catalyze reactions. Although proteomics has been applied to only a limited number of natural 
microbial communities, the results have provided new insights about metabolic pathways and interdependencies 
among microbial groups [reviewed before11]. However, most of these advances are hindered by the intrinsic 
complexity of soils. For instance, soil samples are challenging to analyze not only because of their heterogeneous 
structure and chemical composition (e.g., low quality and quantity of extracted nucleic acids), but also because 
of the highly diverse microbial communities and slow growth kinetics. Nonetheless, recent advances in metagen-
omic and metaproteomic techniques as well as integration with stable isotope probing (SIP) have helped elucidate 
the role of previously elusive keystone microbial populations12. For instance, the combination of multi-omic data-
sets provided new insights into diversity and gene potential of microbial communities of permafrost ecosystems, 
but the datasets were less predictive of measured process rates13.

Toward closing the abovementioned knowledge gaps, we examined nitrogen-amended sandy soils obtained 
from a site with a history of agricultural management and application of synthetic nitrogen fertilizer. A prior 
year-round characterization of field samples from the same agricultural site revealed increased abundance of 
novel Thaumarchaeota and comammox nitrifiers, but the findings were limited to metagenomics14. Here, our 
goal was to assess the strengths and limitations of multi-omics in detecting microbial activity by correlating meas-
urements of DNA, RNA, and protein abundances with measured rates of nitrate formation and N2O production 
in soils incubated under controlled conditions in the laboratory. The results revealed that metatranscriptomic 
data best reflected the measured nitrification rates under the tested experimental conditions and provided novel 
insights about nitrifier gene expression dynamics after a simulated nitrogen fertilization event.

Results
Nitrification activity in soil microcosms.  Patterns in nitrification rates were consistent with NO3

− for-
mation and NH4

+ disappearance during an eight-day period following the amendment of soil microcosms with 
an equimolar nitrogen mixture of NH4

+ and urea, representative of fertilizer application in the field. Nitrate 
was not supplied as part of the amendment because it could represent both product and substrate for different 
nitrogen cycle pathways. Based on the NH4

+ concentration patterns, urea quickly hydrolyzed to release NH4
+ 

within the first two days of incubation (Fig. 1a). Specifically, the NH4
+ concentrations peaked at 48 hours of 

incubation (avg = 18.02 and SD =  ± 1.5 µgN-NH4
+ g−1 dry soil) from urea hydrolysis, and decreased to 5.4 ± 2.5 

µgN-NH4
+ g−1 dry soil by 192 hours of incubation. Consistent with the disappearance of NH4

+, the NO3
− concen-

trations increased from an initial value of 0.81 ± 0.28 µgN-NO3
- g−1 dry soil to 1.91 ± 0.5 µgN-NO3

- g−1 dry soil 
at 120 hours of incubation, and then increased at a faster rate to 15.06 ± 2.7 µgN-NO3

− g−1 dry soil at 192 hours of 
incubation (Fig. 1a). Measured nitrate accumulation and nitrification rates confirm that nitrification activity was 
relatively low (<1 µgN-NO3 g−1 dry soil) for the first 120 hours of incubation and increased five to eight days after 
the addition of NH4

+ and urea mixtures, reaching an average nitrification rate of 4.1 ± 0.87 µg N-NO3
− g−1 dry 

soil d−1 (n = 6) after 192 hours of the incubation (Fig. 1b). As a result of nitrification activity, pH values decreased 
across replicated nitrogen-amended microcosms during the incubation (Table S1). In order to examine the gen-
eration of N2O possibly generated as a by-product of oxidation reactions during the incubation, we measured the 
production of N2O in nitrogen-amended incubations. Net N2O production rates in the incubation headspace 
increased from 0.22 ± 0.16 ng N-N2O g−1 dry soil d−1 after 24 hours to 0.56 ± 0.40 ng N-N2O g−1 dry soil d−1 at 
the end of the incubations (Fig. 1c). Control microcosms receiving only irrigation water (i.e., no nitrogen amend-
ment) did not show net NH4

+oxidation.
To evaluate possible differences between the use of NH4

+ or urea in nitrifying activity, we examined patterns 
in 15N-NO3

− production rates in microcosms that received 15N-labeled NH4
+ versus 15N-labeled urea by tracing 

the fate of 15 N label in the fertilized treatments. In general, 15NO3
− production was similar between 15NH4

+ and 
15N-urea microcosms, although rates were higher after 10 hours in 15NH4

+ microcosms and 48 hours in 15N-urea 
microcosms (two tailed t-test, P < 0.01), but converged thereafter (Fig. S1). By the end of the incubations, approx-
imately half of the added 15N was converted to 15N-NO3

− (49–55% for both labelled solutions/treatments), 
only a small fraction was converted to 15N-N2O (0.006–0.01%), and a large percentage remained as 15N-NH4

+ 
(19 ± 11%) (Fig. S1). The remaining added nitrogen was presumably rapidly lost as N gas, assimilated into micro-
bial biomass, or adsorbed to soil particles, all well-known nitrogen sinks of 15N tracer studies in soils15,16.
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Taxonomy of microbial soil populations based on 16S rRNA gene sequences.  The taxonomic 
composition and abundances of the main microbial groups determined from recovered 16S rRNA gene sequences 
(DNA level) from nitrogen-amended incubations, were generally stable during incubations (Fig. S2). In agree-
ment with our previous results based on field samples from the same agricultural site14, bacterial and archaeal 
groups associated with nitrification were comparatively less abundant than (non-nitrifer) abundant bacterial taxa 
(e.g., Actinobacteria, Flavobacteria, and Acidobacteria) in both DNA and cDNA datasets. For instance, known 
AOB and NOB genera such as Nitrosomonas and Nitrospira had average relative abundances of 0.01% and 1.6% 
of the total populations in the metagenomes from incubated soils. Additionally, the relative abundances of the 
AOA genera related to Nitrososphaera and Nitrosopumilus were 0.9% and 0.3% in the microcosm metagenomes. 
We note however that due to the high coverage obtained by our datasets, the 16S rRNA gene (and protein-coding 
genes; see below) of these nitrifiers were adequately sampled. Notably, the 16S rRNA gene transcript abundances 
for AOB conspicuously increased during the incubation period (Fig. S3). In fact, relative 16 S rRNA gene expres-
sion ratios (cDNA/DNA) for AOB and NOB belonging to Nitrosospira, Nitrosomonas and Nitrospira increased 
3-,6-, and 14-fold between 10 and 192 hours. In contrast, the 16S rRNA gene expression ratios for the archaeal 
groups Nitrososphaera and Nitrosopumilus were stable during the same incubation period, although with ~50% 
increase in relative expression at 48 h of incubation (Fig. S3). A description of detected functions in metatran-
scriptomes is available in the Supplementary Material. We sought to examine next the dynamics of individual 
populations/genomes.

Individual populations from microcosm metagenomes.  Given that none of the recovered 
metagenome-assembled genomes (MAGs) represented AOA, AOB, NOB, or comammox populations, we 
included MAGs obtained from a previous analysis of field samples from the same site (Havana county, Illinois, 
USA) and depth as the soil used in the soil microcosms in the present study14. MAGs potentially involved in 
nitrification processes were likely missed in the microcosm metagenomes due to comparatively lower sequencing 
effort than the field samples and the relatively low abundances of these groups. The MAGs (designated with the 
letter F at the end of their name for Field metagenomes) consisted of two complete ammonia oxidizer (comam-
mox) Nitrospira MAGs (MAG021F and MAG017F) and five ammonia-oxidizing archaea MAGs representing 
the Thaumarchaeota lineages I.1b (MAG032F and MAG019F) and I.1a (MAG004F, MAG109F, and MAG001F) 
(Fig. S4b). The genetic relatedness of the field MAGs compared to the populations found in the microcosm 
metagenomes based on the identity of reads17 from latter metagenomes recruited against these MAGs was high 
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Figure 1.  Nitrogen pools and fluxes in soil incubations amended with NH4
+ and urea. Mean NH4

+ and 
NO3

− concentrations (A), total NO3
− production rate (B), and total N2O production rate (C) for the nitrogen-

amended microcosms at each incubation time point. Error bars represent the standard deviation from replicate 
samples (n = 6 for nitrogen-amended and n = 3 for control).
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(ANIr avg = 99.3, SD = 0.27). These results confirmed that the MAGs from the field metagenomes well repre-
sented the populations in the microcosms (Fig. S4c). These seven nitrifier MAGs recruited between 0.36% to 
0.77% of the microcosm metagenomic reads in each dataset, with an average of 0.55%, and between 0.46% and 
0.92% of the metatranscriptomic libraries, which was comparable to the 16S rRNA gene-based abundances men-
tioned above. This level of relative abundance was adequate for assessing the gene and transcript dynamics of the 
MAGs since it provided, on average, more than 7.5X coverage of the corresponding gene sequences (i.e., the time 
each base is covered by transcriptomic reads). Additional statistics for metagenomes and metatranscriptomes 
datasets, including sequencing effort, coverage obtained, and statistics of all recovered MAGs are available in 
the Supplementary Material and Tables S2–5.

Relative expression values of MAGs (measured as transcriptomic reads per kilobase million, RPKM) were 
used as a proxy for comparing the response and metabolic activity among nitrifying bacteria and archaea 
between samples (incubation time points). Even though expression values for most nitrifying MAGs belonging 
to Nitrospira and Thaumarchaeota were stable and relatively low, AOA MAG004F, MAG019F and comammox 
MAG017F had, on average, the highest expression values throughout the incubations (Fig. S4a). For instance, the 
increase in expression values for AOA belonging to the I.1b clade, MAG004F and MAG032F, were 39% and 50% 
after 48 hours of incubation (compared to expression levels at 10 hours incubation), respectively. In contrast, gene 
expression of comammox MAG017F increased by 59% after 120 and 192 hours of incubation (Fig. S4a). Note 
that AOB and NOB were not included in the RPKM analysis due to lack of recovered MAGs representing these 
populations (see above). Given the technical limitations in recovering high quality nitrifier MAGs, a gene-based 
approach was also employed in order to assess changes in gene fragments (DNA) and transcript (cDNA) abun-
dances of genes involved in nitrification activity for AOB and NOB nitrifiers (see below).

Quantification of nitrification genes in microcosms.  To further explore the microbial nitrification 
processes in incubated soils at the gene level, we specifically quantified gene fragments and transcripts directly 
involved in nitrification reactions using ROCker, a tool developed to accurately differentiate between reads 
encoding different gene families or (distinct) phylogenetic clades within a gene family18 (see Methods for details). 
Relative expression values belonging to the gene encoding urease subunit c (ureC) were relatively high after 48 
and 192 h of incubation but the average abundances were lower compared to other nitrification genes (e.g., amoA; 
see Fig. S5a). For instance, the relative expression of the bacterial gene encoding ammonia monooxygenase sub-
unit alpha (amoA) was 53.5-fold higher compared to the expression values at 10 h of incubation. Most of the 
detected amoA transcripts (cDNA) were phylogenetically affiliated with Betaproteobacteria and corresponded to 
up to 90% of the total detected bacterial amoA transcripts at 192 hours of incubation (Fig. 2a). Notably, regression 
analysis between amoA transcript abundances and measured nitrate concentrations at 10, 48, 120 and 192 h of 
incubation had a strong relationship (Coefficient of determination, r2 > 0.97, Fig. S5c). The r2 values determined 
for transcripts belonging to other nitrification genes during the same incubation points were lower and ranged 
from ~0 to 0.7. Similarly, low r2 values were observed when using the DNA level (i.e., metagenomic reads) for 
other nitrification genes. After 192 hours of incubation, betaproteobacterial amoA transcript abundance increased 
66-fold, whereas comammox amoA gene transcripts remained stable (Fig. 2a). The latter results indicated that 
the comammox amoA may be more abundant under field conditions but betaproteobacterial amoA might show a 
faster response upon ammonia addition, which was also consistent with a previous study14.

Although the relative expression for the archaeal amoA was more stable throughout the incubation compared 
to its betaproteobacterial counterparts, maximum expression was reached after 120 hours of incubation, sug-
gesting that archaeal AmoA activity temporarily increased at later time points during the incubation. Archaeal 
amoA transcripts belonging to the group I.1b were ~7 times more abundant than their I.1a counterpart across the 
incubations (Fig. 2c). Similar to amoA patterns, the relative expression for the betaproteobacterial hydroxylamine 
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Figure 2.  Nitrification genes in incubated soils. Transcript abundance (RPKM, top panel) and gene abundance 
(genome equivalent, lower panel) for bacterial amoA (A), hao (B), thaumarchaeotal amoA (C), and nirK (D) are 
shown. Transcript or DNA abundances for specific clades are showed in different colors.
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oxidoreductase (haoA; NH2OH → NO2
−) steadily increased during the incubations, whereas comammox haoA 

transcripts were stable throughout the incubations (Fig. 2b). Expression values for the nitrite oxidoreductase 
subunit alpha (nxrA; NO2

− → NO3
−) had a 12.4-fold increase compared to the 10-hour time point, consistent 

with the patterns observed for the previous nitrification genes and NO3
− accumulation (Fig. S5a). Unexpectedly, 

expression values for nirK (NO2
− → NO) affiliated to Thaumarchaeota were higher compared to nirK transcripts 

assigned to the Nitrospira clade (Fig. 2d). In fact, Thaumarchaeota nirK transcripts had a 3.4-fold increase after 
192 hours of incubation relative to earlier sampling points, indicating that Thaumarchaeota might have been 
more active in the reduction of nitrite compared to other steps of nitrification. Specifically, there was a 3.4-fold 
increase for clade I.1b nirK transcripts during the 10 to 192 hours of incubation period, whereas the abundance of 
transcripts from clade I.1a were stable throughout the incubations (Fig. 2d). We were also able to assign several of 
the gene sequences used above to individual MAGs using a phylogenetic approach. Consistent results with those 
reported above were observed when examining MAG-specific expression patterns. For instance, a high fraction 
of the total comammox hao and thaumarchaeotal nirk transcripts, ranging from ~62 to 82%, were assigned to 
MAGs. However, the majority of detected amoA and hao transcripts were derived from soil betaproteobacterial 
AOB communities (Fig. 2a) not represented by the recovered MAGs (i.e., these genes were part of the un-binned 
soil predicted sequences). Thus, a MAG-centered approach would have missed the activity of these communities 
since no betaproteobacterial AOB MAGs were recovered.

In summary, the metatranscriptomic profiles suggested that AOB, but not comammox, responded rapidly to 
the nitrogen amendment, whereas AOA transcriptome shifts were less pronounced. The response of AOB, and to 
a lesser extent AOA, was also reflected at the DNA level, albeit with a substantial time delay (Fig. 2, lower panels). 
For instance, shifts were observed early at the transcript level while at the DNA level changes were mostly evident 
192 hours after the start of incubation (Fig. 2a,b). One exception was the urease gene (ureC) that showed high 
abundance at all incubation time points although its transcription response was lower compared to nitrification 
genes (Fig. S5a,b). Nonetheless, these results were consistent across the individual nitrification steps and indicated 
that at least the AOB nitrifiers grew in response to nitrogen addition.

A proteomic perspective in soil microcosms.  A metaproteomic analysis of the control and 
nitrogen-amended microcosms at 192 hours of incubation detected a total of 2,892 and 1,629 non-redundant 
peptides, respectively. A total of 844 peptides were shared among control and nitrogen-amended incubations, 
whereas 2,048 and 785 were exclusively present in each microcosm, respectively. Most of peptides detected in 
control and nitrogen-amended incubations matched protein sequences predicted from metagenomic assemblies 
(89.4% and 88.2%, respectively) and the remaining fraction matched reference proteomes (Table S6). The top 20 
most abundant proteins in control and nitrogen-amended treatment microcosms were related to housekeeping 
and transport proteins whereas in the latter incubation, oxidoreductases for small carbon and alcohol molecules 
and ATP synthesis were among the most abundant proteins detected (Table S7). These results were also consistent 
for some of the highly expressed genes in metatranscriptomes related to protein and RNA metabolism at 192 h 
of incubation (See Supplementary Material). The taxonomic affiliation, at the class level, for the most relatively 
abundant annotated peptides belonged to Alphaproteobacteria, Betaprotebacteria, and Acidobacteria in con-
trol and nitrogen-amended incubations. Although there were major differences in abundances for groups such 
as Betaproteobacteria (40% decrease) and Gammaproteobacteria (50% decrease) (Fig. 3a), higher abundances 
were detected for less abundant groups commonly associated with the nitrification process. For instance, close 
to a 2.2-fold increased abundance for nitrogen-amended incubations were detected for peptides belonging to 
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Nitrospira. Detected peptides related to folding and synthesis were the most abundant and had similar abun-
dances in the control and nitrogen-amended microcosms after 192 hours of incubation. However, the relative 
abundance was higher for annotated functions related to ATP synthases and transcription categories in the 
nitrogen-amended samples relative to the control, presumably as a consequence of a higher microbial activity 
generated after the nitrogen input. On the other hand, heat-shock and degradation proteins were more abundant 
in the control incubation, probably reflecting a more prevailing dormant state for the microbial communities 
in these samples (Fig. 3b). However, unlike the metagenomic and metatranscriptomic datasets, only some pep-
tides involved in nitrification were identified using metaproteomics. For instance, the detected peptides directly 
involved in nitrification pathways corresponded to the nitrite oxidoreductase subunit B (NxrB), which had a 
31.3% abundance increase in the nitrogen-amended samples compared to the control.

Discussion
Using multi-omic approaches for examining process rates.  Measuring nitrification rates in incu-
bated soils allowed us to evaluate the explanatory and predictive power of omic approaches in a highly diverse 
soil system. Although all three omic approaches revealed increased abundance for target genes, transcripts, and 
proteins related to nitrification pathways, they differed in temporal resolution and detection capabilities. For 
instance, the strongest agreement to the observed nitrification processes (i.e., ammonia or nitrite oxidation) was 
for the metatranscriptomic data within the first days of incubations (e.g., Fig. 2a,b,d), whereas metagenomes 
lagged behind and only reflected the ongoing nitrification process after 192 hours of incubation (e.g., lower panels 
Fig. 2a,b). These data were presumably attributed to the fact that growth (e.g., at least a few replication cycles) 
should occur before metagenomics can reveal shifts in relative abundance over time. Note that microbial growth 
was not explicitly measured by our study to further corroborate the above interpretation. Therefore, metagen-
omics could also reflect ongoing microbial processes if the processes are ongoing for a period of time and are 
coupled with the growth of the corresponding organisms, even in soils. In contrast, if the goal is to see immediate 
responses to a perturbation or if the perturbation is short-lived (e.g., lasting a few hours), metatranscriptomic 
data will be preferable. We also observed that metatranscriptomes were as good as metagenomics, if not better, at 
reflecting microbial activity for nitrification processes even at later incubation time points. In contrast, the metap-
roteomes offered, at most, a qualitative glimpse at nitrification processes and were less definitive in identifying 
common nitrification markers. The latter was largely attributable to the computational challenges associated with 
proteomic data such as high peptide redundancy and the requirement of high-quality assemblies which are still 
challenging for highly complex soil metagenomes. Furthermore, many challenges remain for efficient extraction 
of membrane proteins from low abundance organisms such as nitrifiers. Ultimately, these technical limitations 
were reflected in a lower number of detected proteins compared to the number of metagenomic and metatran-
scriptomic reads recovered that encoded the proteins of interest in our datasets.

While shifts in 16S rRNA gene ratios (cDNA/DNA) were relatively small for AOA, the 16S rRNA and func-
tional gene ratio shifts (e.g., amoA) for AOB/NOB were much more pronounced throughout the incubations 
(Fig. S3). These results might reflect an active and growing state for AOB/NOB and mostly active AOA com-
munities as observed before for agricultural soil microcosms19. The differences observed between (high) target 
gene abundances and (low) 16S rRNA gene ratios for AOA could reflect a limitation of the latter approach when 
used as a proxy for assessing microbial activity (e.g., inconsistent correlation between rRNA and activity)20. Thus, 
targeting specific functional genes in AOA could offer an alternative approach for tracking their activity in meta-
transcriptomes. However, more frequent sampling and incubations under different physicochemical conditions 
will be required for more robust conclusions to emerge on the exact relationship(s) between rRNA marker abun-
dances and process rates.

Future incubation studies could increase the number of samples analyzed and shed light on the intrinsic dif-
ferences between nitrifier (and denitrifier) communities by testing variables such as oxygen availability (i.e., water 
saturation) and different agricultural soil types. For instance, the incubation conditions used in our study delib-
erately promoted nitrification over denitrification processes and as a result, the N2O production was detected 
due to the former process. Consequently, nitric oxide (e.g., norB) and nitrous oxide reductases (e.g., nosZ) tran-
scripts, which are responsible for N2O production and consumption during denitrification, respectively, were not 
detected in our metatranscriptomes datasets (i.e., abundance below detection limit). Also, the use of nitrification 
inhibitors could help to elucidate the origin of the measured N2O whether production was biotic or abiotic, for 
which our data are limited in predicting.

Previous studies have also found metatranscriptomic approaches to be better predictors of measured micro-
bial activity21 in controlled laboratory systems amended with exogenous organic compounds or natural commu-
nities, but have been more limited in providing insights into the whole-microbial community response to the 
amendment. For instance, a high correlation between environmental conditions and the expression of adapta-
tion mechanisms (transcription level) was observed in acid mine drainage communities22. On the other hand, 
multi-omic approaches applied to permafrost microbial communities were less predictive of biogeochemical pro-
cesses such as methane oxidation but provided a higher overview of active (transcription and proteomic levels) 
microbial members encoding these pathways13. Similar approaches led to the discovery of unexcepted microbial 
pathways such as the methanogenesis in oxygenated soils23. Here, our metatranscriptomic results were effective 
in reflecting measured nitrification even though our observations were based on single samples at different time 
points. Nonetheless, temporal data typically require less replication for statistically robust results and likely off-
set the experimental noise between sampling time points compared to cross-sectional data. Hence, our main 
conclusions were likely not affected by the relatively small number of samples analyzed. Taken all together, our 
analysis showed that metatranscriptomics could reliably and quantitively reflect undergoing microbial processes 
even in the soil microcosms which represent an intrinsically challenging matrix for RNA work compared to other 
ecosystems (e.g., aquatic environments24). It should be noted that different soil types may not be as amenable to 
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perform RNA extractions (e.g., not enough high-quality RNA). Hence, metatranscriptomics may continue to be 
a challenging task for certain soil types and conditions.

New insights into nitrification pathways.  In terms of the ecological adaptation of the nitrifiers analyzed 
here, the Havana agricultural site has had a long history of cyclical seasonal inputs (e.g., fertilizers) that have 
shaped the structure of microbial communities differently between soil layers. The AOA and AOB communities 
in the Havana site have legacy establishments at the 20–30 cm soil depth and are under relatively stable environ-
mental conditions compared to the top soil layer that receives most of the nitrogen fertilizer14. Thus, nitrogen 
amendments tested in our experiment and experimental conditions might not represent closely the conditions 
usually experienced by the examined, deep-layer AOA and AOB communities (20–30 cm). The rapid response 
of AOB observed here might be a reflection of physiological adaptations of AOB to thrive under high nitrogen 
content as reported previously19. In contrast, the low response observed for comammox and some AOA commu-
nities might reflect their limited physiological capabilities to respond to high nitrogen concentrations4,5 that were 
assayed in our experimental setup.

Assessing the individual gene level, as opposed to whole genome transcript level, provided more robust results 
for relating population response to measured nitrification reactions, presumably due to higher sequence coverage 
(less noise). Our results showed that even though betaproteobacterial amoA transcripts responded to the addition 
of ammonium and urea, the relative abundance of comammox amoA transcripts was stable (i.e., not responding 
to the nitrogen amendment), although comammox populations were relatively more abundant than AOB in the 
microcosms. This observation is consistent with previous metagenomic results from the same agricultural soil, 
where comammox amoA genes and the organisms encoding these genes represented the highest fraction of nitri-
fying bacteria14. The differences between measured genes and transcripts indicated that the incubation conditions 
favored the activity of Betaproteobacteria over comammox nitrifying bacteria, suggesting ecophysiological differ-
ences among these taxa for the incubation conditions or added substrates compared to field conditions.

The sequencing of isolates and environmental AOA genomes has shown that even though they encode an 
AmoA protein, they lack a canonical hydroxylamine oxidation pathway25. Previous studies have proposed that 
nitric oxide is essential for hydroxylamine oxidation to nitrite in archaea26. The proposed mechanism involves 
oxidation of ammonium to hydroxylamine followed by oxidation to nitrite catalyzed by a putative Cu-protein that 
uses nitric oxide as co-reactant for the oxidation of hydroxylamine. Interestingly, nitric oxide has been proposed 
to be derived from the activity of the NirK enzyme present in most AOA sequenced genomes. Our results show 
that unlike AOA amoA or bacterial nirK transcripts, Thaumarchaeota nirK transcripts increased in abundance 
in the incubated soils, supporting the abovementioned hypothesis. Therefore, even though AOA amoA tran-
scripts did not show clear changes in abundances compared to their bacterial counterparts, these results agree 
with the previous observations in marine and terrestrial systems26,27, and likely denote an unaccounted role for 
Thaumarchaeota nirK in nitrification in agricultural soils.

Challenges and opportunities for multi-omic studies.  Here we analyzed total RNA extractions from 
soils where ribosomal RNA transcripts represented 94–98% of the total sample, limiting our study to a small frac-
tion of transcripts related to functional genes. Current experimental approaches offer successful rRNA depletion 
for environmental samples, when RNA yields are not limiting28, which was not the case in our study. Additionally, 
all the results represented here provided only relative abundances for measured microbial markers. For instance, 
approaches such as qPCR or internal standards spiked into the DNA or cDNA library for sequencing28 can 
strengthen and provide improved quantification compared to those presented here.

The relative low correspondence between detected peptides (metaproteomics) and active microbial processes 
compared to the DNA or RNA levels was likely due, at least partially, to the low biomass of nitrifiers and extrac-
tion biases due to the complexity of soil matrices as well as limited extraction of membrane proteins, such AmoA, 
as suggested previously29. Alternative proteomic approaches focused on a preselected set of proteins (i.e., selected 
reaction monitoring or target proteomics) could be used to explore low abundance nitrification proteins. For 
instance, targeted proteomic approaches have been used to study proteins in low abundance involved in biore-
mediation pathways in highly-diverse environmental systems30. Therefore, targeted proteomics might offer new 
opportunities for researchers interested in detecting low-abundance peptides and prediction of process rates in 
complex samples31. Finally, abundant peptides related to C1 dehydrogenases that were detected in our metapro-
teomic profiles (Table S7) were likely not related to denitrification as they did not respond to the nitrogen amend-
ment and were detected in both control and N-amended incubations, and our microcosms were kept under 
aerobic (non-denitrifying) conditions. Additionally, the annotations of these soil predicted protein sequences 
might be limited due to generally low identity matches to experimentally verified dehydrogenases.

Conclusions
The analyses of different omic levels obtained from the incubations showed a high correspondence between nitri-
fication gene markers/transcripts and nitrification process rates. The gene fragments and transcripts were mostly 
affiliated to novel nitrifier populations similar to those previously described in field soil metagenomes from the 
same agricultural site14. Therefore, the gene and genome sequences reported here could facilitate future investi-
gations of nitrogen cycling in agricultural fields; for instance, by applying qPCR assay targeting the key taxa and 
biomarker genes and transcripts. The combination of metagenomic and metatranscriptomic approaches used 
in our study provided a promising strategy for examining microbial activity in agricultural soil environments. 
Therefore, the findings presented here highlighted the potential of omics data to serve as reliable proxies for 
examining microbial processes in situ, especially in soils, which has been proven to be among the most challeng-
ing tasks for environmental studies.
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Methods
Soil sampling.  Our study was focused on an agricultural plot located in the Havana County, Illinois, USA 
(lat 40.296, long 89.944; elevation, 150 m). The site is representative of the US Midwest and has a long history of 
conventionally managed corn and soybean crop rotation. In October 2014, we collected ~2 kg of bulk soil from a 
20–30 cm soil depth as previous results have shown significant presence of ammonia-oxidizing microorganisms 
in this layer14.

Soil incubations, gas and chemical analyses.  Soil microcosms were established in triplicate, using 
~120 g of soil (~8% moisture content) in 500 ml gas-tight canning jars equipped with gas sampling ports, and 
were sampled at six time points (0, 10, 24, 48, 120, and 192 hours). To simulate a fertilization event in microcosms, 
6 ml of 40 mM NH4Cl and 20 mM urea (80 mM N) in irrigation water was added to two separate batches of 400 g 
of soil (Final concentration = 1.2 µmoles-N/g or 18.3 µg-N/g dry weight). Gross rates of nitrification stimulated 
by the NH4

+ versus the urea fertilizer were estimated using the 15N tracer approach with two separate stable iso-
tope treatments (n = 6 per treatment): a 50% 15N-NH4Cl and 50% 14N-NH4Cl, 99.7% 14N-NH2CONH2 treatment 
versus a 50% 15N-NH2CONH2 and 50% 14N- NH2CONH2, 100% 14N-NH4-Cl treatment. After vigorously mixing, 
120 g were dispensed into three separate microcosm jars and incubated in a dark growth chamber with diurnal 
temperature fluctuation of 22–24 °C as observed in Havana field soil at 20–30 cm during the spring fertilization 
period (early June). Triplicate microcosms each receiving 6 ml of filtered irrigation water (no nitrogen amend-
ment) served as controls. Individual incubations (whole jar) were sacrificed at each sampling point and all soil 
(~120 gr) was used for chemical, nucleic acid and protein analyses. After each sampling point, headspace gas was 
collected from closed jars and the N2O concentration was measured on a Shimadzu GC-2014 gas chromatograph 
(Columbia, MD) equipped with an electron capture detector. Jars were opened for soil sampling and to reestablish 
equilibration with atmospheric air before being resealed until the next sampling. Ammonium and nitrate in soil 
subsamples (20 g) were extracted in 2 M KCL and the concentrations were determined using colorimetric analysis 
on a flow injection auto-analyzer (Lachat Instruments, Milwaukee, WI)32. Soil pH (1:1 in water) and gravimetric 
water content were measured at each time point (Table S1). 15N isotopic composition of N2O in collected jar 
headspace samples was determined using an IsoPrime 100 isotope ratio mass spectrometer interfaced with an 
IsoPrime trace gas analyzer (Cheadle Hulme, UK) at the University of Illinois at Urbana-Champaign. The 15N 
atom % enrichment of the NO3

− pool was determined using acid trap diffusion33 and analysis of the diffusion 
disks on a Vario Micro Cube elemental analyzer (Elementar, Hanau, Germany) interfaced to an IsoPrime 100 
continuous flow isotope ratio mass spectrometer (Cheadle Hulme, UK). 15NO3

− and 15N2O production rates were 
calculated from the change in 15NO3

− and 15N2O concentrations, respectively, from one time point to the follow-
ing sampling time point. NO3

− and N2O production rates were estimated from the 15NO3
− and 15N2O production 

rates based on the mean 15N excess atom % of the NH4
+ source pool as described before for N2O production 

rates34. No inhibitors of nitrogen cycle pathways were used in the incubations.

Nucleic acid extractions.  DNA and RNA were extracted independently but from the same soil of each 
incubation at each time point. DNA was extracted from ~0.5 g of soil from individual incubations (i.e., repli-
cates were not mixed) using a modified phenol-chloroform and purification protocol as previously described35. 
For RNA extraction, 2 gr of soil was preserved in LifeGuard (MoBio) and stored at − 80 °C. A modified proto-
col derived from the PowerMax Soil DNA kit for extracting RNA was used for total RNA extractions (MoBio). 
TURBO DNAse (Ambion) was used to remove DNA according to the recommendations of the manufacturer. 
Nucleic acid extracts were quantified using Quant-it ds DNA HS and HS RNA assays (Invitrogen) according 
to the instructions of the manufacturer. RNA quality was assessed using Agilent RNA 6000 pico kit (Agilent 
Technologies) and samples having RNA integrity number (RIN) above 7 were used. Additional details about 
nucleic acid sequencing are available in Supplementary Material.

Short-read analyses.  Metagenomic and metatranscriptomic raw reads (FASTQ) for sequenced sam-
ples were trimmed using SolexaQA36 using a Phred score cutoff of 20 and minimum fragment length of 50 bp. 
Short-reads derived from metatranscriptomes were merged using PEAR using default parameters37. Average cov-
erage for each sequenced metagenome was determined by Nonpareil38 using default settings except that 2,000 
reads were used as query (-X option). Short-read sequences encoding 16S rRNA gene fragments were extracted 
from each metagenome and metatranscriptome by SortMeRNA39 and their taxonomy was assigned using RDP 
classifier (cutoff 50)40.

To identify and quantify reads encoding specific protein sequences of interest, we used the previously pub-
lished protein sequences as references14,41. Independent ROCker18 models (length = 125 bp) were subsequently 
built based on these reference protein sequences with the exception of NarG and NxrA, where the sequences were 
combined into a single model. Trimmed short-reads from soil metagenomes were used as query for BLASTx 
searches (e-value 0.01) against the latter protein databases and outputs were filtered using the previously gen-
erated ROCker models. For metagenomes, target gene abundance in metagenomes was determined as genome 
equivalents by calculating the ratio between normalized target reads (number of reads matching divided by 
median protein length) and normalized RpoB reads (number of reads matching divided by median RpoB protein 
length), a universal single-copy gene. For metatranscriptomes, target transcripts abundance was calculated as 
reads per kilobase of transcript per million mapped reads (RPKM). Protein databases and ROCker models are 
available through http://enve-omics.ce.gatech.edu/.

Assembly and binning of metagenomic populations.  Short-read metagenomes from control and 
treatments (t = 0,120 and 192 hours) were co-assembled using IDBA_UD v1.1.142 and binning was performed 
as previously described14. Taxonomic classification and degree of novelty (novel species, genus, etc) of the MAGs 
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were obtained from the Microbial Genomes Atlas (MiGA) webserver43. MAG abundance was determined as 
the total length of all matching metagenomic or metatranscriptomic reads to the binned contigs from BLASTn 
searches (identity >= 98% and fraction of read aligned >= 50%) divided by the metagenomic or metatranscrip-
tomic sample sizes (in millions of reads) and the length of the bin genomes in Kbp (Kilo base pairs). Reads encod-
ing rRNA sequences (such as 5S, 5.8S, 16S, and 23S) were identified by SortMeRNA, and removed for non-rRNA 
analyses in order to avoid overestimating abundances.

N cycle protein sequences in the co-assembly and MAGs were detected using hidden Markov models obtained 
from FUNGENE44, using HMMer45. Detected target N cycle proteins were manually curated, when necessary, by 
assessing the presence of characteristic amino acid and phylogenetic congruency.

Phylogenetic trees and placement of short-reads.  To assess the phylogenetic affiliation of metagen-
omic or metatranscriptomic reads, reference and fully assembled protein sequences were aligned using ClustalΩ46 
with default parameters. Resulting alignments were used to build phylogenetic trees in RAxML v8.0.1947. 
Short-reads encoding the protein of interest were extracted from metagenomes or metatranscriptomes using 
ROCker (BLASTx) and placed in their corresponding phylogenetic tree using the methodology previously 
described14. Quantification of the number of reads assigned to a specific clade (e.g., to distinguish between 
nxrA or narG reads) was done using the “JPlace.distances.rb” script, also available in the enveomics collection. 
To quantify nirK gene fragments assigned to specific clades, the same process as described above was repeated 
except that all reads detected by multiple ROCker models to previously described clades48 (clades I + II, III and 
Thaumarchaeotea) were used. Abundances of target genes were determined as reads per kilobase million (RPKM) 
for metatranscriptomics. Equivalent results were obtained when using transcripts per kilobase million (TPM) but 
RPKM values were preferred for our targeted approach that focused on a reduced set of gene transcripts (ureC, 
amoA, haoA, nxrA, and nirK) and nitrifier populations.

Shotgun metaproteomics.  Approximately 10 g of soil were collected from the 192 hours control and 
15N-NH4

+ amended microcosms and stored at − 80 °C. Frozen soil (5 g) was used for protein extractions. A 
detailed procedure is available in the Supplementary Material.

NanoLC-MS/MS analysis.  Peptides (75 ug) were loaded onto in-house prepared biphasic resin packed 
column [SCX (Luna, Phenomenex, Torrance, CA) and C18 (Aqua, Phenomenex, Torrance, CA)] as described 
earlier49,50 and subjected to an offline wash for 15 min as previously described51. The sample column was aligned 
with an in-house C18 packed nanospray tip (New Objective, Woburn, MA) connected to a Proxeon (Odense, 
Denmark) nanospray source as previously detailed51. Peptides were eluted and subjected to chromatographic sep-
aration and measurements via 24-hr Multi-Dimensional Protein Identification Technology (MuDPIT) approach 
as described earlier49–51. Measurements were carried out using LTQ mass spectrometer (Thermo Fisher Scientific, 
Germany) coupled to the Ultimate 3000 HPLC system (Dionex, USA) and operated in data dependent mode, via 
Thermo Xcalibur software V2.1.0 as described earlier49.

For protein identification, the raw spectra from each run were searched against a custom database and was 
constructed using protein sequences predicted from metagenome assemblies obtained from the same soil and 
20–30 cm depth14, metagenome assemblies from incubations (Table S2), and reference proteomes for 47 com-
mon soil organisms (Table S6). Detected proteins predicted from metagenomic assemblies were annotated using 
BLASTp52 and UniProt database as reference53 (downloaded in May of 2017). Additional details are available in 
the Supplementary Material.

Data availability
Raw metagenomic and metatranscriptomic soil datasets and MAGs are deposited in the European Nucleotide 
archive (ENA) under study number PRJEB27434. MAGs previously recovered from the same agricultural site14 
are deposited in ENA under study number PRJEB20068 and are also available at http://enve-omics.ce.gatech.
edu/data/.
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