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The study of cell behavior is of crucial importance in drug and disease research. The fields of bioinformatics and biotechnology
rely on the collection, processing, and analysis of huge numbers of biocellular images, including cell features such as cell size,
shape, and motility. However manual methods of inferring these values are so onerous that automated methods of cell tracking
and segmentation are in high demand. In this paper, a novel model-based cell tracker is designed to locate and track individual
cells. The proposed cell tracker has been successfully applied to track hematopoietic stem cells (HSCs) based on identified cell
locations and probabilistic data association.
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1. INTRODUCTION

Recent advances in cell culture and cell imaging have made
possible the automated acquisition of millions of cell images.
The corresponding automation of the analysis of such huge
sets of images would allow fundamentally new questions to
be addressed in proteomics, genomics, and stem-cell research
[1–8]. This paper proposes a coupling of advanced methods
in pattern recognition and image processing [9–16] to an ex-
isting cell-imaging platform [17] in which the analysis, cur-
rently being undertaken by hand, is impossibly slow and te-
dious for the volumes of data being generated.

The object of this particular project is the analysis of
stem-cell behavior and differentiation, the process by which
stem cells specialize to different cell types, a process which is
crucial to understand if stem cells are to be used in cell and
tissue regeneration. Specifically, given a culture of cells, ob-
served over time, we need some way of determining whether
a given cell is likely to die, to cause cancer, to specialize into
an incorrect tissue type, or, desirably, to specialize into the
correct cell type.

The first major step in this process, and the end goal of
the research described in this paper, is the automated con-
struction of cell lineage trees, essentially the descendent fam-
ily tree of a single ancestor cell, as illustrated in Figure 1.
Building such a tree for each of multiple cells in a culture
requires maintaining cell identity over time, clearly requiring
the tracking and associating of cells over a long sequence of
images, typically 7000 images taken over a period of several
days.

2. PROBLEM FORMULATION

Although cell tracking is among the most important and
common tasks for biomedical researchers it continues to be
undertaken manually. Researchers visually perform cell mo-
tion analyses and observe cell movement or changes in cell
shape for hours to discover when, where, and how fast a given
cell moves, divides, or dies. This task is tedious due to the of-
ten corrupted or blurred images, the presence of clutter, the
fixing of eyes for long periods of time, and repeating the same
task for different cell types. Furthermore, with imaging data
ever more simply and rapidly acquired, manual tracking be-
comes progressively impractical. As a result, automated cell
tracking systems are mandatory to further advance the study
of biological cells [2, 3, 6, 8, 18–20].

To produce the data for this study, HSC samples are first
extracted from mouse bone marrow, then cultured in custom
arrays having up to forty wells. A small fraction of a typical
HSC microscopic image is depicted in Figure 2 with the su-
perimposed dynamics of a mature blood stem cell before and
after splitting. The cells were imaged using manual focusing
through a 5X phase contrast objective using a digital cam-
era (Sony XCD-900) and acquired by an IEEE 1394 standard
(FireWire) connector. Images were sampled every three min-
utes over the course of several days.

To keep cells alive and healthy, light exposure must be
controlled during their life cycle to minimize phototoxicity.
Therefore it is desired to limit light exposure in each frame
and to sample the frames as far apart as possible, leading to
infrequent, poorly contrasted images, directly at odds with
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Figure 1: An image sequence (a) showing cell (small light circles) movement and division over time. A lineage tree (b) may be generated by
detecting cell splitting and associating individual cells from image to image.

(a) (b)

Figure 2: Close-up of an HSC phase contrast microscopic image
with the superimposed track of one mature blood stem cell (a) 8
frames before and (b) 30 frames after splitting.

the data desired for easy tracking: frequent, high-contrast
images. Cell staining techniques may be used to increase
the contrast between cell and background, however different
parts of tissue are undesirably stained unevenly, causing in-
homogeneity. Fortunately the HSCs in our study have fairly
regular shape and brightness patterns. Hence, a segmenta-
tion method which exploits these attributes should be able to
perform better than simple thresholding.

Suppose we have an image sequence I1:K={I1, I2, . . . , IK}.
The two fundamental tasks needed to construct a lineage
tree, such as in Figure 1, are the detection of cells in each
image and the subsequent association of the detected cells
over time. The cell detection problem is essentially one of
anomaly detection: the localization of groups of pixels incon-
sistent with the random behavior of the image background.
A wide variety of semi automatic or automatic methods have
been proposed to segment cell boundaries [2, 3] which can
be divided into three major categories.

(1) Boundary based, generally employing deformable
models such as snakes [7].

(2) Region based, such as split and merge [21], morpho-
logical operators [22], watershed [6], and region grow-
ing methods [23].

(3) Threshold based [8, 24, 25] applied to some extracted
image feature.

We can make the problem much more specific by seeking
particular features consistent with HSCs. From Figures 2 and
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Figure 3: (a) 8 by 8 pixel detail of an HSC phase contrast micro-
scope image. (b) A circular idealized cell model.

3(a), HSCs can be characterized as an approximately circular
object with a darker interior and a brighter boundary—an
effect due to phase contrast imaging modality. So rather than
a heuristic thresholding approach, these cell attributes allow
a more specific model, essentially a matched filter, more ro-
bust to noise and to low contrast. The model depicted in
Figure 3(b) considers the following criteria:

(i) cell size: the radius r is known to lie in a limited range
related to cell age;

(ii) boundary brightness: brighter due to phase contrast
imaging;

(iii) interior brightness: tends to be dimmer than the
boundary;

(iv) boundary uniformity or symmetry: want to assert uni-
formity to avoid a strong response when straddling
cells, as shown in Figure 4.

As depicted in Figure 3(b), to model a dark region sur-
rounded by a bright boundary, the proposed cell model con-
sists of two concentric circles, with the radius of the internal
circle being half that of the external one. To facilitate the anal-
ysis of the image as a function of cell center location (xc, yc)
and radius r we construct the set of boundary pixels

B
(
xc, yc, r, I

)=
{

Ii j |
∣∣(xc − i

)2
+
(
yc − j

)2 − r2
∣∣ ≤

(
1
2

)2
}

,

(1)
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Figure 4: A scenario in which a spuriously hypothesized (white)
boundary may have a large associated average brightness B and a
low cell interior brightness C. The uniformity constraint in the cell
boundary is intended to address this case.

and the set of interior cell pixels

C
(
xc, yc, r, I

) =
{

Ii j |
(
xc − i

)2
+
(
yc − j

)2 ≤
(
r

2

)2
}

,

(2)

from which we extract sample means

B =
∑

i Bi

|B| , C =
∑

i Ci

|C| , (3)

where Bi or Ci is the ith element of the respective set.
The four cell criteria are then combined to formulate the

following probabilistic cell model:

P
(
xc, yc, r | Ik

) = Pcb(B) · Pci(C) · Pbu(B), (4)

where the cell boundary Pcb, cell interior Pci, and boundary
uniformity Pbu terms are elaborated below.

Based on a visual examination of the distribution of sam-
ple points of B derived from real imagery, the probability
density of cell boundary Pcb is modeled as Gaussian with
mean μcb and variance σ2

cb

Pcb(B) ∼ N
(
B;μcb, σ2

cb

)
, (5)

where μcb and σ2
cb are estimated empirically.

Similarly the probability density of dark region inside the
cell Pci is also modeled as Gaussian with mean μci and vari-
ance σ2

ci

Pci(C) ∼ N
(
C;μci, σ2

ci

)
, (6)

where μci and σ2
ci are again estimated empirically.

It should be mentioned that the parameters of model (4)
are time invariant, consistent with most of our acquired data
sets. Therefore in cases where the intensity or contrast of the
image changes over time due to background noise or spa-
tiotemporal illumination variations, the nonstationarity of
the data might make (4) in error or inapplicable. In such
cases, to improve the robustness of the proposed method, the

time variations of the image sequence need to be removed by
background estimation and subtraction, considered in future
work.

As illustrated in Figure 4 we wish to penalize spurious
cell detection. We propose to calculate an empirical cumu-
lative density function (CDF) to discriminate background
from cell boundary. The CDF on cell boundary pixel intensi-
ties is computed by

cdfn(B) =
∑n

i=1 Bi

|B| · B , n ∈ 1 : |B|. (7)

As a set of constant or uniform values in B corresponds to a
straight line CDF, we use a Kolmogorov-Smirnov test on B to
test its deviation from uniformity:

D(cdf) = max
n∈[1:N]

∣
∣∣
∣cdfn− n

N

∣
∣∣
∣. (8)

An exponential function Pbu(D) is used to penalize the non-
uniformity as

Pbu(D) = exp
{− 2 ·N ·D(cdf)

}
. (9)

This completes the development of a simple model for the
detection of cells in background noise. We will use the model
to generate and test cell hypotheses in the following section.

3. CELL TRACKING

With a model in place describing the spatial pattern of pix-
els with the appearance of a cell, we move to the core of the
problem: given a sequence of images I1:K = {I1, I2, . . . , IK}
and a definition of our “target” (the cell model (4)), we need
to associate the cells over time. Denote by F1:K a possible hy-
pothesis of the K-frame association problem,

F1:K =
{
f1, f2, . . . , fK

}
, (10)

where fk is a parametric representation of frame k. In the case
of HSCs, fk is defined as

fk =
{(
lk, j , zk, j , rk, j , sk, j

)
, 1 ≤ j ≤Mk

}
, (11)

where lk, j is the cell parent label, zk, j is the cell coordinate
(xc, yc), rk, j is the radius, sk, j is the cell age corresponding to
cell j, and Mk is the number of cells in frame k. The parent
label i = lk, j associates cell j in frame k to parent cell i in
the previous frame. The goal is to solve the spatiotemporal
cell segmentation-association problem of Figure 5: we wish
to estimate F1:K given the image sequence I1:K and given an
initialization f0 in frame zero.

3.1. MAP estimation

The proposed solution to the association problem is the max-
imum a posteriori estimation of F1:K :

F̂1:K = arg max
F1:K

P
(
F1:K | I1:K , f0

)
. (12)
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Figure 5: An illustration of cell association over time with numeric labels.

From Bayes’ rule,

P
(
F1:K , I1:K , f0

) = P
(
F1:K | I1:K , f0

)
P
(
I1:K , f0

)

= P
(
I1:K | F1:K , f0

)
P
(
F1:K , f0

)
.

(13)

As P(I1:K , f0) is fixed, F̂1:K does not depend on it, thus

P
(
F1:K | I1:K , f0

)∝ P
(
I1:K | F1:K , f0

)
P
(
F1:K , f0

)
. (14)

At the same time P( f0) is fixed

P
(
F1:K , f0

) = P
(
F1:K | f0

)
P
(
f0
)∝ P

(
F1:K | f0

)
. (15)

So we conclude that

F̂1:K = arg max
F1:K

P
(
I1:K | F0:K

) · P(F1:K | f0
)
. (16)

Since F1:K = { f1, f2, . . . , fK}, the solution to (16) is real-
ized, in principle, by examining and evaluating all possible
cell parameterizations and associations. In virtually all track-
ing problems of this kind the problem is made tractable by
searching over a limited number of hypotheses

{
Fh

1:K | h = 1, 2, . . .
}

(17)

such that we find the best member of this set

F̂1:K = Fĥ
1:K ,

where ĥ = arg max
h

P
(
I1:K | Fh

0:K

) · P(Fh
1:K | f0

)
.

(18)

The original, optimal solution is found if it is included
among the hypotheses, that is, if

arg max
F1:K

P
(
F1:K | I1:K , f0

) ∈ {Fh
1:K

}
. (19)

The key, here, to efficiency is to minimize the number of hy-
pothesis; the key to quality of estimation is finding the most
likely hypothesis. As these goals are in opposition, we are left
with a complexity/quality tradeoff.

3.2. Evaluation of P(I1:K | Fh
1:K )

The proposed cell model P(xc, yc, r | Ik) = P(zc, r | Ik) from
(4) evaluates the likelihood of a single cell, given an image. To
solve the MAP problem we need to compute P(I1:K | F1:K ),

the likelihood of a given image sequence as a function of a
specified cell parametrization and association. Since fk pro-
vides a complete paramerized description of Ik, conditioned
on F1:k, I1:k is Markov:

P
(
I1:K | F1:K

) =
∏

k∈[1,K]

P
(
Ik | fk

)
. (20)

The cell model (4) describes only the likelihood of a single
cell; it says nothing about groups of cells, nor does it provide
any kind of prior on zc or r. Fortunately these latter aspects
are straightforward.

(1) As the cells may be located anywhere with no prior
bias, zc is uniformly distributed over the image.

(2) We empirically define a size range r ∈ [2, 4] pixels,
within which the cell radius is uniformly distributed.

(3) Any hypothesis which has cells violating the minimum
required separation between cells is assigned a proba-
bility of zero.

It follows, then, that as long as zero-probability hypothe-
ses are not created, then all remaining hypotheses { f hk } are
equally likely a priori. Because P(Ik) is fixed, and more-
over because all valid hypotheses are equally likely, such that
P(zc, r) is constant, we can conclude

P
(
Ik | zc, r

)∝ P
(
zc, r | Ik

)
, (21)

implying that the evaluation of P(Ik | zc, r) can follow from
evaluating P(zc, r | Ik). The proposed parametric cell model
can be applied to each image frame I ; a two-dimensional
probability map is generated, and hypothesised cells are lo-
cated at local maxima of this map. Although our cell model
allows this probability map to be computed as a function
of r for each r ∈ [ra, rb], we have found that a value of
r◦ = 2 functions robustly. The locations of local maxima in
P(z | I , r◦) may either be used in the generation of hypothe-
ses from I , or in computing P(I | f ), to assess an asserted cell
arrangement.

First, to generate possible measurement hypotheses from
I , find the spatial local maxima of P(z) and keep only those
maxima such that the likelihood of the ith maximum P(zk,i |
Ik, r◦) > τ. Choosing T values of τ thus generates T sets of
maxima, each a hypothesised measurement set for frame k,

zτk =
{
zk,i | P

(
zk,i | Ik, r◦

)
> τ, τ ∈ [τ1, τ2

]}
. (22)
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(a) (b) (c) (d)

Figure 6: (a) Microscope image I . (b) Probability map P(z | I , r◦) obtained by applying cell model (4). (c) Local maxima of P(z | I , r◦). (d)
Thresholding the local maxima map.

We have found that a fixed threshold τ = 0.65 works effec-
tively for the HSC data set being considered here however, in
general multiple τ would be used, leading to multiple mea-
surement hypotheses.

Second, to compute P(I | f ) as depicted in Figure 7 the
cells in f are divided into two sets:

(1) fM : those cells in f which are located within δD of a
maximum;

(2) fM : those cells in f which are not within δD of a max-
imum.

A third set contains the unmatched maxima:

(3) f M : those maxima which are not within δD of any
point in f .

fM contains the successful matches, fM and f M the failed
ones. The fit between Ik and f hk is thus quantified as

P
(
Ik | f hk

) =
⎡

⎣
∏

j∈ fM

P
(
zk, j | Ik, r◦

)
⎤

⎦

·
⎡

⎢
⎣
∏

i∈ f M

(
1− P

(
zτk,i | Ik, r◦

))

⎤

⎥
⎦

·
⎡

⎣
∏

j∈ fM

P
(
zk, j | Ik, r◦

)
⎤

⎦ ,

(23)

where P(zk, j | Ik, r◦) is the probability of the location of the
jth cell in the state f hk for frame k, and P(zτk,i | Ik, r◦) is the
probability of the ith maximum in frame k. As depicted in
Figure 7, P(Ik | f hk ) is evaluated by applying (23).

3.3. Evaluation of P(Fh
1:K | f0)

The second part of (18) is the evaluation of association hy-
potheses {Fh

1:K}. To track the HSCs over time, detected cells
in the measurement hypothesis of the current frame zτk must
be associated to the most probable element in the previous
frame.

Considering that for each image frame k, we associate cell
features from (k − 1) only, Markovianity can be asserted on

F1:K such that

P
(
F1:K | f0

) =
∏

k∈[1,K]

P
(
fk | fk−1

)
, (24)

where we recall that fk is the set of cell properties in frame k.
The cell age sk, j is updated as

sk, j =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ∃m such that, lk,m = lk, j

(i.e., cell split),
(
s(k−1),lk, j

)
+ 1 otherwise.

(25)

Each cell in fk must belong to one of the following sets.
Unassociated: N = { j | lk, j = 0}.
Split: S = { j | lk, j = lk,m for m �= j}.
Regular: R = { j | j /∈ {N ∪ S}}.

In contrast with joint probabilistic data association (JPDA)
[26–28] in which new tracks can not be initiated, our pro-
posed method initiates new tracks for divided cells, therefore
the following constraints are considered:

(i) each measurement must originate from cell or clutter;
(ii) each measurement can be associated to one cell;

(iii) up to two measurements in frame k can be associated
to the same cell in frame k − 1.

Asserting Markovianity we evaluate P( f hk | f hk−1) in thef rest
of this section. The association problem is resolved frame by
frame by selecting the hypothesis with the maximum joint
association probability. In this way the measurement hypoth-
esis zτk for frame k and association hypothesis f hk−1 from the
previous frame are used to generate hypotheses f hk . Therefore
we have

P
(
f hk | f hk−1

) = P
(
f hk | zτ1:k, f hk−1

) = P
(
f hk | zτk , f hk−1

)
.

(26)

The filter step is

P
(
f hk | f hk−1

) = P
(
f hk | zτ1:k, f hk−1

)

= P
(
f hk | zτ1:k−1

) · P(zτk | f hk
)

P
(
zτk | zτ1:k−1

) ,
(27)
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Figure 7: Having 4 maxima (solid dots), and 3 hypothesized sets of cells (large circles), for each hypothesis fM , fM , and f M are illustrated
and then P(Ik | f hk ) is evaluated.

P(zτk | zτ1:k−1) is fixed and we have

P
(
f hk | f hk−1

) = λk · P
(
f hk | zτ1:k−1

) · P(zτk | f hk
)
, (28)

where λk is a normalization constant. The first term of (28),
P( f hk | zτ1:k−1), is a prediction step which is illustrated as fol-
lows. Because of the nonlinear and non-Gaussian nature of
both measurements and dynamics, in contrast with JPDA,
the Kalman filter is not considered for the prediction step.
The prediction step in the proposed method is

P
(
f hk | zτ1:k−1

) =
∫

P
(
f hk | f hk−1

)
P
(
f hk−1 | zτ1:k−1

)
df hk−1

=
⎡

⎣
∏

j∈R∪S
Pvel
(
zk, j , zτk−1,lk, j

)
⎤

⎦

·
⎡

⎣
∏

j∈S
Pstate

(
sk−1, j

)
⎤

⎦ .

(29)

The former term Pvel is a nonlinear term to predict the loca-
tion of the hypothetical cell j in frame k based on its dynam-
ics and its location in frame k − 1. The motion will be cell-
type specific, and may further be influenced by environmen-
tal factors, chemical gradients, and so forth. In our context
there are no deliberate experimental biases, and a Gaussian
random walk was found to well-approximate hand-tracked
cell motion. The latter term Pstate predicts the likelihood of
cell division in frame k. An age penalty such that cell divi-
sion cannot happen below some age; this minimum age is
cell-type specific and is asserted from biological experience.

The second term of (28), P(zτk | f hk ), is the likelihood of
measurement zτk given hypothesis f hk and is given by

P
(
zτk | f hk

) =
⎡

⎣
∏

j∈R∪S
N
(
vk, j , 0, Sk, j

)
⎤

⎦

· [Psep
(
f hk
)] ·

⎡

⎣
∏

j∈N
Puna

⎤

⎦ ,

(30)

where vk, j = zτk,i − ẑk, j is an innovation term so that the ith
measurement is within δD of the jth hypothesised cell loca-
tion in frame k. Puna is a penalty on the association of unas-
sociated cells, and Psep is the probability of separation dis-
tance of a measurement pair. As we can see in the proposed
method, the likelihood of measurement zk, j is penalized by
the unlikely events such as minimum separation distance and
unassociated cells.

4. EXPERIMENTAL RESULTS

We begin by evaluating the proposed cell model. The model
generates cell hypotheses, as illustrated in Figure 6, where
candidate cells are found as local maxima in P(xc, yc, r) =
P(zc, r). Because of the availability of hand-labelled ground-
truth data, a good assessment of cell detection is possible.
The only unknown parameter in cell detection is τ, the prob-
ability threshold in declaring a cell present. Figure 8 shows
the probability of false alarm and missed detection as a func-
tion on the chosen threshold τh over a sequence of HSC phase
contrast microscope images. It is clear that a threshold yield-
ing acceptably low failures of both types is τ = 0.65.

Next, Figures 9 and 10 test the number of detected cells
(using τ = 0.65) and the detected spatial locations with man-
ual ground truth. The greatest probability of misdetection
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Figure 8: (a) Variation of the probability of false alarm as a function of the threshold τh. (b) Variation of the probability of missed detection
as a function of the threshold τh.
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Figure 9: A comparison of ground truth (solid line) and the de-
tected cells on the basis of the proposed cell model (dashed line).

occurs during division where a mature cell gives rise to two
new cells. During division, notable between frames 9 to 29,
the cells are inconsistent with a circular shape with a fixed
radius. However, the divided cells are recognized as soon as
the division process is completed, which takes at most five
frames. As it can be seen in Figure 10, the maximum cell cen-
ter spatial error is 1.8 pixels per cell. Considering the fact that
manual ground truth is prone to error, the results obtained
by the proposed method are very promising.

Results obtained by applying the proposed probabilistic
cell tracking method are depicted in Figure 11. Cell centers
are detected by applying the cell model (4), locating the lo-
cal maxima in the probability map, and thresholding the lo-
cal maxima map. Finally cell centers are associated using the

proposed tracking method. Color coding is used to highlight
associated cell centers such that different colors show the as-
sociation of cell centers over time. It takes about 0.5 seconds
for a well to be segmented and associated in the current stage
using a Pentium 4 running at 1.6 Ghz.

As can be observed from Figure 11, by applying our prob-
abilistic model-based tracking to HSC image sequence, it
is able to identify and associate both nondividing and di-
viding cell centers correctly. However there are some cases,
such as having a large number of proximate young divided
cells or a few number of nearby dividing mature cells, in
which some of the hypotheses have very similar probabil-
ity, therefore deriving the best hypothesis for such a frame
is very difficult and prone to error. Employing a more robust
Bayesian approach will resolve those ambiguous situations
over time by the further integration of information of neigh-
boring frames, maintaining several hypotheses, and selecting
the most likely one over the subsequent images.

5. CONCLUSIONS

Image cytometry is a practical approach to measure and ex-
tract cell properties from large volumes of microscopic cell
images. As an important application of image cytometry,
this paper presents a probabilistic model-based cell tracking
method to locate and associate HSCs in phase contrast mi-
croscopic images.

Our statistical cell model, which is constructed after care-
fully observing HSCs in typical image sequences, captures
the key properties of these cells. The close match between
the model and imaged HSCs allowed for threshold selection
yielding very low false alarm or missed detection. Cells in iso-
lation are detected well; recently split cells provide a proper
fit to the model and rely on association to resolve ambigui-
ties.

Cell association is accomplished based on the proposed
joint association method. As it can be observed in Figure 2
the cell dynamics can be well approximated by a random
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Figure 10: (a) RMS spatial error, the distance between detected cell centers and ground truth. (b) The location of missed detections with
the superimposed average missed detection probability (0.0107). (c) The location of false alarms with the superimposed average false alarm
probability (0.0027).

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t)

Figure 11: Detection and association of cell centers obtained by applying the proposed model-based tracking method. Results are superim-
posed on the original HSC images and each color shows a different cell track over time (frames 1–20).

walk as it has been considered in the proposed method to
model the cell motion. It can be seen from the previous
section that such a probabilistic model-based cell tracking
method produces promising results and is able to identify
and associate both dividing and nondividing cell centers cor-
rectly. However, there are some cases, such as a few proximate
dividing cells or large number of nearby cells, in which the
proposed method may be inaccurate. To resolve association
ambiguities in such cases and to make the method more ro-

bust to noise and clutter, future work will be conducted to
extend the proposed method by integrating the information
over multiple neighboring frames.

Future work will also include improving the cell model to
more accurately reflect unique properties of the cells under
different conditions. Moreover further work is required to
better preprocess the images with background subtraction to
improve homogeneity and eliminate camera artifacts. There
is also considerable interest in designing a parametric cell
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model with additional degrees of freedom to generate lineage
trees in which cells can be characterized by richer features so
that cell properties can be more reliably extracted.
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