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Early environmental exposure is recognized as a key factor for long-term health based on 
the Developmental Origins of Health and Disease hypothesis. It considers that early-life 
nutrition is now being recognized as a major contributor that may permanently program 
change of organ structure and function toward the development of diseases, in which epi-
genetic mechanisms are involved. Recent researches indicate early-life environmental fac-
tors modulate the microbiome development and the microbiome might be mediate di-
et-epigenetic interaction. This review aims to define which nutrients involve microbiome 
development during the critical window of susceptibility to disease, and how microbiome 
modulation regulates epigenetic changes and influences human health and future preven-
tion strategies. 
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Introduction 

In 1986, David Barker proposed the Developmental Origins of Health and Disease (DO-
HaD) hypothesis, denoted fetal reprogramming, that the environmental stimuli such as 
nutrients during vulnerable development stages may permanently program change of or-
gan structure and function of the offspring toward the development of non-communica-
ble diseases [1]. Since Barker’s observation, denoted fetal programming, it is widely rec-
ognized that nutrient during pregnancy and lactation is one of the modifiable risk factors 
for adult chronic diseases including diabetes and cardiovascular diseases [2]. Following 
the DOHaD concept, early-life environmental factors such as nutrients may modulate 
the development of the gut microbiota [3]. It is postulated that the gut microbiome can 
be shaped by nutrients, which induce epigenetic changes prior to fetal and infant pro-
gramming of disease. 

In this review, we describe how early nutrients link microbiome modulation and influ-
ence the early epigenome. We refer the term “early-life” to the period from pregnancy to 2 
years of age. Moreover, we assess the early-life gut microbiome as epigenetic modifiers are 
associated with early-onset or adult diseases including metabolic disorders. In detail, section 
2 reviews the regulation of epigenetic mechanisms for metabolic signaling through nutrients 
and their metabolites as epigenetic substrates or cofactors. Section 3 provides several early 
environmental factors that may modulate early microbial communities. Section 4 describes 
the effects of each nutrient on gut microbiome changes in early-life through epigenetic 
mechanisms and the potential role of the gut microbiome in adult disease. 
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The Link between Dietary Epigenetic 
Modulator and Metabolic Processes 

Epigenetic changes by environmental conditions enhance cellular 
plasticity [4]. Genomic DNA is packed into chromatin with histone 
protein and the changes of chromatin structure participate in the 
cellular processes in response to physiological signals. Chromatin 
structure is determined by epigenetic modification resulting in tran-
scription and replication types of machinery and therefore influenc-
es biological consequences [5]. Epigenetic changes produce DNA, 
histone and chromatin modifications including methylation, acetyl-
ation, phosphorylation, sumoylation, and ubiquitination with modi-
fying enzymes (e.g., methyltransferases) [6]. Non-coding RNA is an 
epigenetic mark that mediates epigenetic modification by environ-
mental factors such as diet. Modification of chromatin architecture 
by epigenetic marks can be heritable and modify the risks of disease 
in later life (Table 1) [7-17]. 

Several metabolites or cofactors of tricarboxylic acid (TCA) cy-
cles involved in methylation or demethylation of histone [18]. The 
epigenetic modifying enzymes use some energy metabolites in 
one-carbon metabolism with S-adenosyl-methionine (SAM) and 
TCA cycles. SAM is generated through one-carbon metabolism and 
a key factor for epigenetic processes. DNA methylation requires the 
SAM as a methyl donor, while ten-eleven translocation and Jumonji 
C domain-containing proteins-mediated demethylation requires 
TCA cycle metabolite α-ketoglutarate and Fe2+ as a cofactor. DNA 

and histone demethylation have the potential to regulate diverse 
physiological functions, including metabolic signaling [19]. 

There are several known dietary methyl donors including folate, 
choline, and vitamin B12 participate in one-carbon metabolism and 
these nutrients have been examined for the epigenetic regulation in 
animal and human studies [2]. Methyl donors are related to energy 
production and amino acid metabolism, therefore nutritional imbal-
ance as the disruption of the one-carbon cycle may participate in the 
development of metabolic diseases. Besides, many studies have 
shown that the mechanism of developmental reprogramming is in-
volved in dietary availability of methyl donors [2]. 

Histone (de)methylation is one of the mechanisms involved in 
several diseases including metabolic syndrome and cancer [20]. 
Lysine methylation of a specific site of H3 acts both transcriptional 
activation (H3K4) and silencing (H3K9, H3K27) for regulating 
gene expression by a degree of methylation within the histone tail. 
The H3K9 specific demethylase JmjC domain-containing histone 
demethylase 2A (JHDM2A) was well known to an important reg-
ulator of fatty acid metabolism, therefore loss of function of JHD-
M2A resulted in obesity and hyperlipidemia [21,22]. H3K4 de-
methylase LSD1 using flavin adenine dinucleotide (FAD) as a co-
factor, epigenetically represses energy expenditure, which facilitates 
energy storage as triglycerides in white adipocytes [23]. FAD is also 
related to the TCA cycle, oxidative phosphorylation, and fatty acid 
β-oxidation with riboflavin (vitamin B2) in the cytoplasm and mi-
tochondria [24]. 

Table 1. Epigenetic modifications and their functions with nutrients

Target Residue Modification Major function Related nutrients Related microbiome Reference
DNA CpG me Transcriptional repression Folate, choline, omega3-PUFA, poly-

phenols, proteins, high-fat diet
Bifidobacterium
Lactobacterium
Bacteroids

[7,8]

K4 me1, me2, me3 Transcriptional activation, poised to 
transcriptional activation

Low-fat diet, riboflavin, polyphenols, 
cobalamin

Firmicutes
Lachnospiraceae

[9,10]

K27 me1 Transcriptional activation Omega3-PUFA
high-fat diet
Nicotinamide

Firmicutes
Bacteroidestes
Akkermansia
Verrucomicrobia
Bifidobacteriaceae

[11-13]

me2 Transcriptional activation, enhancer 
silencing

me3 Transcriptional repression
K9, K4, K14, 
K36

ac Transcriptional activation Omega3-PUFA, selenium, SCFAs, el-
lagic acid, high-fat diet

Bifidobacterium
Anaerostipes
Eubacterium

[9,14,15]

Histone H4 K16 ac Transcriptional activation and repres-
sion for DNA repair

Curcumin Clostridium
Firmicutes
Bacteriodetes

[16]

K4, K8, K12 ac Transcriptional activation SCFAs, folate, biotin Bifidobacterium
Lactobacillus
Bacteroides

[17]

me, methylation (1, mono; 2, bi; 3, tri); PUFA, polyunsaturated fatty acid; ac, acetylation; SCFA, short chain fatty acid. 
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Arginine methylation of histone has been rapidly highlighted over 
the years for the role of diseases [9]. Protein arginine methyltransfer-
ases (PRMTs) with SAM as a methyl donor, transfer of methyl 
groups to specific arginine residues in histone and nonhistone pro-
tein substrates, resulting in the byproduct S-adenosyl-homocysteine 
(SAH). The SAM/SAH ratio can reflect the cellular methylation 
potential, which interacted with PRMTs. Peroxisome prolifera-
tor-activated receptor gamma coactivator 1α (PGC-1α; encoded by 
the PPARGC1A) serves as a transcriptional coactivator in mito-
chondria and has a function in oxidative metabolism. PRMT1 me-
diated cytosine methylation in PGC-1α which is expressed in brown 
adipose tissue involved in energy metabolism and diabetes [25]. 

Acetylation of histone H3 and H4 is mediated by acetyl-CoA and 
NAD+ for cellular metabolism. Lysine acetylation occurs in proteins 
involved in glycolysis, pyruvate metabolism and the TCA cycle [26]. 
Sirtuin 1 (SIRT1), a deacetylase depending on NAD+ has emerged 
as a key metabolic sensor linking to metabolic homeostasis, and 
SIRT1 participates the regulation of glucose homeostasis under nu-
trient deficiency [27]. For example, SIRT1 modulates acetylation 
on H3K9/K14 at circadian clock-controlled gene promoters 
through a high-fat diet [28]. It is reported that acetyl-CoA depen-
dent histone acetylation may have an important role in the cellular 
assessment of metabolic states and circadian clock [29]. Therefore, 
nutrients (e.g., pyruvate, fatty acids, or branched-chain amino acids) 
involved in acetyl-Co A levels can modulate metabolic signaling. 

Nutrients driven O-GlcNAc (N-acetylglucosamine) glycosylation 
has emerged as an important chromatin modification process 
[30,31]. O-GlcNAc transferase (OGT) is a key enzyme through 
protein glycosylation in the Hexosamone Biosynthetic Pathway. 
Several studies reported that nutrients-sensing GlcNAcylation of 
histone proteins has involved in chromatin remodeling and regula-
tion of biological processes [32]. Chromatin GlcNAcylation depend 
on the cellular processes with glucose, glutamine, fatty acid and ATP 
metabolism. High fat diet induced insulin resistance, hyperphagia 
and obesity through O-GlcNAc cycling [33,34]; thus, OGT can be 
a sensor for adipose to brain axis to target obesity [34]. 

Environmental Factors Involved in Early-Life 
Development of Microbiome 

The early-life microbiota contains a unique microbial communities 
consisting of numerous bacteria and viruses. This microbiota has 
identified by using different kinds of technologies including 16S 
rRNA sequencing. The gut microbiota is linked to risk for various 
conditions in inflammatory diseases, asthma, obesity, glucose intol-
erance, and type 2 diabetes [35-37]. 

Over the last decades, the paradigm of a sterile condition in utero 

is shifting to the possibility of the prenatal maternal-fetal coexist with 
commensal and symbiotic microbes [38]. Recent studies also sup-
port a prenatal microbial milieu through bacterial presentation in 
placenta, amniotic fluid, umbilical cord, and meconium [39]. In ad-
dition, there are emerging reports of the prenatal microbial compo-
sition on fetal and postnatal development. However, concerns have 
raised by molecular based approaches, therefore it is needed for ap-
propriate controls to account for DNA contamination or bacterial 
viability [40]. 

A maternal condition during pregnancy and postnatal period can 
provide a critical window for susceptibility to microbiome develop-
ment through the environmental factors such as mode of delivery 
and maternal diet (Fig. 1). The delivery mode has a crucial function 
in the early gut microbiota composition. Infants by vaginally delivery 
have higher levels of intestinal Bacteroides, Lactobacilli, and Bifidobac-
terium, which are commonly present in vaginal route, whereas in-
fants by caesarean section (C-section) have higher level of Enterococ-
cus, and Clostridium from skin, oral or hospital environment [41]. 
C-section born infants have shown to an increased risk of immune 
disorder such as asthma and allergy and obesity [42,43]. It has been 
revealed that neonates born by C-section exhibited significantly 
higher global DNA methylation levels in leucocytes [44] and 
CD34+ cell [45] compared with those born vaginally. 

Gestational age is another important influencer for gut microbi-
ome development [7,8]. It was reported that the gut microbiota of 
preterm infants has shown to delayed colonization by limited micro-
bial diversity and ths risk of gut dysbiasis. The gut microbiota com-
position of preterm infants has Enterobacter, Enterococcus, Escherichia, 
and Klebsiella predominantly and relatively low level of gammapro-
teobacteria than those in full term infants [46]. 

Breastfeeding have been reported to influence the infant microbi-
ota. It was reported that microbiome involved the effects of DNA 
methylation through breast milk, which influences the gut microbi-
ome community composition. Breastfeeding during this period is 
associated with greater Bacteroides and Bifidobacterium, which are fo-
late producers, thereby affecting DNA methylation regulated by 
methyl-donor [47]. Also, breast milk oligosaccharides alter hut mi-
crobiome community that secrete short-chain fatty acid. Therefore, 
the strain of Bifidobacterium and Lactobacillus by breastfeeding could 
make intestinal contents more acidic with short-chain fatty acids, 
which modulate a defense mechanism against pathogens and epi-
genetic effects [48]. 

Maternal Nutrients Influence on Microbiome
and Epigenetic Modulation

As mentioned above, early environmental factors such as nutrition 
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may have interacted with gut microbiome. Also, the microbial me-
tabolites such as B vitamins, short chain fatty acids (SCFAs), poly-
phenols (ellagic acid, urolithin, equol, isothiocyanate), and ome-
ga3 polyunsaturated fatty acid (PUFA) are reported to influence 
epigenetic mechanisms [49,50]. Maternal gut microbe metabolites 
can change the host cellular levels of important epigenetic modifi-
ers like histone acetyl transferases (HATs), histone deacetylases 
(HDACs), DNA methyltransferases (DNMTs), and DNA de-
methylases [51]. 

A number of the vitamins cannot be synthesized by the human 
body, therefore must be obtained by the diet. The gut microbiome 
is one of the important sources of B vitamins for the host [52]. Vi-
tamins B2, B6, B9, and B12 are important cofactors for the en-
zymes in the folate cycle where the conversion from homocysteine 
to methionine is required for the availability of SAM. Therefore, 
these vitamins could affect histone methyl transferasess and DN-
MTs for histone and DNA methylation. The other gut microbial 
metabolites such as vitamins B3, B5, and SCFAs are sources of 
acetyl-CoA or NAD, which affect histone acetylation via sirtuin 
inhibition or HAT activation [51]. 

The microbial SCFAs from the fermentation of dietary fiber 
were shown to maintain the nervous and immune systems through 
epigenetic modification [17,53]. The SCFA acetate and butyrate 
are the most abundant in the intestinal tract and can be produced 
with acetyl-CoA which is universal acetyl group donor for histone 
acetylation. Maternal acetate suppressed asthma by Treg and 

Foxp3 through HDAC9 inhibition [54]. Besides, the SCFA butyr-
ate induced global histone acetylation and activation in FOXO3A 
and MT2 by inhibiting HDAC1 and HDAC2 [55]. The SCFA 
pentanoate produced by gut microbiota such as Bacteroides, Bifido-
bacterium, and Lactobacillus affects the use of the acetyl-CoA pool 
for histone acetylation [56] that inhibits HDAC1 and HDAC8 in 
CD4+ T cell, thereby reduce interleukin (IL)-17A production and 
enhance IL-10 production [56]. 

Polyphenols have antioxidant, anti-inflammatory, and im-
mune-modulatory effects. Maternal supplementation of polyphe-
nols improved the early development of the risk of intrauterine 
growth restriction [57]. Urolithins are microbial metabolites from 
ellagic acid (one of the polyphenols) that are reported to have a pro-
tective effect on chronic diseases such as metabolic syndrome [58] 
and decrease triglyceride accumulation in adipocytes [14]. Ellagic 
acid was reported to inhibit reduction of HDAC activity and uro-
lithins prevented HAT activity [15]. Recent studies were shown 
that urolithin bacteria are Bifidobacterium, pseudocatenulatum, Lac-
tobacilli, and Coriobacteriaceae (Gordonibacter) [59] and Eggerthella-
ceae family [60]. Equol produced by the intestinal bacterium Lacto-
coccus reduced the risk of cardiovascular diseases including 
low-density lipoprotein cholesterol and arterial stiffness [61]. 

Omega-3 PUFAs are also obtained by the diet and have been in-
teracted with gut microbiota. Maternal omega-3 PUFAs are a key 
role in the immune system of the infant through the epigenetic 
mechanism for DNA and histone methylation [11,62]. For the 

Fig. 1. The critical window in early-life for microbiome modulation may influence on development of diseases later in life. BMI, body mass 
index.
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epigenetic mechanism, it was reported that maternal omega-3 
PUFA induced changing of methylation level in differentially 
methylated regions [12] and the promoter methylation level of In-
terferon γ and IL13 [62]. Maternal omega-3 PUFAs regulated off-
spring obesity through recomposition of the gut microbiota, Epsi-
lonproteobacteria, Bacteroides, Akkermansia, and Clostridia [63]. 
High- fat diet promotes intestinal epithelial HDAC3 level and 
SCFA butylate supplementation reduced HDAC3 activity [64]. 
Similarly, maternal high fat diet decreased fecal SCFA propionate 
and butylate level and increased Firmicutes to Bacteroidetes ratio, 
Akkermansia, and Verrucomicrobia in the offsprings related to 
blood pressure [65]. 

Maternal over-nutrition and undernutrition have shown to in-
crease predisposition to obesity and epigenetic changes in off-
spring [2,66]. Such maternal malnutrition disrupted the stable mi-
crobial community, and less bacterial richness and diversity, which 
is linked to increased risk of inflammatory diseases and obesity 
[67-70]. The maternal high fat diet was associated with alterations 
in the gut microbiome profiles of offspring for Coprococcus, Corio-
bacteriacae, Helicobacterioceae, and Allobaculum [71], the ratio of 
Bacteroidetes to Firmicutes [72] in mice, Campylobacter in Macaca 
fuscata [13] and Bacteroides in humans [73]. For the epigenetic 
mechanism, it was reported that the high-fat diet affected HNF4α 
binding sites at acetylated histone H3K27 in colon epithelium 
[10] and decreased Bifidobacteriaceae [74]. Similarly, over-weight-
ed woman during pregnancy had higher Bacteroids and lower 
Phascolarctobacterium than a normal-weighted woman during 
pregnancy [75]. Under-nutrition group in school-age children had 
a higher level of the Firmicutes and Lachnospiraceae [76]. Besides, 
maternal supplementation of probiotics with Lactobacillus rham-
nousus or Bifidobacterium lactis induced interferon-gamma produc-
tion on cord blood compared to controls [77]. 

Conclusion 

The interaction between the developing gut microbiome and epi-
genetic processes is an important mechanism of developmental re-
programming of immune disorder, obesity, and metabolic disor-
ders. There are mounting evidence supporting that gut microbiota 
may modify the pattern of DNA methylation and histone modifi-
cation. Recent studies have shown that the gut microbiome pro-
duces plenty of metabolites come from maternal nutrients that 
have the potential to modulate DNA methylation and histone 
modification. Maternal nutrients may have a crucial role in early 
development and long term health consequences. This review ex-
plored the impact of maternal nutrients on epigenetic mechanisms 
that regulate the early-life microbiome profile. The importance of 

individual nutrients induced by epigenetic modulation will help 
achieve optimal gut microbiota and strategy for improving health 
consequences. 
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