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Abstract: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can be used to
examine the distribution of an intravenous contrast agent within the brain. Computational methods
have been devised to analyse the contrast uptake/washout over time as reflections of cerebrovascular
dysfunction. However, there have been few direct comparisons of their relative strengths and
weaknesses. In this paper, we compare five semiquantitative methods comprising the slope and area
under the enhancement-time curve, the slope and area under the concentration-time curve (SlopeCon
and AUCCon), and changes in the power spectrum over time. We studied them in cerebrospinal fluid,
normal tissues, stroke lesions, and white matter hyperintensities (WMH) using DCE-MRI scans from
a cohort of patients with small vessel disease (SVD) who presented mild stroke. The total SVD score
was associated with AUCCon in WMH (p < 0.05), but not with the other four methods. In WMH,
we found higher AUCCon was associated with younger age (p < 0.001) and fewer WMH (p < 0.001),
whereas SlopeCon increased with younger age (p > 0.05) and WMH burden (p > 0.05). Our results
show the potential of different measures extracted from concentration-time curves extracted from the
same DCE examination to demonstrate cerebrovascular dysfunction better than those extracted from
enhancement-time curves.

Keywords: cerebrovascular alteration descriptors; small vessel disease; dynamic contrast-enhanced
magnetic resonance imaging
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1. Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the brain is typically
considered for examining the integrity of grey and white matter and potential contrast leakage into
cerebrospinal fluid (CSF) cavities [1–3]. In this imaging modality, a series of MRI scans are taken before
and after intravenous Gadolinium-based contrast agent administration to image signal-time trajectories
of both healthy and pathological brain regions, as illustrated in Figure 1. Such trajectories may vary
depending on the capillary density and the disruption of the blood–brain barrier or blood–CSF barrier,
among other factors. Therefore, their precise analysis may help to understand better the mechanisms
behind pathological cerebrovascular processes.

(a) (b) (c)

Figure 1. Dynamic contrast-enhanced magnetic resonance imaging acquisition. From left to right,
axial slices of T1-w scans before, 1 min after, and 24 min after intravenous Gadolinium-based contrast
agent injection, respectively. (a) Before contrast, (b) 1 min after, (c) 24 min after.

Computational approximations for studying signal-time trajectories are classified into two groups:
semiquantitative and quantitative [3]. The former group of methods does not make any assumptions
about the distribution of contrast agent within the brain, i.e., are model free. Methods that fall under
this category analyse the area under the enhancement curve [4], signal enhancement slope [5,6],
and dynamic spectral and texture features [7,8]. The latter group of methods describes signal-time
curves as a result of interactions between cerebral capillaries and the extracellular extravascular space
through pharmacokinetic modelling. The approximation consists of estimating unknown model
parameter values from the input data through regression. However, factors such as scanner signal
drift, tissue variations, and imaging artefacts introduce systematic errors hampering quantitative
assessments [3,9–11].

In this work, we study to what extent semiquantitative methods analysing signal-time trajectories
from the same imaging acquisitions reflect cerebrovascular dysfunction. In particular, we examine the
strength of their association with clinical parameters: the higher the percentage of variance explained
by clinical variables, the more the relevant information the measurement captures. The considered
methods are (1) the area under the enhancement-time curve, (2) the slope of the enhancement-time
curve, (3) the area under the concentration-time curve, (4) the slope of the concentration-time curve,
and (5) the radial power spectrum of the concentration-time curve. We use data from a relatively large
cohort (n = 201) of patients who had a mild stroke and present a varied range of small vessel disease
(SVD) features. The main finding of our work is that the analysis of concentration-time curves reflect
key aspects of cerebrovascular dysfunction better than enhancement-time curves.

2. Materials and Methods

The processing pipeline consists of four steps, as illustrated in Figure 2. First, we acquire
structural and dynamic scans for each patient in the cohort. Second, we segment all regions of
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interest. Third, we analyse contrast-time trajectories in each region. Fourth, we use ANOVA and
multiple linear regression to establish whether measurements of contrast uptake/washout vary with
any of the clinical variables. Further details of each step are provided in the following sections.

CSF

NAWM

WMH

SL

GM

2. Segmentation of regions of interest

Pre-contrast

Contrast 
agent 

injection

1. Data acquisition

3. Analysis of contrast-time trajectories
Enhancement in CSF

Enhancement in NAWM

Enhancement in SL

4. Statistical analysis

Total SVD score Fazekas score

Measurement Measurement

Figure 2. High level schematic of our processing pipeline. First, we acquire dynamic contrast-enhanced
scans for each patient. Second, we segment regions of interest into cerebrospinal fluid, grey matter,
normal-appearing white matter, white matter hyperintensities, and stroke lesions. Third, we analyse
contrast-time trajectories using different approaches: slopes and areas under the enhancement-time and
concentration-time curves and changes over time in the radial power spectrum. Fourth, we use ANOVA
and multiple linear regression to examine the effect of the burden of white matter hyperintensities
(Fazekas score) and all neuroimaging features of small vessel disease (Total SVD score). In Step 4,
data points located outside of the whiskers of each boxplot correspond to outliers. CSF: cerebrospinal
fluid. WMH: white matter hyperintensity. NAWM: normal-appearing white matter. GM: grey matter.
SL: stroke lesion.

2.1. Subjects, Imaging, and Clinical Variables

We used DCE-MRI and clinical data from 201 mild stroke patients with various extents of
neuroimaging features of SVD [12,13]. The study was approved by the Lothian Ethics of Medical
Research Committee (REC 09/81101/54) and the NHS Lothian R+D Office (2009/W/NEU/14), and
all patients gave written informed consent. DCE-MRI scans were obtained approximately a month
after stroke presentation using a 3D T1-w spoiled gradient echo sequence (TR/TE = 8.24/3.1 ms,
12◦ flip angle, 24 cm × 24 cm FoV, 0.9375 mm × 1.25 mm × 4 mm acquired resolution). Following
a pre-contrast scan, patients were scanned after an intravenous bolus injection of 0.1mmol/kg of
gadoterate meglumine (Gd-DOTA, Dotarem, Guerbet, France) every 73 s during 25 min (leading to 21
frames). We considered age, biological sex (60% male, 40% female), smoker (ever smoker 65% vs. never
smoker 35%), diabetes (yes 12% vs. no 88%), hyperlipidaemia (yes 60% vs. no 40%), mean arterial
pressure, the total Fazekas score [14] (0–3%, 1–8%, 2–37%, 3–11%, 4–15%, 5–10%, and 6–16%) and the
total SVD score [15] (0–33%, 1–24%, 2–23%, 3–13%, and 4–7%).

2.2. Segmentation of Regions of Interest

We examined five regions of interest comprising cerebrospinal fluid, deep grey matter,
normal-appearing white matter, WMH, and stroke lesions. To obtain their segment masks, we followed
the protocol described in [12], i.e., initial segmentation using validated methods, manual edit by
trained analysts, and mask erosion to avoid partial volume [11]. Analysts carried out the rectification
process blinded to any other imaging and patient information. Details regarding the validation of the
segmentation method and inter-analyst agreement can be found in [7,11,12,16].
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2.3. Methods

2.3.1. Methods Analysing the Enhancement-Time Trajectory

Let S[t] ∈ R, t ∈ {0, ..., T − 1} be the measured signal over time, where S[0] represents the
signal value before intravenous contrast injection and T the number of time points. Methods
analysing the enhancement-time trajectory examine relative signal changes before and after contrast,
i.e., (S[t]− S[0])/S[0]. We estimated the area under the enhancement-time curve,

AUCEnh =
T−1

∑
t=0

S[t]− S[0]
S[0]

, (1)

and its slope,

SlopeEnh =
(T − t∗) ·∑T−1

t=t∗ t · S[t]−∑T−1
t=t∗ t ·∑T−1

t=t∗ S[t]
(T − t∗) ·∑T−1

t=t∗ t2 − (∑T−1
t=t∗ t)2

, (2)

where t∗ is the time point from where the signal trend is assumed linear. Note that the formulation of
the slope permits avoiding the peak of bolus arrival. In our case, we set t∗ = 4 after visual inspection
of all cases in the cohort.

2.3.2. Methods Analysing the Concentration-Time Trajectory

Signal information and imaging parameters can be used to approximate the contrast agent
concentration [in millimoles] in time in each region of interest [9]. For that, we converted signal-time
curves to concentration-time curves by finding, c[t], that minimises the following expression

min
c[t]

∥∥∥∥∥∥S[t]− S[0]
S[0]

− e−r2c[t]TE
1− e−P−Q[t] − cos(θFA)

(
e−P − e−2P−Q[t]

)
1− e−P − cos(θFA)

(
e−P−Q[t] − e−2P−Q[t]

)
∥∥∥∥∥∥

2

2

, (3)

where P = TR/T1[0], Q[t] = r1 · c[t] · TR; r1 = 4.2s−1mM−1, r2 = 6.7s−1mM−1 are the
Gadolinium-based contrast agent relaxivities; TR = 8.24 ms and TE = 3.1 ms are the repetition and
echo times; θFA = 12◦ the flip angle; and T1[t] and T2[t] the longitudinal and transversal relaxation
times at time t, estimated as described in [9]. The relaxation time is assumed to decrease with contrast
agent concentration and relaxivities, 1/Ti[t] = 1/Ti[0] + ri · c[t], i = 1, 2. After obtaining the curves,
we estimated the area under the concentration-time curve,

AUCCon =
T−1

∑
t=0

c[t], (4)

and its slope,

SlopeCon =
(T − t∗) ·∑T−1

t=t∗ t · c[t]−∑T−1
t=t∗ t ·∑T−1

t=t∗ c[t]
(T − t∗) ·∑T−1

t=t∗ t2 − (∑T−1
t=t∗ t)2

. (5)

2.3.3. Methods to Analyse Changes in the Radial Power Spectrum

The analysis of the radial power spectrum (RPS) permits scrutinising alterations in the spatial
frequency domain due to the intravenous injection of the contrast agent [17]. Similar to previous works
in the field [7,8], we computed the RPS for each region of interest and each time point after the peak of
bolus arrival by calculating the magnitude spectra and averaging it over all frequencies in concentric
rings of width one, as follows

R[s; t] =
1
K

K

∑
k=1

1
2π

∫ 2π

0
|Fk(s cos(θ), s sin(θ), t)| dθ, (6)



J. Imaging 2020, 6, 43 5 of 14

where Fk denotes the 2D discrete Fourier transform of the k-th axial slice of the input volume, K = 42
the number of slices, and s = round

(√
u2 + v2

)
and θ = tan−1 (v/u) are polar coordinates.

To analyse these signals that include 201 patients × 129 rings × 17 time points, we opted for
reducing their cardinality to only a set of measurements per patient. We achieved this by reducing it
in the direction of the rings and time using the multivariate functional principal component analysis
proposed by Happ & Greven [18]. Let Rp[s; t] be the RPS over time of patient p ∈ [1, 201], s ∈ [0, 128],
t ∈ [4, 20], the overall process consists of four steps. First, we centred each variable by subtracting its
mean value across patients. Second, we computed E eigenfunctions Φk[s; t] and corresponding scores
ξpk[s] by maximising ∑p ξpk[s]

2, where

ξpk[s] =
T−1

∑
t=t∗

Φk[s; t] · Rp[s; t], (7)

subject to ||Φk[s]||2 = 1. We set E = 5 as the resulting eigenfunctions explained 99% of the data
variance. Third, all of these scores ξpk[s] were arranged in a matrix form, Ξ ∈ R201×129×E, such that the
pth row contained (ξp1[0], ..., ξp1[128], ..., ξp5[0], ..., ξp5[128]). Fourth, we calculated principal component
scores by means of eigenanalysis on the covariance matrix of Ξ. We considered only the first mode of
variation since it explained around the 98% of the data variance.

2.4. Validation against Clinical Parameters

We considered one-way analysis of variance (ANOVA) to evaluate the considered measures of
contrast uptake/washout against clinical visual assessments related to SVD severity (i.e., Fazekas and
total SVD scores), and multiple linear regression to establish whether age, diabetes, stroke lesion
subtype, WMH volume, and stroke lesion volume were associated with them, after adjusting for
biological sex, mean arterial blood pressure, hyperlipidaemia, and smoking status. For ANOVA tests,
we used the following notation: (F(k− 1, n− k) = F-value, p, η2, ω2), where k represents the number
of groups (i.e., 7 and 5 for Fazekas and total SVD score, respectively), n the sample size, F-value the
F test statistic, p the p-value, and η2 and ω2 are effect size estimators which indicate the proportion
of data variance explained by predictors. For multiple linear regression, we reported β (95% CI) and
p-value for each predictor, which indicate their weight in the model and whether the predictor is
significant in the model, respectively. Also, we reported the adjusted R2 values which specify the
percentage of data variance in the outcome variable explained by predictors. We carried out our
statistical analyses using RStudio v1.1.456 with R v3.5.1.

3. Results

3.1. Comparison of Effect Sizes

We evaluated the effect of the measures of contrast uptake/washout computed in cerebrospinal
fluid and WMH against two relevant visual clinical ratings (Fazekas and SVD scores).

The effect of the burden of WMH on most vascular function measures computed from the
cerebrospinal fluid regions was significant (AUCCon: F(6, 190) = 2.54, p < 0.05, η2 = 7%, ω2 = 5%;
SlopeEnh: F(6, 190) = 2.87, p < 0.05, η2 = 8%, ω2 = 5%; SlopeCon: F(6, 190) = 3.71, p < 0.01,
η2 = 11%, ω2 = 8%, RPS: F(6, 190) = 2.40, p < 0.05, η2 = 7%, ω2 = 4%), except on the AUCEnh
(AUCEnh: F(6, 190) = 0.55, p > 0.10, η2 = 2%, ω2 = −1%), as shown in Figure 3. The higher the
Fazekas score, the lower the AUCs and the rising the Slopes. The association was stronger (higher η2

and ω2) for the SlopeCon than the other four measures. The total burden of neuroimaging features of
SVD, given by the total SVD score, was associated with the AUCCon, SlopeEnh, and SlopeCon (AUCCon:
F(4, 192) = 2.42, p = 0.05, η2 = 5%, ω2 = 3%; SlopeEnh: F(4, 192) = 2.37, p = 0.05, η2 = 5%, ω2 = 3%;
SlopeCon: F(4, 192) = 3.43, p < 0.01, η2 = 7%, ω2 = 5%), but not with the other measurements
(AUCEnh: F(4, 192) = 0.48, p > 0.1, η2 = 2%, ω2 = 0%; RPS: F(4, 192) = 2.17, p > 0.05, η2 = 4%,
ω2 = 2%). The higher the total SVD score, the lower the AUCs and RPS, the rising the Slopes.
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Figure 3. Estimated contrast uptake/washout extracted from cerebrospinal fluid for patients grouped
by their (a) Fazekas and (b) total SVD scores. We computed the p-values using the ANOVA test.
Data points located outside of the whiskers of each boxplot correspond to outliers.

The impact of the burden of WMH on most measures of contrast uptake/washout from WMH
was significant (AUCEnh: F(6, 190) = 2.61, p < 0.05, η2 = 8%, ω2 = 5%; AUCCon: F(6, 190) = 4.35,
p < 0.001, η2 = 12%, ω2 = 9%; SlopeEnh: F(6, 190) = 2.93, p < 0.01, η2 = 9%, ω2 = 6%; SlopeCon:
F(6, 190) = 2.73, p < 0.05, η2 = 8%, ω2 = 5%), except on the RPS (RPS: F(6, 190) = 1.48, p > 0.10,
η2 = 5%, ω2 = 1%), as depicted in Figure 4. The higher the Fazekas score, the lower the AUCs and
the rising the Slopes. The association was stronger for the AUCCon than the other four measures.
The burden SVD features was only associated with the AUCCon (F(4, 192) = 3.09, p < 0.05, η2 = 6%,
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ω2 = 4%), but not with the other measurements (AUCEnh: F(4, 192) = 1.86, p > 0.1, η2 = 4%,
ω2 = 2%; SlopeEnh: F(4, 192) = 1.71, p > 0.10, η2 = 3%, ω2 = 1%; SlopeCon: F(4, 192) = 2.12,
p > 0.05, η2 = 4%, ω2 = 2%; RPS: F(4, 192) = 2.01, p > 0.05, η2 = 4%, ω2 = 2%). The higher the total
SVD score, the lower the AUCs, the rising the Slopes.
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(b) Total SVD score

Figure 4. Estimated contrast uptake/washout extracted from white matter hyperintensities for patients
grouped by their (a) Fazekas and (b) total SVD scores. We computed the p-values using the ANOVA
test. Data points located outside of the whiskers of each boxplot correspond to outliers.
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3.2. Relationship between Contrast Uptake/Washout Measures and Clinical Variables

We carried out multiple linear regression to investigate whether age, diabetes, stroke lesion
subtype, WMH volume, and stroke lesion volume were associated with semiquantitative measures
of contrast uptake/washout, after adjusting for biological sex, mean arterial pressure, smoker,
and hyperlipidaemia. Corresponding regression results are condensed in Tables 1 and A1.

Table 1. Adjusted R2 and p-values of multiple linear regression with semiquantitative contrast
uptake/washout estimates per region of interest as predicted variables and clinical parameters as
predictors. This table is a simplified version of Table A1. Adjusted R2 values are shown as percentages.
Significant associations appear in bold. Stroke type: 0—cortical, 1—lacunar. ROI: region of interest.
CI: confidence interval. CSF: cerebrospinal fluid. DGM: deep grey matter. NAWM: normal-appearing
white matter. WMH: white matter hyperintensity. SL: stroke lesion. RPS: radial power spectrum.

Stroke WMH SL

ROI Method R2 p-Value Age Diabetes Type Volume Volume

CSF

AUCEnh 16 2.17 × 10−6 5.02 × 10−7 5.85 × 10−1 7.88× 10−1 3.90 × 10−1 1.61 × 10−1

AUCCon 36 4.44 × 10−16 3.77 × 10−15 8.32 × 10−1 7.35 × 10−1 7.69 × 10−1 9.61 × 10−1

SlopeEnh 10 5.92 × 10−4 1.12 × 10−4 1.56 × 10−1 6.24 × 10−1 1.55 × 10−1 4.43 × 10−1

SlopeCon 33 9.97 × 10−15 2.46 × 10−13 2.19 × 10−1 3.98 × 10−1 4.76 × 10−1 2.03 × 10−1

RPS 2 1.78 × 10−1 8.97 × 10−1 7.46 × 10−1 7.10 × 10−1 6.79 × 10−2 3.64 × 10−1

DGM

AUCEnh 3 8.11 × 10−2 2.97 × 10−1 2.75 × 10−2 4.51 × 10−1 8.53 × 10−2 1.12 × 10−1

AUCCon 13 6.20 × 10−5 9.30 × 10−6 7.47 × 10−4 6.04 × 10−1 7.75 × 10−1 8.18 × 10−1

SlopeEnh 3 9.77 × 10−2 1.93 × 10−1 6.31 × 10−1 6.54 × 10−1 3.97 × 10−1 6.90 × 10−1

SlopeCon 8 3.59 × 10−3 1.55 × 10−2 3.23 × 10−1 7.59 × 10−1 1.20 × 10−1 9.86 × 10−1

RPS 5 3.33 × 10−2 4.89 × 10−1 1.09 × 10−1 8.24 × 10−1 7.05 × 10−3 4.57 × 10−1

NAWM

AUCEnh 3 1.27 × 10−1 2.68 × 10−1 6.64 × 10−1 4.53 × 10−1 2.47 × 10−2 5.82 × 10−1

AUCCon 6 1.07 × 10−2 1.03 × 10−4 1.83 × 10−1 3.84 × 10−1 6.17 × 10−1 3.19 × 10−1

SlopeEnh −1 5.94 × 10−1 7.04 × 10−1 9.14 × 10−1 2.27 × 10−1 2.55 × 10−1 3.50 × 10−1

SlopeCon 2 1.43 × 10−1 2.73 × 10−1 5.44 × 10−1 1.94 × 10−1 1.08 × 10−1 1.09 × 10−1

RPS −2 8.53 × 10−1 9.57 × 10−1 8.11 × 10−1 5.49 × 10−1 8.13 × 10−1 9.97 × 10−1

WMH

AUCEnh 13 3.60 × 10−5 2.04 × 10−2 3.07 × 10−3 7.86 × 10−1 1.37 × 10−3 1.93 × 10−2

AUCCon 25 2.49 × 10−10 3.38 × 10−6 1.25 × 10−3 9.94 × 10−1 1.98 × 10−4 8.61 × 10−1

SlopeEnh 4 6.11 × 10−2 4.59 × 10−1 5.35 × 10−1 2.79 × 10−1 4.04 × 10−1 1.21 × 10−1

SlopeCon 4 7.23 × 10−2 6.88 × 10−2 2.92 × 10−1 3.00 × 10−1 3.25 × 10−1 7.95 × 10−1

RPS −3 9.58 × 10−1 4.82 × 10−1 3.88 × 10−1 4.72 × 10−1 8.78 × 10−1 6.12 × 10−1

SL

AUCEnh 33 9.90 × 10−10 5.04 × 10−1 3.43 × 10−5 1.52 × 10−5 1.07 × 10−1 8.69 × 10−4

AUCCon 28 6.33 × 10−8 2.21 × 10−1 6.73 × 10−8 1.92 × 10−3 7.88 × 10−2 6.87 × 10−2

SlopeEnh 14 6.30 × 10−4 6.69 × 10−1 5.05 × 10−2 6.02 × 10−2 1.63 × 10−1 4.36 × 10−4

SlopeCon 13 1.02 × 10−3 3.41 × 10−1 1.28 × 10−3 2.17 × 10−2 1.04 × 10−1 7.06 × 10−2

RPS 4 4.51 × 10−2 9.52 × 10−1 6.26 × 10−1 6.31 × 10−1 2.95 × 10−2 1.34 × 10−3

In the cerebrospinal fluid region, four vascular function measures showed associations with
clinical variables (p < 0.001), RPS did not (p > 0.1). The associations were stronger (lower
p-value, higher coefficients of determination) when considering concentration-time curves instead
of enhancement-time curves (AUC: R2

Enh = 16% vs. R2
Con = 36%; Slope: R2

Enh = 10% vs.
R2

Con = 33%). Age was negatively associated the AUCs and Slopes in the CSF (AUCEnh : β = −4.27×
10−2 [95% CI − 5.89 × 10−2, −2.65 × 10−2], p < 0.001; AUCCon : β = −1.52 × 10−2 [95% CI −
1.87× 10−2, −1.17× 10−2], p < 0.001; SlopeEnh : β = −3.51× 10−5 [95% CI − 5.27× 10−5, −1.76×
10−5], p < 0.001; SlopeCon : β = −1.29× 10−5 [95% CI − 1.61× 10−5, −9.66× 10−6], p < 0.001).
Clinical parameters predicted most variance in AUCCon values compared to the four other methods
(Adjusted R2 : AUCCon = 36% vs. SlopeCon = 33, RPS = 2%, AUCEnh = 16%, SlopeEnh = 10%).

In the deep grey matter, AUCCon, SlopeCon, and RPS showed associations with clinical variables.
Age was a strong predictor was negatively associated with AUCCon and SlopeCon (AUCCon :
β = −2.29 × 10−3 [95% CI − 3.29 × 10−3, −1.30 × 10−3], p < 0.001; SlopeCon : β = −1.35 ×
10−6 [95% CI − 2.43× 10−6, −2.59× 10−7], p < 0.05). A diagnosis of diabetes was associated with
an increase in the AUCCon (AUCCon : β = 5.37× 10−2 [95% CI 2.28× 10−2, 8.46× 10−2], p < 0.001).
WMH volume was negatively associated with the RPS (RPS : β = −3.19× 103 [95% CI − 5.51×
103, −8.81× 103], p < 0.01). Clinical parameters predicted the variance in AUCCon values the best
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compared to other methods (Adjusted R2 : AUCCon = 13% vs. SlopeCon = 8, RPS = 5%, AUCEnh =

3%, SlopeEnh = 3%).
In normal-appearing white matter, clinical parameters were weakly or not associated with the

five measures of vascular function (i.e. 0.01 < p < 0.05 and p > 0.1, respectively) as they explained
between 1% and 6% of their variability. Age predicted the AUCCon significantly (AUCCon : β =

−1.81× 10−3 [95% CI − 2.70× 10−3, −9.08× 10−4], p < 0.001).
In WMH, clinical variables predicted 13% and 25% of the variance in AUCEnh and AUCCon

(p < 0.001). Age, diabetes, and WMH volume were significantly and consistently associated with
AUCEnh and AUCCon (p < 0.05 and p < 0.01, respectively). An increase in AUCEnh and AUCCon
was associated with younger age (AUCEnh : β = −6.81 × 10−3 [95% CI − 1.26 × 10−2, −1.07 ×
10−3], p < 0.05; AUCCon : β = −2.88 × 10−3 [95% CI − 4.07 × 10−3, −1.69 × 10−3], p < 0.001),
diabetes diagnosis (AUCEnh : β = 2.72× 10−1 [95% CI 9.31× 10−1, 4.51× 10−1], p < 0.01; AUCCon :
β = 6.13× 10−2 [95% CI 2.44× 10−2, 9.82× 10−2], p < 0.01), and less WMH volume (AUCEnh : β =

−4.46 [95% CI − 7.17, −1.75], p < 0.01; AUCCon : β = −1.08 [95% CI − 1.63, −0.52], p < 0.001).
Moreover, the stroke lesion volume was positively associated with the AUCEnh (AUCEnh : β =

6.38 [95% CI 1.05, 11.7], p < 0.01).
In stroke lesions, all vascular function measures were associated with clinical variables (p < 0.05).

The associations between clinical parameters and AUCEnh and AUCCon were clearer compared to
those of the rest (28% ≤ R2 ≤ 33% vs. 4% ≤ R2 ≤ 14%). Three variables strongly predicted
the outcome variables for some of these models: diabetes, stroke lesion subtype, and stroke lesion
volume. A diagnosis of diabetes was significantly associated with an increase in AUCs and Slopes
(AUCEnh : β = 1.13 [95% CI 0.61, 1.65], p < 0.001; AUCCon : β = 0.31 [95% CI 0.20, 0.41], p < 0.001;
SlopeEnh : β = 6.85 × 10−4 [95% CI − 1.45 × 10−6, 1.37 × 10−3], p = 0.05; SlopeCon : β =

2.60 × 10−4 [95% CI 1.04 × 10−4, 4.16 × 10−4], p < 0.01), but not with RPS (p > 0.1). Cortical
strokes had higher AUCs and SlopeCon (AUCEnh : β = −0.83 [95% CI − 1.20, −0.47], p < 0.001;
AUCCon : β = −0.12 [95% CI − 0.19, −0.05], p < 0.01; SlopeCon : β = −1.29 × 10−4 [95% CI −
2.38× 10−4, −1.92× 10−5], p < 0.05). Stroke volume was associated with an increase in AUCEnh,
SlopeEnh, and RPS (AUCEnh : β = 2.41× 101 [95% CI 1.01× 101, 3.82× 101], p < 0.001; SlopeEnh :
β = 3.37× 10−2 [95% CI 1.52× 10−2, 5.22× 10−2], p < 0.001; RPS : β = 7.16× 103 [95% CI 2.82×
103, 1.15× 104], p < 0.01).

4. Discussion

In this work, we compared the performance of five semiquantitative methods for analysing
signal-time trajectories of Gadolinium-based contrast agent in reflecting small vessel disease burden
within healthy and pathological intracranial brain regions. The five methods estimate and analyse the
slopes and area under the enhancement-time and concentration-time curves and changes in the power
spectrum of the contrast-enhancement signal over time.

The considered semiquantitative measurements assessing contrast uptake/washout provide
different yet complementary information related to cerebrovascular dysfunction. First, the areas
under the enhancement-time/concentration-time curves describe two processes that may cause signal
change in tissue jointly: accumulation of contrast agent in the extravascular extracellular space due to
blood–brain barrier leakage and total volume of blood. Since the former effect is expected to be subtle
in small vessel disease, we expect these areas under the curves to reflect more total blood volume.
In regions filled with cerebrospinal fluid, increases in areas under the curves could be caused by
contrast agent leakage due to an impaired blood-cerebrospinal fluid barrier [1–3]. Second, the slopes
of the enhancement-time/concentration-time curves describe the rate at which the contrast agent
washes out of brain tissues. While a positive slope reflects uptake of contrast agent in tissue over time,
a negative slope reflects contrast washout over time. The magnitude of such a change indicates the
speed at which it happens: the higher the magnitude, the faster the change over time. Thus, the slower
the washout rate, the more the contrast agent stays in tissue potentially due to its accumulation in the
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extracellular extravascular space. In regions filled with cerebrospinal fluid, a slope different from zero
may reveal impairment of the blood–CSF barrier. Third, the analysis of the radial power spectrum
permits quantifying changes in frequencies over time cohort-wise [8]. A positive or negative value
expresses distancing from the mean behaviour (described by each eigenfunction) cohort-wise.

We performed a one-way ANOVA to determine the effect of the burden of WMH and neuroimaging
features of SVD, expressed in terms of the Fazekas and total SVD scores, on the five measures of contrast
uptake/washout from CSF and WMH. Most effects were significant on measurements extracted from
both CSF and WMH considering Fazekas scores. The only significant effects when considering the
total SVD score were the slope of the concentration-time curve extracted from regions filled with
CSF and the area under the concentration-time extracted from WMH. These results imply that most
measurements vary depending on the overall burden of WMH in the brain, but only concentration-time
measurements capture additional aspects of vascular dysfunction on univariate analyses. Moreover,
the relationship between measurements and clinical visual scores was more evident (lower p-values)
when extracted from concentration-time curves. Therefore, the analysis of concentration-time curves
is more reliable than enhancement-time curves since the former includes adjustment for contrast
agent relaxivities, imaging parameters, and relaxation times of each region of interest. The slopes and
areas under the curves exhibited opposite trends: slopes increased with WMH and total SVD score,
whilst areas decreased. Examination on larger datasets with more varied states of brain vascular and
other pathologies is needed to more fully understand the factors influencing the measurement of these
potentially valuable differential vascular dysfunction parameters.

We performed multiple linear regression to establish whether clinical parameters (age, biological
sex, mean arterial pressure, hyperlipidaemia, smoker, diabetes, stroke lesion subtype, WMH and
stroke lesion volume) determined the extent of enhancement in cerebrospinal fluid, deep grey matter,
normal-appearing white matter, WMH, and stroke lesion. The strength of the associations were
consistently higher when considering measurements from the concentration-time curves and not from
the enhancement-time curves consistent with the literature [1,4–6,19–23]. This might imply that the
use of imaging parameters to obtain these former trajectories provide better estimates of the contrast
uptake/washout. While the analysis of the area under the concentration-time curve was explained the
best by clinical parameters regardless of the region of interest, the analysis of the radial power spectrum
did not identify associations as they were the weakest compared to the other four measurements.
The presence of noise and signal drift in similar levels to the signal changes has been acknowledged
previously [9,24]. The RPS, reflective of the cumulative effect of the whole frequency spectrum forming
the signal, is a sensitive measure worth further evaluation for this purpose once appropriate noise
filtering procedures have been applied.

Estimates of contrast agent update/washout in cerebrospinal fluid-filled spaces, deep grey matter,
normal-appearing white matter, and WMH were negatively associated with age. Given that the total
volume of blood decreases with age [25] and that leakage in small vessel disease is expected to be
subtle [3], this outcome suggests that the enhancement in the capillaries might be overshadowing the
enhancement due to leakage and, hence, the semiquantitative methods considered in this work examine
vascular surface area, in accordance with previous research in the field [26]. In WMH regions, our results
indicate that their enhancement decreases with the extent of demyelination and axonal damage [27],
consistent with previous findings [28–30]. In deep grey matter, WMH, and stroke lesions, diabetes
influenced the contrast uptake/washout estimates: higher values in diabetic vs. non-diabetic patients.
This outcome suggests that diabetic patients may present a reduction in capillary density or a higher
impairment of the blood–brain barrier. In both cases, this relationship agrees with previous studies
in which both hyper- and hypo-glycemia have been associated with cerebrovascular alterations [31]
and compromised the blood–brain barrier [32,33]. In stroke lesions, large cortical strokes exhibited the
highest contrast uptake/washout estimates, much more evident in diabetic patients. Further research
in these directions is needed to account for the interaction between the capillaries and the extracellular
extravascular space and their contribution to the overall enhancement.
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Future work should consider comparing more semiquantitative and quantitative approaches for
analysing concentration-time curves and assessing their robustness against imaging artefacts as they
compromise current assessments [3,9–11].
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Abbreviations

The following abbreviations are used in this manuscript:

ANOVA Analysis of variance
AUC Area under the curve
AUCCon Area under the concentration-time curve
AUCEnh Area under the enhancement-time curve
CI Confidence interval
CSF Blood-brain barrier
DCE-MRI Dynamic contrast-enhanced magnetic resonance imaging
DGM Deep grey matter
MAP Mean arterial pressure
MRI Magnetic resonance imaging
NAWM Normal-appearing white matter
WMH White matter hyperintensity
RPS Radial power spectrum
SL Stroke lesion
SlopeCon Slope of the concentration-time curve
SlopeEnh Slope of the enhancement-time curve
SVD Small vessel disease
TE Echo time
TI Inversion time
TR Repetition time
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Appendix A

Table A1. Multiple linear regression results with semiquantitative contrast uptake/washout estimates per region of interest as predicted variables and clinical
parameters as predictors. Adjusted R2 values are shown as percentages. Biological sex: 0—female, 1—male. Stroke type: 0—cortical, 1—lacunar. ROI: region of
interest. MAP: mean arterial pressure. CI: confidence interval. CSF: cerebrospinal fluid. DGM: deep grey matter. NAWM: normal-appearing white matter. WMH:
white matter hyperintensity. SL: stroke lesion. RPS: radial power spectrum.

ROI Method R2 p-Value Age Biological Sex MAP Hyperlipidaemia Smoker Diabetes Stroke Type WMH Volume SL Volume

β (95%CI) p-Value β (95%CI) p-Value β (95%CI) p-Value β (95%CI) p-Value β (95%CI) p-Value β (95%CI) p-Value β (95%CI) p-Value β (95%CI) p-Value β (95%CI) p-Value

C
SF

AUCEnh 16 2.17 × 10−6 −4.27 × 10−2 5.02 × 10−7 −5.46 × 10−1 1.40 × 10−3 −4.41 × 10−3 4.25 × 10−1 −1.10 × 10−1 5.17 × 10−1 −9.63 × 10−2 5.84 × 10−1 −1.40 × 10−1 5.85 × 10−1 −4.65 × 10−2 7.88 × 10−1 3.33 × 100 3.90 × 10−1 1.07 × 101 1.61 × 10−1

(−5.89 × 10−2,−2.65 × 10−2) (−8.78 × 10−1, −2.14 × 10−1) (−1.53 × 10−2, 6.48 × 10−3) (−4.44 × 10−1, 2.24 × 10−1) (−4.42 × 10−1, 2.50 × 10−1) (−6.44 × 10−1, 3.64 × 10−1) (−3.88 × 10−1, 2.95 × 10−1) (−4.30 × 100, 1.10 × 101) (−4.32 × 100, 2.57 × 101)
AUCCon 36 4.44 × 10−16 −1.52 × 10−2 3.77 × 10−15 −1.40 × 10−1 1.61 × 10−4 −9.58 × 10−4 4.23 × 10−1 −3.73 × 10−2 3.09 × 10−1 1.18 × 10−2 7.56 × 10−1 −1.17 × 10−2 8.32 × 10−1 −1.27 × 10−2 7.35 × 10−1 2.46 × 10−1 7.69 × 10−1 −8.12 × 10−2 9.61 × 10−1

(−1.87 × 10−2, −1.17 × 10−2) (−2.12 × 10−1, −6.84 × 10−2) (−3.31 × 10−3, 1.39 × 10−3) (−1.10 × 10−1, 3.48 × 10−2) (−6.30 × 10−2, 8.67 × 10−2) (−1.21 × 10−1, 9.72 × 10−2) (−8.65 × 10−2, 6.12 × 10−2) (−1.40 × 100, 1.89 × 100) (−3.33 × 100, 3.17 × 100)
SlopeEnh 10 5.92 × 10−4 −3.51 × 10−5 1.12 × 10−4 −1.50 × 10−4 4.14 × 10−1 −6.13 × 10−6 3.07 × 10−1 −1.98 × 10−5 9.14 × 10−1 −1.32 × 10−4 4.88 × 10−1 3.95 × 10−4 1.56 × 10−1 −9.23 × 10−5 6.24 × 10−1 −5.99 × 10−3 1.55 × 10−1 6.36 × 10−3 4.43 × 10−1

(−5.27 × 10−5, −1.76 × 10−5) (−5.10 × 10−4, 2.11 × 10−4) (−1.79 × 10−5, 5.68 × 10−6) (−3.82 × 10−4, 3.42 × 10−4) (−5.08 × 10−4, 2.43 × 10−4) (−1.52 × 10−4, 9.41 × 10−4) (−4.63 × 10−4, 2.78 × 10−4) (−1.43 × 10−2, 2.28 × 10−3) (−9.95 × 10−3, 2.27 × 10−2)
SlopeCon 33 9.97 × 10−15 −1.29 × 10−5 2.46 × 10−13 −1.19 × 10−4 4.97 × 10−4 −1.71 × 10−6 1.20 × 10−1 −3.71 × 10−6 9.12 × 10−1 1.58 × 10−5 6.51 × 10−1 6.27 × 10−5 2.19 × 10−1 −2.92 × 10−5 3.98 × 10−1 −5.49 × 10−4 4.76 × 10−1 1.94 × 10−3 2.03 × 10−1

(−1.61 × 10−5, −9.66 × 10−6) (−1.85 × 10−4, −5.27 × 10−5) (−3.88 × 10−6, 4.51 × 10−7) (−7.01 × 10−5, 6.27 × 10−5) (−5.31 × 10−5, 8.47 × 10−5) (−3.76 × 10−5, 1.63 × 10−4) (−9.72 × 10−5, 3.88 × 10−5) (−2.07 × 10−3, 9.68 × 10−4) (−1.05 × 10−3, 4.93 × 10−3)
RPS 2 1.78 × 10−1 −5.43 × 10−1 8.97 × 10−1 2.94 × 101 7.32 × 10−1 −8.39 × 10−1 7.66 × 10−1 −2.16 × 101 8.02 × 10−1 1.85 × 102 3.95 × 10−2 −4.23 × 101 7.46 × 10−1 3.29 × 101 7.10 × 10−1 −3.62 × 103 6.79 × 10−2 −3.53 × 103 3.64 × 10−1

(−8.80 × 100, 7.71 × 100) (−1.40 × 102, 1.99 × 102) (−6.39 × 100, 4.71 × 100) (−1.92 × 102, 1.49 × 102) (8.97 × 100, 3.62 × 102) (−2.99 × 102, 2.15 × 102) (−1.41 × 102, 2.07 × 102) (−7.50 × 103, 2.69 × 102) (−1.12 × 104, 4.13 × 103)

D
G

M

AUCEnh 3 8.11 × 10−2 −2.55 × 10−3 2.97 × 10−1 3.37 × 10−2 5.02 × 10−1 −8.73 × 10−4 5.95 × 10−1 −2.97 × 10−2 5.56 × 10−1 −8.02 × 10−2 1.26 × 10−1 1.69 × 10−1 2.75 × 10−2 3.89 × 10−2 4.51 × 10−1 1.99 × 100 8.53 × 10−2 3.62 × 100 1.12 × 10−1

(−7.37 × 10−3, 2.26 × 10−3) (−6.51 × 10−2, 1.33 × 10−1) (−4.11 × 10−3, 2.36 × 10−3) (−1.29 × 10−1, 6.96 × 10−2) (−1.83 × 10−1, 2.28 × 10−2) (1.89 × 10−2, 3.19 × 10−1) (−6.27 × 10−2, 1.41 × 10−1) (−2.79 × 10−1, 4.26 × 100) (−8.48 × 10−1, 8.09 × 100)
AUCCon 13 6.20 × 10−5 −2.29 × 10−3 9.30 × 10−6 −5.52 × 10−3 5.94 × 10−1 −8.96 × 10−5 7.92 × 10−1 −1.53 × 10−2 1.41 × 10−1 −7.05 × 10−3 5.13 × 10−1 5.37 × 10−2 7.47 × 10−4 5.52 × 10−3 6.04 × 10−1 −6.77 × 10−2 7.75 × 10−1 −1.08 × 10−1 8.18 × 10−1

(−3.29 × 10−3, −1.30 × 10−3) (−2.59 × 10−2, 1.49 × 10−2) (−7.57 × 10−4, 5.78 × 10−4) (−3.58 × 10−2, 5.13 × 10−3) (−2.83 × 10−2, 1.42 × 10−2) (2.28 × 10−2, 8.46 × 10−2) (−1.54 × 10−2, 2.65 × 10−2) (−5.35 × 10−1, 4.00 × 10−1) (−1.03 × 100, 8.14 × 10−1)
SlopeEnh 3 9.77 × 10−2 −3.00 × 10−6 1.93 × 10−1 −1.27 × 10−4 7.73 × 10−3 −2.50 × 10−6 1.07 × 10−1 3.72 × 10−5 4.32 × 10−1 1.83 × 10−5 7.09 × 10−1 3.43 × 10−5 6.31 × 10−1 2.17 × 10−5 6.54 × 10−1 −9.17 × 10−4 3.97 × 10−1 8.51 × 10−4 6.90 × 10−1

(−7.52 × 10−6, 1.53 × 10−6) (−2.20 × 10−4, −3.39 × 10−5) (−5.54 × 10−6, 5.42 × 10−7) (−5.60 × 10−5, 1.30 × 10−4) (−7.84 × 10−5, 1.15 × 10−4) (−1.06 × 10−4, 1.75 × 10−4) (−7.37 × 10−5, 1.17 × 10−4) (−3.05 × 10−3, 1.21 × 10−3) (−3.35 × 10−3, 5.05 × 10−3)
SlopeCon 8 3.59 × 10−3 −1.35 × 10−6 1.55 × 10−2 −2.94 × 10−5 1.01 × 10−2 −4.97 × 10−7 1.81 × 10−1 7.61 × 10−6 5.04 × 10−1 9.31 × 10−6 4.30 × 10−1 1.70 × 10−5 3.23 × 10−1 3.57 × 10−6 7.59 × 10−1 −4.05 × 10−4 1.20 × 10−1 −8.70 × 10−6 9.86 × 10−1

(−2.43 × 10−6, −2.59 × 10−7) (−5.17 × 10−5, −7.08 × 10−6) (−1.23 × 10−6, 2.33 × 10−7) (−1.48 × 10−5, 3.00 × 10−5) (−1.39 × 10−5, 3.25 × 10−5) (−1.68 × 10−5, 5.08 × 10−5) (−1.94 × 10−5, 2.65 × 10−5) (−9.17 × 10−4, 1.06 × 10−4) (−1.02 × 10−3, 1.00 × 10−3)
RPS 5 3.33 × 10−2 1.73 × 100 4.89 × 10−1 −6.55 × 101 2.02 × 10−1 −2.14 × 100 2.03 × 10−1 −2.09 × 101 6.84 × 10−1 5.72 × 101 2.84 × 10−1 −1.25 × 102 1.09 × 10−1 1.17 × 101 8.24 × 10−1 −3.19 × 103 7.05 × 10−3 −1.72 × 103 4.57 × 10−1

(−3.18 × 100, 6.64 × 100) (−1.66 × 102, 3.53 × 101) (−5.44 × 100, 1.16 × 100) (−1.22 × 102, 8.04 × 101) (−4.78 × 101, 1.62 × 102) (−2.77 × 102, 2.82 × 101) (−9.19 × 101, 1.15 × 102) (−5.51 × 103, −8.81 × 102) (−6.28 × 103, 2.84 × 103)

N
A

W
M

AUCEnh 3 1.27 × 10−1 −1.58 × 10−3 2.68 × 10−1 −3.34 × 10−2 2.54 × 10−1 −5.93 × 10−4 5.35 × 10−1 −1.65 × 10−2 5.74 × 10−1 −6.89 × 10−2 2.45 × 10−2 1.92 × 10−2 6.64 × 10−1 −2.25 × 10−2 4.53 × 10−1 1.51 × 100 2.47 × 10−2 7.27 × 10−1 5.82 × 10−1

(−4.38 × 10−3, 1.23 × 10−3) (−9.09 × 10−2, 2.42 × 10−2) (−2.48 × 10−3, 1.29 × 10−3) (−7.43 × 10−2, 4.13 × 10−2) (−1.29 × 10−1, −8.95 × 10−3) (−6.80 × 10−2, 1.06 × 10−1) (−8.17 × 10−2, 3.66 × 10−2) (1.95 × 10−1, 2.83 × 100) (−1.88 × 100, 3.33 × 100)
AUCCon 6 1.07 × 10−2 −1.81 × 10−3 1.03 × 10−4 −7.85 × 10−3 4.02 × 10−1 −4.70 × 10−5 8.78 × 10−1 −9.61 × 10−3 3.07 × 10−1 −1.48 × 10−2 1.30 × 10−1 1.89 × 10−2 1.83 × 10−1 −8.38 × 10−3 3.84 × 10−1 1.07 × 10−1 6.17 × 10−1 −4.22 × 10−1 3.19 × 10−1

(−2.70 × 10−3, −9.08 × 10−4) (−2.63 × 10−2, 1.06 × 10−2) (−6.50 × 10−4, 5.56 × 10−4) (−2.81 × 10−2, 8.90 × 10−3) (−3.40 × 10−2, 4.38 × 10−3) (−8.99 × 10−3, 4.69 × 10−2) (−2.73 × 10−2, 1.06 × 10−2) (−3.15 × 10−1, 5.30 × 10−1) (−1.25 × 100, 4.12 × 10−1)
SlopeEnh −1 5.94 × 10−1 6.78 × 10−7 7.04 × 10−1 −2.42 × 10−5 5.09 × 10−1 −1.43 × 10−8 9.90 × 10−1 6.60 × 10−5 7.40 × 10−2 2.84 × 10−5 4.58 × 10−1 −5.99 × 10−6 9.14 × 10−1 −4.56 × 10−5 2.27 × 10−1 −9.58 × 10−4 2.55 × 10−1 −1.55 × 10−3 3.50 × 10−1

(−2.84 × 10−6, 4.19 × 10−6) (−9.64 × 10−5, 4.80 × 10−5) (−2.38 × 10−6, 2.35 × 10−6) (−6.48 × 10−6, 1.39 × 10−4) (−4.68 × 10−5, 1.04 × 10−4) (−1.15 × 10−4, 1.03 × 10−4) (−1.20 × 10−4, 2.87 × 10−5) (−2.61 × 10−3, 6.98 × 10−4) (−4.81 × 10−3, 1.72 × 10−3)
SlopeCon 2 1.43 × 10−1 −6.60 × 10−7 2.73 × 10−1 −7.77 × 10−6 5.29 × 10−1 2.02 × 10−7 6.16 × 10−1 1.94 × 10−5 1.19 × 10−1 9.82 × 10−6 4.45 × 10−1 1.14 × 10−5 5.44 × 10−1 −1.65 × 10−5 1.94 × 10−1 −4.56 × 10−4 1.08 × 10−1 −8.97 × 10−4 1.09 × 10−1

(−1.84 × 10−6, 5.23 × 10−7) (−3.21 × 10−5, 1.65 × 10−5) (−5.93 × 10−7, 9.98 × 10−7) (−5.01 × 10−6, 4.38 × 10−5) (−1.55 × 10−5, 3.51 × 10−5) (−2.55 × 10−5, 4.82 × 10−5) (−4.15 × 10−5, 8.48 × 10−6) (−1.01 × 10−3, 1.02 × 10−4) (−2.00 × 10−3, 2.01 × 10−4)
RPS −2 8.53 × 10−1 2.36 × 10−1 9.57 × 10−1 1.59 × 102 7.85 × 10−2 1.39 × 10−1 9.62 × 10−1 1.52 × 101 8.67 × 10−1 9.35 × 101 3.19 × 10−1 3.26 × 101 8.11 × 10−1 5.55 × 101 5.49 × 10−1 4.87 × 102 8.13 × 10−1 −1.74 × 101 9.97 × 10−1

(−8.40 × 100, 8.87 × 100) (−1.83 × 101, 3.36 × 102) (−5.67 × 100, 5.94 × 100) (−1.63 × 102, 1.93 × 102) (−9.12 × 101, 2.78 × 102) (−2.36 × 102, 3.01 × 102) (−1.27 × 102, 2.38 × 102) (−3.58 × 103, 4.55 × 103) (−8.04 × 103, 8.00 × 103)

W
M

H

AUCEnh 13 3.60 × 10−5 −6.81 × 10−3 2.04 × 10−2 5.37 × 10−2 3.70 × 10−1 2.29 × 10−4 9.07 × 10−1 −1.68 × 10−2 7.80 × 10−1 −1.73 × 10−2 7.81 × 10−1 2.72 × 10−1 3.07 × 10−3 1.67 × 10−2 7.86 × 10−1 −4.46 × 100 1.37 × 10−3 6.38 × 100 1.93 × 10−2

(−1.26 × 10−2, −1.07 × 10−3) (−6.42 × 10−2, 1.72 × 10−1) (−3.63 × 10−3, 4.09 × 10−3) (−1.35 × 10−1, 1.02 × 10−1) (−1.40 × 10−1, 1.06 × 10−1) (9.31 × 10−2, 4.51 × 10−1) (−1.05 × 10−1, 1.38 × 10−1) (−7.17 × 100, −1.75 × 100) (1.05 × 100, 1.17 × 101)
AUCCon 25 2.49 × 10−10 −2.88 × 10−3 3.38 × 10−6 1.96 × 10−2 1.15 × 10−1 1.20 × 10−4 7.67 × 10−1 −1.30 × 10−2 2.95 × 10−1 −4.53 × 10−3 7.25 × 10−1 6.13 × 10−2 1.25 × 10−3 −1.02 × 10−4 9.94 × 10−1 −1.08 × 100 1.98 × 10−4 −9.75 × 10−2 8.61 × 10−1

(−4.07 × 10−3, −1.69 × 10−3) (−4.78 × 10−3, 4.39 × 10−2) (−6.78 × 10−4, 9.17 × 10−4) (−3.75 × 10−2, 1.14 × 10−2) (−2.99 × 10−2, 2.08 × 10−2) (2.44 × 10−2, 9.82 × 10−2) (−2.51 × 10−2, 2.49 × 10−2) (−1.63 × 100, −5.17 × 10−1) (−1.20 × 100, 1.00 × 100)
SlopeEnh 4 6.11 × 10−2 −2.23 × 10−6 4.59 × 10−1 −1.61 × 10−4 9.94 × 10−3 −1.01 × 10−6 6.18 × 10−1 1.11 × 10−4 7.47 × 10−2 8.52 × 10−5 1.87 × 10−1 5.82 × 10−5 5.35 × 10−1 −6.90 × 10−5 2.79 × 10−1 1.19 × 10−3 4.04 × 10−1 4.35 × 10−3 1.21 × 10−1

(−8.17 × 10−6, 3.70 × 10−6) (−2.83 × 10−4, −3.90 × 10−5) (−5.00 × 10−6, 2.98 × 10−6) (−1.12 × 10−5, 2.34 × 10−4) (−4.18 × 10−5, 2.12 × 10−4) (−1.27 × 10−4, 2.43 × 10−4) (−1.94 × 10−4, 5.63 × 10−5) (−1.61 × 10−3, 3.98 × 10−3) (−1.16 × 10−3, 9.87 × 10−3)
SlopeCon 4 7.23 × 10−2 −1.32 × 10−6 6.88 × 10−2 −3.76 × 10−5 1.18 × 10−2 −2.34 × 10−7 6.30 × 10−1 2.53 × 10−5 9.04 × 10−2 2.03 × 10−5 1.91 × 10−1 2.37 × 10−5 2.92 × 10−1 −1.58 × 10−5 3.00 × 10−1 3.35 × 10−4 3.25 × 10−1 1.74 × 10−4 7.95 × 10−1

(−2.74 × 10−6, 1.03 × 10−7) (−6.68 × 10−5, −8.43 × 10−6) (−1.19 × 10−6, 7.22 × 10−7) (−4.03 × 10−6, 5.47 × 10−5) (−1.02 × 10−5, 5.07 × 10−5) (−2.06 × 10−5, 6.80 × 10−5) (−4.58 × 10−5, 1.42 × 10−5) (−3.35 × 10−4, 1.00 × 10−3) (−1.15 × 10−3, 1.50 × 10−3)
RPS −3 9.58 × 10−1 1.90 × 100 4.82 × 10−1 5.00 × 101 3.68 × 10−1 9.04 × 10−1 6.19 × 10−1 −2.76 × 101 6.21 × 10−1 1.13 × 101 8.45 × 10−1 −7.28 × 101 3.88 × 10−1 −4.11 × 101 4.72 × 10−1 1.96 × 102 8.78 × 10−1 −1.27 × 103 6.12 × 10−1

(−3.43 × 100, 7.23 × 100) (−5.94 × 101, 1.59 × 102) (−2.68 × 100, 4.49 × 100) (−1.37 × 102, 8.23 × 101) (−1.03 × 102, 1.25 × 102) (−2.39 × 102, 9.31 × 101) (−1.54 × 102, 7.14 × 101) (−2.31 × 103, 2.71 × 103) (−6.22 × 103, 3.67 × 103)

SL

AUCEnh 33 9.90 × 10−10 5.95 × 10−3 5.04 × 10−1 2.28 × 10−1 2.06 × 10−1 2.36 × 10−3 6.82 × 10−1 2.18 × 10−1 2.15 × 10−1 1.40 × 10−1 4.38 × 10−1 1.13 × 100 3.43 × 10−5 −8.31 × 10−1 1.52 × 10−5 −6.66 × 100 1.07 × 10−1 2.41 × 101 8.69 × 10−4

(−1.16 × 10−2, 2.35 × 10−2) (−1.27 × 10−1, 5.83 × 10−1) (−9.03 × 10−3, 1.38 × 10−2) (−1.28 × 10−1, 5.65 × 10−1) (−2.16 × 10−1, 4.96 × 10−1) (6.10 × 10−1, 1.65 × 100) (−1.20 × 100, −4.65 × 10−1) (−1.48 × 101, 1.45 × 100) (1.01 × 101, 3.82 × 101)
AUCCon 28 6.33 × 10−8 −2.22 × 10−3 2.21 × 10−1 5.17 × 10−2 1.58 × 10−1 6.43 × 10−4 5.82 × 10−1 3.20 × 10−2 3.70 × 10−1 1.98 × 10−2 5.88 × 10−1 3.06 × 10−1 6.73 × 10−8 −1.19 × 10−1 1.92 × 10−3 −1.47 × 100 7.88 × 10−2 2.63 × 100 6.87 × 10−2

(−5.78 × 10−3, 1.35 × 10−3) (−2.02 × 10−2, 1.24 × 10−1) (−1.67 × 10−3, 2.95 × 10−3) (−3.83 × 10−2, 1.02 × 10−1) (−5.23 × 10−2, 9.20 × 10−2) (2.00 × 10−1, 4.11 × 10−1) (−1.93 × 10−1, −4.45 × 10−2) (−3.11 × 100, 1.72 × 10−1) (−2.05 × 10−1, 5.47 × 100)
SlopeEnh 14 6.30 × 10−4 5.02 × 10−6 6.69 × 10−1 1.69 × 10−4 4.77 × 10−1 2.74 × 10−6 7.19 × 10−1 1.45 × 10−4 5.30 × 10−1 2.41 × 10−4 3.12 × 10−1 6.85 × 10−4 5.05 × 10−2 −4.62 × 10−4 6.02 × 10−2 −7.57 × 10−3 1.63 × 10−1 3.37 × 10−2 4.36 × 10−4

(−1.81 × 10−5, 2.82 × 10−5) (−2.99 × 10−4, 6.37 × 10−4) (−1.23 × 10−5, 1.78 × 10−5) (−3.12 × 10−4, 6.03 × 10−4) (−2.28 × 10−4, 7.10 × 10−4) (−1.45 × 10−6, 1.37 × 10−3) (−9.44 × 10−4, 2.01 × 10−5) (−1.83 × 10−2, 3.12 × 10−3) (1.52 × 10−2, 5.22 × 10−2)
SlopeCon 13 1.02 × 10−3 −2.54 × 10−6 3.41 × 10−1 5.33 × 10−5 3.24 × 10−1 1.43 × 10−6 4.08 × 10−1 3.69 × 10−5 4.84 × 10−1 8.71 × 10−6 8.72 × 10−1 2.60 × 10−4 1.28 × 10−3 −1.29 × 10−4 2.17 × 10−2 −2.01 × 10−3 1.04 × 10−1 3.87 × 10−3 7.06 × 10−2

(−7.81 × 10−6, 2.73 × 10−6) (−5.32 × 10−5, 1.60 × 10−4) (−1.98 × 10−6, 4.85 × 10−6) (−6.71 × 10−5, 1.41 × 10−4) (−9.81 × 10−5, 1.15 × 10−4) (1.04 × 10−4, 4.16 × 10−4) (−2.38 × 10−4, −1.92 × 10−5) (−4.44 × 10−3, 4.20 × 10−4) (−3.30 × 10−4, 8.07 × 10−3)
RPS 4 4.51 × 10−2 1.43 × 10−1 9.52 × 10−1 3.15 × 101 5.18 × 10−1 5.64 × 10−1 7.23 × 10−1 −2.27 × 101 6.42 × 10−1 1.45 × 101 7.75 × 10−1 −3.59 × 101 6.26 × 10−1 2.40 × 101 6.31 × 10−1 2.45 × 103 2.95 × 10−2 7.16 × 103 1.34 × 10−3

(−4.53 × 100, 4.81 × 100) (−6.44 × 101, 1.27 × 102) (−2.58 × 100, 3.70 × 100) (−1.19 × 102, 7.36 × 101) (−8.54 × 101, 1.14 × 102) (−1.81 × 102, 1.09 × 102) (−7.46 × 101, 1.23 × 102) (2.46 × 102, 4.65 × 103) (2.82 × 103, 1.15 × 104)
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