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Dictionary-enhanced imaging 
cytometry
Antony Orth1,2, Diane Schaak1 & Ethan Schonbrun1

State-of-the-art high-throughput microscopes are now capable of recording image data at a 
phenomenal rate, imaging entire microscope slides in minutes. In this paper we investigate how a large 
image set can be used to perform automated cell classification and denoising. To this end, we acquire 
an image library consisting of over one quarter-million white blood cell (WBC) nuclei together with 
CD15/CD16 protein expression for each cell. We show that the WBC nucleus images alone can be used 
to replicate CD expression-based gating, even in the presence of significant imaging noise. We also 
demonstrate that accurate estimates of white blood cell images can be recovered from extremely noisy 
images by comparing with a reference dictionary. This has implications for dose-limited imaging when 
samples belong to a highly restricted class such as a well-studied cell type. Furthermore, large image 
libraries may endow microscopes with capabilities beyond their hardware specifications in terms of 
sensitivity and resolution. We call for researchers to crowd source large image libraries of common cell 
lines to explore this possibility.

Optical microscopy is a core data gathering technique in the biological sciences. Digital microscopes enable 
researchers to record and store cellular scale images for further analysis offline1–3. Recent development of high 
throughput, gigapixel-scale microscopes4–9 have enabled collection of large datasets of cellular images. Once 
recorded, image processing routines turn this raw image data into quantifiable data, which can be used to aid 
diagnoses10 or to draw experimental conclusions3,11,12.

Often, the goal of a biological microscopy experiment isn’t to record the images themselves, but rather, 
to produce a low-dimensional quantification of the images3,11,12. While the input (the images) may contain a 
large amount of data, the output (abundance of each cell type, for example) takes the form of only a handful 
of scalar values. This mismatch suggests that there is a way to compress the input by using some a priori 
information about the cells. A compression of the input results in a faster image recording process, and 
decreased impact of phototoxicity and photobleaching. The type of a priori information used depends on the 
nature of the images. In cellular imaging experiments, one is often concerned with a restricted class of cells. 
These cells might differ slightly from one another in morphology, but they will share common features13–17. 
Armed with a reference library of typical cell images and associated properties, we may expect to be able 
to computationally reconstruct information about a cell from a severely undersampled or noise-corrupted 
input image18–22.

In this paper we explore how to leverage a large collection of reference images to enhance imaging cytometry. 
We use a high-throughput microlens array microscope4,6,7 to image and catalogue over 260,000 white blood cells 
(WBCs). WBCs are fluorescently labelled with a nuclear dye together with fluorescently tagged CD15 and CD16 
markers. Cells are then mounted on a microscope slide for imaging. Individual cell images are extracted from raw 
fluorescence images using standard thresholding and segmentation approaches. Using CD15 and CD16 expres-
sion levels in each cell image, we show that the WBC population is divisible into 4 distinct populations, each with 
distinct nuclear morphologies. These populations are then gated to produce large dictionaries of nuclear mor-
phology, which can in turn be explored. We demonstrate that these nuclear morphology dictionaries can be used 
to perform classification using only a fluorescence image of the nuclear shape. Moreover, this dictionary-based 
approach performs surprisingly well even in the presence of significant simulated imaging noise. This obser-
vation suggests that classification or quantification of cells in fluorescence microscopy can be done at low light 
levels given a library of example images that captures the full range of variability in cellular structure. Finally, 
we demonstrate dictionary-based denoising of nuclear morphology. We show that nuclear morphology can be 
accurately recovered from noisy images – even when the signal falls below the noise floor. This last result suggests 
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a data-driven approach for ultra low light imaging. We discuss extensions of this idea, where crowd sourced 
high-resolution, multidimensionsal (3D, spectral, etc.​) image dictionaries are used to enhance the capabilities of 
more rudimentary, cheaper microscopes.

Results
Imaging.  We employ a high-throughput microlens microscope to image cm-scale areas of microscope slides, 
which are covered with fluorescently labelled WBCs as shown in Fig. 1a. This image covers an area of 1.7 ×​ 1.1 cm 
at a sampling density of 0.5μ​m/pixel for a total size of ~0.75 gigapixels. We use 3 different fluorescent dyes to 
highlight the nuclei and quantify protein expression. Nuclei are dyed with Syto 16 (blue), while allophycocya-
nin (APC, green) and Brilliant Violet 421 (red) indicate CD15 and CD16 density, respectively. The microlens 
microscope operates like a highly parallelized point scanning microscope, producing an array of small sub-im-
ages – one for each microlens. When imaging continuous objects, these neighbouring sub-images are stitched 
together. However, because our goal is to build up a library of WBC images, we do not stitch sub-images from 
neighbouring microlenses. Instead, we apply a thresholding and segmentation routine to the Syto 16 channel for 
each sub-image independently in order to extract individual white blood cell nucleus images (Fig. 1b,c). Each 
WBC nucleus image identified by this process is entered into an array that makes up the library. The expression 
levels for CD15 and CD16 are calculated by summing the appropriate fluorescence channel within the WBC 
nucleus segmentation mask. An area normalized CD density can also be calculated, if desired. Segmenting only 
the nucleus as opposed the entire cell avoids ambiguity resulting from touching and overlapping cell membranes. 
White blood cell nuclei rarely overlap as they are well separated by the cytoplasm.

Using the WBC nucleus segmentation approach described in Methods, we extract 260,676 WBC nucleus 
images. Each nucleus image is 26 ×​ 26 pixels in size (13 ×​ 13 μ​m), with a CD15 and CD16 expression value for 
each cell. The entire set of extracted images is included as Supplementary Data 1. To aid in dataset exploration, we 
calculate a circularity parameter C for each WBC nucleus in the library π=C A P4 / 2. where A is the nuclear area 
and P is the nuclear perimeter. Figure 2 shows a snapshot of the roughly 0.5% of the entire WBC library (1,225 of 
260,676 cells), organized least to most circular from left to right (low to high C). With this ordering one can 
quickly appreciate the diversity of WBC nuclear shapes present in the library. Indeed, other orderings, such as by 
eccentricity, total area or CD expression are also possible.

Classification.  In this section we show that nuclear morphology can be used directly to classify WBCs. We 
first identify 4 distinct gates emergent from our CD15/CD16 labelling approach. These gates are then split into 
dictionary and trial sets for correlation-based classification.

Four distinct clusters are visible upon displaying a subset (see Gating in Methods) of the cellular CD15/CD16 
expression data as a log-scale dotplot (Fig. 3). We gate each one of these clusters manually into gates labelled R1-R4. 
A sampling of the nuclear images in each gate is shown in the insets to Fig. 3. We will refer to the entire set of nuclear 
images in gates R1-R4 as the reference library. The reference library is composed of 23,894 R1; 3,583 R2; 1,685 R3; and 
517 R4 images.

One can clearly see the distinctive multi-lobed nuclei characteristic of neutrophils in R123. The population in 
gate R2 is likely dominated by lymphocytes, as evidenced by the small circular nuclei found in R2. Nuclei in R3, 
most likely belonging to a CD16- monocyte population, are slightly bigger and less circular than those in R224. 
Finally, there is a small number of large, highly expressing CD15+​+​ cells in gate R4. These cells are possibly 
undifferentiated granulocytes, however, further investigation is necessary for unambiguous identification. Other 

Figure 1.  Large field-of-view imaging. (a) A cm-scale FOV of WBCs on a glass slide. WBCs are stained with a 
nuclear dye (Syto 16, blue), CD15 (APC, green) and CD16 (Brilliant Violet 421, red) markers. Dark patches are 
regions with high background fluorescence that have been discarded in post processing. Full-resolution version 
available online35. The entire image covers an area of roughly 1.7 ×​ 1.1 cm. Scale bar is 3 mm. (b) Full-resolution 
image of the boxed region in (a). (c) Deconvolved image of the nuclear stain channel in (b). Scale bar is 50 μ​m. 
(d) Image in (c) after segmentation and size exclusion. Individual cells are outlined in colour for visualization. 
Each cell area is used as a mask for CD abundance integration. (e) Image (c) set to 0 in black region of the 
segmented image (d). These nuclear images are added to the image library.
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types of less common WBCs such as basophils, eosinophils and natural killer cells will be found throughout these 
gates24, but are unresolvable with our two-dimensional CD15/CD16 labelling strategy.

Next, we implement an image-matching WBC classification scheme. The approach is as follows. From each 
gate, we remove 100 cells from the reference library to construct a trial image set. The remaining reference images 
we refer to as the dictionary. We then proceed to classify each cell in the trial set as belonging to one of R1-R4 
based solely on the magnitude of the cross-correlation with nuclear images from the dictionary. By knowing the 
ground truth gate of each cell in the trial set, we can quantify the accuracy of the classification scheme. Each of the 
n images in the trial set is cross-correlated with each of the p images in the reference set (across all gates), yielding 
a matrix ×n p image correlation values. Cross-correlation values range from 0 to 1, with 1 indicating a perfect 
match, and 0 signifying no similarity. For each cell in the trial set, a portion of the top correlation values for each 
cell type (R1-R4) is averaged, yielding a similarity index for each cell type. The optimal number of top correlation 
values to include in this average depends on the dictionary size and morphology variation (see Supplementary 
Note 4 and Supplementary Figures 1–3). The trial cell is classified as being of the cell type with the highest simi-
larity index value.

Examples of trial cells and their 10 most highly correlated reference cells of each type are shown in Fig. 4. 
Note that while there are sometimes closely matching images for incorrect cell types, usually there are too 
few reference cells of the wrong type with high correlation values to result in a false classification. This feature 
makes our method robust against poorly classified reference data. A pair of examples of incorrect matches 
between R1 and R3 gates is also shown in Fig. 4. We comment on the nature of the crosstalk between these gates 
below. The entire distribution of correlation values for the correctly classified trial cells in Fig. 4 are shown in 

Figure 2.  A portion of the white blood cell nuclear image library. Cells are organized from least to 
most circular (left to right). This image contains 1,225 cell nucleus images, slightly less that 0.5% of the 
complete dataset. Scale bar is 50 μ​m. The full version of this image containing 260,676 cells is available 
online34 and as Supplementary Data 1.

Figure 3.  CD15/16 expression and cellular morphology. Log-scale CD15 (x-axis)/CD16 (y-axis) scatter plot 
of WBCs. WBCs are gated into four regions, denoted R1-R4. Insets: 100 representative nuclear cell images for 
each region. Differing morphology in each gate is readily apparent. Scale bar: 25 μ​m.
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Supplementary Figure 4. Another way of looking at the correlation data is shown in Supplementary Figures 5–7, 
where we plot the decrease in correlation value in order of the correlation ranking.

To evaluate the accuracy of our classification algorithm, we applied the algorithm to 50 random permuta-
tions of trial sets and dictionaries. To calculate the cell similarity indices, we averaged the correlation values 
for the top m =​ 17 matches for R1, R2 and R4 dictionaries, while the R3 cell similarity index was obtained by 
averaging over the top m =​ 9 matches in the R3 dictionary. The number of top matches used (m), to calculate the 
cell similarity index for each dictionary (m =​ 17 for R1, R2, R4 and m =​ 9 for R3), was arrived at by calculating 
the overall classification accuracy for different numbers of top matches as outlined in Supplementary Note 4 
and Supplementary Figure 1. Classification results are displayed as a confusion matrix in Table 1. Cells from 
gates R1, R2 and R4 are classified with over 90% accuracy. Cells from gate R3, however are classified correctly 
at a lower rate of 85.26%. Overall, 90.15% of trial cells are correctly classified. For comparison, the classification 
accuracy using a quadratic discriminant analysis (QDA)25, with a 5-dimensional feature vector (cell nucleus area, 
perimeter, circularity, eccentricity and solidity) is shown in Supplementary Table 4. The overall classification 
accuracy of this more traditional approach is 85.31%, nearly 5% less than with the dictionary-based approach. 
The dictionary-based method performs similarly to QDA for R2-R4 cells, but greatly outperforms QDA for R1 
cell classification: 90.06% vs. 63.04% for dictionary-based and QDA, respectively.

Figure 4.  Typical examples of top 10 dictionary matches for each cell type. The first 4 trial cells (R1-R4) 
are correctly classified as R1-R4 cells. The bottom two trial cells are examples of incorrectly classified trial cells 
(R1 classified as R3 and R3 classified as R1). The similarity indices for each cell type (R1-R4) is shown in the 
“Similarity index” column. Green text indicates a correct match, red indicates an incorrect match and blue 
indicates the correlation value of the correct cell type.

Identified as R1 Identified as R2 Identified as R3 Identified as R4

R1 4503 (90.06%) 91 (1.82%) 383 (7.66%) 23 (0.46%)

R2 255 (5.10%) 4590 (91.80%) 155 (3.10%) 0 (0.00%)

R3 346 (6.92%) 248 (4.96%) 4263 (85.26%) 143 (2.86%)

R4 0 (0.00%) 0 (0.00%) 327 (6.54%) 4673 (93.46%)

Table 1.   Confusion matrix for cell classification resulting from 50 randomized trial and dictionary dataset 
pairs. Cells within each trial dataset are classified based on their correlation to the dictionary datasets. Trial 
datasets consist of 100 cells in each of R1-R4 gates. The dictionary dataset is composed of 23,794 R1; 3,483 R2; 
1,585 R3 and 417 R4 cells. Classification is based on the average of the top m = (17, 17, 9, 17) dictionary matches 
for (R1, R2, R3, R4) dictionaries. The overall classification accuracy is 90.15%.
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We note that the lower classification accuracy of R3 is likely a result of monocytes being present in both R3 
and R1 gates. It is well known that there is a ~10–20% non-classical CD16+​ monocyte population in in the 
peripheral blood of a healthy donor26. Assuming these CD16+​ monocytes have similar nuclear morphology 
to CD16- monocytes, they will result in cross talk between the R1 and R3 gates. This would happen both due to 
CD16+​ monocytes in R1 matching with CD16- monocytes is R3, and vice-versa.

We applied the classification algorithm to a subset of 82,000 cells from our dataset. This subset is roughly 
38% of the entire dataset and does not include any dictionary cells. The results are visualized in a color-coded 
dotplot in CD15/CD16 expression space, where at each datapoint we display a typical WBC nucleus image with 
the appropriate CD15 and CD16 expression (Fig. 5a). A larger version of this image available online allows the 
user to zoom in to discover the nuclear morphology in CD15/CD16 expression space27. Typical regions within 
R1-R4 gates are shown at a larger magnification in Fig. 5b–e. Of this 82,000 trial cell set, 66.91% are classified as 
R1, 25.07% as R2, 6.09% as R3 and 1.93% as R4. The proportions of R1, R2 and R3 classified trial cells are roughly 
in line for the expected abundance of neutrophils, lymphocytes and monocytes in peripheral blood28,29. Roughly 
15% of the cells classified as R3 are located within the R1 gate. This matches well to the known normal range for 
the percentage of CD16+​ monocytes in peripheral blood26, lending weight to our hypothesis that the R1/R3 
crosstalk is due to a CD16+​ monocyte population.

Typical approaches to cell classification rely on segmentation followed by extracting morphological features 
such as area, perimeter and curvature. However, these procedures become increasingly difficult to perform in 
noisy conditions. In contrast, our method avoids the need for precise segmentation and feature extraction by 
performing the classification process by direct image correlation with a low-noise reference set. We simulate this 
process by adding Gaussian noise to trial image sets in post-processing prior to cell classification. Classification 
results for a trial image set with a signal-to-noise-ratio (SNR) =​3.5 are shown in Table 2. Even in the presence of 
significant noise, R2 and R4 cells are still classified with over 91% accuracy, while R1 and R3 cells are classified 
with 85.90% and 77.36% accuracy, respectively. At this low SNR, there is only a minor drop in the overall classi-
fication accuracy from the SNR =​ 90 case: 90.15% to 86.97%. The optimal number of top matches to include in 
calculation for the cell similarity indices was significantly larger than in the SNR =​ 90 case. For optimal classifi-
cation at SNR =​ 3.5, we averaged over the top (69, 81, 21, 9) correlation values for (R1, R2, R3, R4) dictionaries to 
calculate the cell similarity indices (see Supplementary Figure 2).

Figure 5.  Cell classification visualization. (a) Dotplot showing locations of a portion of the dataset (82,000 
cells). Cells are color coded according to nucleus-based classification: Cells classified as R1, R2, R3 and R4 are 
displayed in red, blue, green and white, respectively. (b–e) Zoom in of regions marked B-E in (a). Scale bar is 
50 μ​m. A full-resolution version of (a) is available online27. Of the 82k cells shown here, 66.91% are classified as 
R1, 25.07% are classified as R2, 6.09% are classified as R3, and 1.93% are classified as R4.

Identified as R1 Identified as R2 Identified as R3 Identified as R4

R1 4295 (85.90%) 130 (2.60%) 454 (9.08%) 121 (2.42%)

R2 251 (5.02%) 4591 (91.82%) 153 (3.06%) 5 (0.10%)

R3 472 (9.44%) 285 (5.70%) 3868 (77.36%) 375 (7.50%)

R4 4 (0.08%) 0 (0.00%) 356 (7.12%) 4640 (92.80%)

Table 2.   Classification in the presence of noise. Trial cell images are corrupted with Gaussian noise down to a 
signal-to-noise-ratio (SNR) of 3.5. The dictionary dataset is composed of 23,794 R1; 3,483 R2; 1,585 R3 and 417 
R4 cells. Classification is based on the average of the top m = (69,81,21,9) dictionary matches for (R1, R2, R3, 
R4) dictionaries. The overall classification accuracy is 86.97%.



www.nature.com/scientificreports/

6Scientific Reports | 7:43148 | DOI: 10.1038/srep43148

The classification results in Table 2 are compared to QDA classification on the same noisy data in Supplemental 
Table 2. Our image matching approach matches or outperforms QDA for all cells types. The largest difference is 
for R1 cells, where the classification accuracy using segmentation and QDA on noisy images drops to 57.28% 
compared with 85.90% with image correlation. This large performance gap is a result of unreliable segmen-
tation under noisy imaging conditions. The overall classification accuracy for SNR =​ 3.5 data is 86.97% with 
the dictionary-based method, compared to 75.67% using QDA. The performance gain of the dictionary-based 
method is even more pronounced for extremely low SNR values. Supplemental Tables 3 and 4 show that the 
dictionary-based method still retains an accuracy of 78.22% at a SNR =​ 1.75 in comparison to 57.46% using QDA. 
Comparisons for lower SNR values were not feasible due to unreliable image segmentation required to calculate 
the morphological features for QDA.

Denoising.  In addition to high classification accuracy at low SNR values, the reference library also provides a 
means of denoising. By simply taking the average over the most highly correlated cells in the entire nuclear image 
dictionary, we can construct denoised estimate of the original image. To increase the size of the library, thereby 
increasing the likelihood of good dictionary matches, we also include copies of each cell rotated in 30° intervals 
over 360°. In this case there are over 3 ×​ 106 cell nucleus images in the dictionary.

In Fig. 6, we show two examples of denoising for R1 cells where we simulate noisy imaging in post-processing. 
Cell nucleus images are corrupted with Gaussian noise of fixed variance, while the signal (ie. the pixel values 
of the original images) is scaled down, resulting in images with low SNR. Noise corrupted images are shown 
under columns labelled “N” in Fig. 6, and the ground truth images (pre-noise corruption) are found in the “GT” 
column. The top 10 dictionary matches are also indicated. The estimated cell image, resulting from averaging 
over the top 10 dictionary matches is shown in the “E” column. There is little change in the estimated cell image 
from SNR =​ 90 (the original cell nucleus image with no extra noise) down to 0.5. Remarkably, the de-noised 
estimates still reveal the general structure of the cell nucleus in cases where the signal is buried below the noise 
level. Estimates become increasingly unreliable below this level. This result is made possible because of a highly 
restricted set of WBC nuclear images and the large dictionary set. Image details below the noise floor consistently 
lead to appropriate matches given a suitable dictionary.

Discussion
We have demonstrated an approach to data-enhanced WBC cell classification and image denoising. Our direct 
image correlation approach maintains high cell classification accuracy even in the presence of high noise. 
Moreover, we are able to obtain morphologically accurate denoised estimates of WBC nucleus images below the 
noise floor at an SNR =​ 0.5, which is 180-fold lower than the SNR of the original dataset. When fixed detector 
noise is the dominant form of signal corruption, recovering an acceptable image from a 180-fold lower SNR in 
principle allows for a 180x higher frame rate or 180x less excitation dose (assuming read-noise dominated imag-
ing). The latter is of utmost importance when imaging live cells or sparsely labelled samples. Decreased irradi-
ation is also critical in x-ray computed tomography (CT) imaging. Our results suggest that a similar dictionary 
based approach may be valuable in other imaging fields and need not be confined to fluorescence microscopy of 
WBCs. We note that in our denoising and noisy classification simulations, noise was added after initial cell locali-
zation. A real low-light experiment will not have this luxury and will require precise identification of cell positions 
within noisy microscope images. This is a similar problem to localization of single molecule fluorescence in super 
resolution techniques30, which can be achieved in the presence of significant noise.

Though we have applied our technique to WBCs, we expect that the direct image correlation method we 
present here will be applicable to a wide variety of cell types when paired with large image libraries. Experiments 

Figure 6.  Dictionary-based denoising of R1 nucleus images. The left column (N) shows a noisy nucleus 
image with SNR levels as indicated in each row. The original ground truth (GT) trial image (SNR =​ 90) is shown 
in the “GT” column and the denoised estimate (“E”) column shows the average of the top 10 dictionary matches 
for that trial cell. Even at low SNR, basic morphology of the nucleus can be recovered.
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involving standard cell lines that are used widely in the scientific community may benefit significantly from 
this approach. For example, an image library of HeLa cells15,31,32 might enable extremely low excitation intensity 
fluorescence imaging of this model cell line, thereby sidestepping limitations arising from photobleaching and 
phototoxicity.

Given the widespread use of certain cell lines, it should be possible to build up massive image databases by 
crowd sourcing the library collection task. Such a freely available database would have implications beyond what 
we have demonstrated with classification and denoising applications. Using our data-driven approach, research-
ers with low-resolution imaging hardware might be able to use a high-resolution image database to estimate a 
super-resolved version of their data. Researchers may be able to estimate cellular structure across dimensions 
as well. If a large 3D reference set (eg. confocal image stack) of cell type were available, a 2D slice of a trial cell 
could be sufficient to locate a match in the reference set, thus obtaining an estimate for 3D structure of the cell. 
Ultimately, such imaging estimates are only useful if they are able to predict a certain property of a cell, such as its 
protein expression or metabolic state. We have demonstrated this by showing that image-based classification can 
reproduce manual gating of CD15/CD16-labeled WBCs.

Constructing appropriately large reference libraries is a time consuming task best suited to high throughput 
microscopes, such as the one employed in this work or imaging flow cytometers33. As these speciality hardware 
systems become more widely available, users will have the opportunity to assemble open source image libraries 
to be shared amongst the scientific community. Those without access to high throughput systems could then use 
these libraries as references for a priori data-enhanced operations such as cell classification, denoising. In this 
vein, we are releasing the reference libraries acquired for this work, as Supplementary Data 1. The image sets are 
also available in a web friendly format on Gigapan27,34,35. We encourage researchers to explore the images in this 
dataset, and in particular to observe the fascinating array of nuclear shapes in the complete dataset.

Methods
Slide preparation.  Microscope coverslips (#1) used for sample imaging were prepared by applying a thin 
layer of 0.5% porcine gelatin, air dried, and then rinsed with water. A thin layer of 1% BSA in PBS was then 
applied to the porcine layered coverslips, air dried, and rinsed with water.

White Blood Cell Isolation and Staining.  10 ml EDTA preserved fresh blood drawn 1–2 hours prior to 
cell preparation was purchased from Research Blood Components, LLC (Brighton, Ma). Red blood cells were 
removed for the sample using a RBC lysis buffer protocol provided by the company (Alfa Aesar), leaving the 
white blood cell population whole and intact. The final white blood cell concentration was adjusted to 1 ×​ 106 in 
100 μ​l for each slide prepared. This 100 μ​l sample volume included 20 μ​l APC-Mouse Anti-Human CD15 anti-
body (BD-BioSciences), 5 ul Brillant Violet 421-Mouse Anti-Human CD16-antibody (BD Biosciences), and 2 μ​l  
0.1 mM Syto 16 Green Fluorescent Nucleic Acid Stain (ThermoFisher). DMEM (Lonza BioWhittaker 4.5 g/L glu-
cose without Glutamine or Phenol Red) was added to samples to bring volume to 100 μ​l for each white blood cell 
sample. White blood cell samples with antibodies were mixed on a rotator for 30 minutes at room temperature, 
then rinsed in DMEM buffer, and spun down at lowest speed possible to remove unbound antibody. 1% PFA 
was added and incubated at room temperature for 20 minutes to fix cells. Labelled cells were rinsed with DMEM 
and spun out of solution at lowest speed possible to separate out the PFA. Labelled cells were resuspended in 
50 μ​l DMEM buffer and spread evenly onto prepared coverslips, and then air-dried. Mowiol mounting solution 
(Calbiochem) was layered over cells on coverslips, and coverslip was mounted onto a microscope slide. These 
slides were placed in a dark place overnight at room temperature to allow the Mowiol to harden. Slides with pre-
pared labelled cells were stored in the dark until imaged.

Imaging.  Samples were imaged using a high throughput microlens array microscope4,6. Plano-convex 
refractive microlenses are fabricated by replica molding a photoresist master into Norland Optical Adhesive 61 
(n =​ 1.56). Microlenses are arranged in a hexagonal grid, with focal length 300 μ​m and diameter 122 μ​m. Brilliant 
Violet, Syto 16 and APC channels were imaged sequentially by exciting with 405, 488 and 647 nm lasers, respec-
tively. The total excitation power at the microlens array is roughly 65 mW for each laser. Long pass emission filters 
were employed together with a quad-band dichroic beam splitter to eliminate laser scatter. The excitation laser 
beam is expanded and projected into a weakly diverging 2 ×​ 2 cm square on the flat side of the microlenses. Each 
microlens focuses the incident light into a spot at its focus. The sample is placed at the focal plane of the micro-
lens array, resulting in fluorescence emission. This fluorescence is captured by each microlens, and directed back 
towards a large single lens reflex (SLR) lens (Nikon, focal length =​ 50 mm, f/1.4). The SLR lens images the back 
aperture of all microlenses onto a fast CMOS camera running at 200 frames per second (Point Grey Grasshopper 
3 GS3-U3-23S6M-C). To build up a point scanning image for the portion of the sample under each microlens, the 
sample is raster scanned over a 130 ×​ 118 μ​m under the microlens array, at a sampling frequency of 0.5 μ​m/pixel. 
The fluorescence emission at any given point in the image is given by the brightness of the pixels that make up the 
image of the microlens on the camera sensor.

Data Processing.  After imaging, all subsequent data and image processing is performed in MATLAB. 
Transforming the raw point scanning data into 2D images first requires the position of each microlens in the 
array to be identified. A reference microlens array image is constructed by taking the average of the raw cam-
era sensor image over 1000 frames. The periodicity of the hexagonal microlens array is obtained by comput-
ing the 2D Fourier transform of the reference image, and locating the peak positions in the spatial frequency 
domain. A digitally constructed template hexagonal grid with identical periodicity to the reference image is then 
cross-correlated with the reference image. The peak cross correlation value within one hexagonal cell indicates the 
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necessary translation of the template to match the reference image. The location of the centre of each hexagonal 
cell in the template grid is indexed with a microlens identification number, so that pixels in the reference image 
can be linked directly to a microlens index. The sub-image recorded by each microlens is extracted by arranging 
pixel intensities in lines, with 260 pixels (130 μ​m) per line.

Image Processing.  Sub-images with large background (large minimum intensity values) are discarded. 
The image recorded at each microlens position is thresholded using Otsu’s method to isolate WBC nuclei. The 
resulting binary image is further subjected to a variety of MATLAB morphological operations to clean object 
boundaries (MATLAB functions bwareaopen and bwmorph, operations used: ‘bridge’, ‘diag’, ‘spur’, ‘hbreak’, 
‘clean’, ‘remove’, ‘thicken’, ‘holes’). The resulting binary image is shown in Fig. 1d, with each object (WBC nucleus) 
labelled by colour. Each isolated region of Fig. 1d is used as a mask for a WBC nucleus image. Eccentricity, perim-
eter, area and solidity of each WBC nucleus region are calculated using the MATLAB regionprops function. CD15 
and CD16 expression are calculated by summing the fluorescence intensity in the appropriate spectral channel 
over the region of each WBC nucleus mask. CD expression data can vary due to intrinsic brightness variation 
of the microlens image on the image sensor. This can be due to inaccurate microlens position identification or 
microlens efficiency variation throughout the array. This effect is corrected at two points in the image-processing 
pipeline. First, the intensity of each microlens FOV is scaled so that all FOVs have identical mean values (only 
pixels within cells are considered when calculating the mean). This correction is performed prior to segmenta-
tion. The second correction occurs after cell image and CD expression extraction. Because cell image extraction 
proceeds in a row-wise fashion across the entire FOV, any systematic spatial bias of CD expression levels is appar-
ent when plotting CD expression against cell number (the first cell extracted is cell number 1, the next cell is cell 
number 2 and so on). This spatial bias is due largely to the angle between the pixel rows on the camera and the 
rows of microlenses. This effect manifests itself as periodic variation in CD expression as the cells are extracted 
from microlens FOVs that snake from top left to bottom right of the cm-scale large FOV. To correct for this bias, 
we low pass filter the CD expression trace (ie. the plot of CD expression vs. cell number) such that intra-FOV CD 
expression variation (which is what we want to capture) is averaged out, leaving only the systematic inter-FOV 
variation. Then, the original CD expression trace is divided by the low-pass filtered trace, eliminating systematic 
intensity variations. When normalized to its highest value, we refer to the low pass filtered trace as the intensity 
correction factor. This factor is used in the gating process to establish the quality of the dictionary images. This 
process is performed for both CD15 and CD16 channels.

Gating.  WBC images containing nuclei from two different WBCs are identified and eliminated by gating out 
cellular populations with large area and large eccentricity. For dictionary construction, we further narrow down 
the WBCs used. We discard all WBCs found in fields-of-view where the intensity correction factor is greater 
than 1.33. The dotplot in Fig. 3 shows only datapoints corresponding to cells with an intensity correction factor 
less than 1.33. This ensures that the WBCs in the dictionary have highly accurate CD expressions values (larger 
correction values come with higher uncertainty), and therefore that they are found in the correct gate. Remaining 
WBCs are subsequently gated into R1-R4 populations based on CD15/CD16 expression

Noise Simulation.  For noisy classification and denoising examples, noise is added to the original cell nucleus 
images (ground truth) using the MATLAB “imnoise” function. The SNR of the original dataset is 90, calculated 
by taking the mean pixel values within a cell, divided by the standard deviation of the pixel values in background 
regions. The SNR is calculated in the same way for synthetic noisy images.

Quadratic Discriminant Analysis Classification.  As a comparison to a traditional classification tech-
nique, we use Quadratic Discriminant Analysis25 to classify cell nuclei based on their area, perimeter, circularity, 
eccentricity and solidity. These 5 properties form a 5-dimensional feature vector for each cell based on segmenta-
tion from the background. Segmentation proceeds as in “Image Processing”.
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