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Abstract

Polygenic risk scores (PRSs) have become the standard for quantifying genetic liability in the prediction of disease risks. PRSs
are generally constructed as weighted sum scores of risk alleles using effect sizes from genome-wide association studies as
their weights. The construction of PRSs is being improved with more appropriate selection of independent single-nucleotide
polymorphisms (SNPs) and optimized estimation of their weights but is rarely reflected upon from a theoretical perspective,
focusing on the validity of the risk score. Borrowing from psychometrics, this paper discusses the validity of PRSs and
introduces the three main types of validity that are considered in the evaluation of tests and measurements: construct,
content, and criterion validity. This introduction is followed by a discussion of three topics that challenge the validity of PRS,
namely, their claimed independence of clinical risk factors, the consequences of relaxing SNP inclusion thresholds and the
selection of SNP weights. This discussion of the validity of PRS reminds us that we need to keep questioning if weighted
sums of risk alleles are measuring what we think they are in the various scenarios in which PRSs are used and that we need
to keep exploring alternative modeling strategies that might better reflect the underlying biological pathways.

Introduction
Polygenic risk scores (PRSs) aim to quantify the genetic liability
of common diseases and traits, the collective of genetic factors
that contribute to their development (1). PRSs are typically cal-
culated as a weighted sum of the risk alleles of single-nucleotide
polymorphisms (SNPs) and investigated for their potential to
improve the prediction of common diseases in clinical care to
guide preventive and therapeutic interventions (2).

While the concept of polygenic inheritance is centuries old
and long lacked data to prove its merit, the calculation of risk
scores developed from an empirical tradition with little attention
for its theoretical foundation (3). In the early days of genome-
wide association studies (GWASs), researchers considered their
few newly identified SNPs as separate variables in the prediction
of disease risks (4,5), and PRSs were a practical solution to
include larger numbers of variants in the regression analyses (6).

Some early studies calculated unweighted risk scores that
summed the number of risk alleles, assuming a similar impact
on disease risk for all SNPs, but these were rapidly replaced
by weighted scores that acknowledge that some SNPs have
stronger effect than others (6). In recent years, the construction
of PRSs is being improved from a computational perspective,
with proposals for a more liberal selection of independent SNPs
and a more refined estimation of their weights (7,8).

Even though PRSs typically explain only a small proportion
of the genotypic variance (2,9,10), the validity of the PRS as
a measurement of polygenic predisposition remains largely
undiscussed (3). It may be that researchers are aware and accept
that the validity is imperfect as many more genetic associations
remain to be identified (2), all models have limitations, and
they can be useful even when imperfect. It may also be that
researchers feel no reason to question the validity of the
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weighted sums of risk alleles as (1) the risk distributions are
what Fisher predicted for a large number of variants with
weak effects (11,12), (2) there seems to be no evidence for
strong gene–gene interaction (12) and (3) these PRSs generally
hold their discriminative ability in external validation samples
(see e.g. (13–15)).

Yet, several methodological concerns about the validity of the
PRS have been raised (3,16–19). It is argued that the functional
variation underlying SNP associations may not be captured by
risk alleles (16) and that the additive model may not adequately
capture the polygenic liability (3). Two studies that compared
the additive model with alternatives showed that not only the
weighted sum of risk alleles was compatible with empirical
data but that several other mathematical models fitted as well
when effects at single loci are small (17,18). And it is questioned
whether the recent trend of including millions of SNPs chal-
lenges the validity of the definition of risk alleles as most their
effect sizes are too small to produce ‘observable’ changes in the
calculation of risks, even by the thousands (19).

In this paper, I discuss the theoretical concepts of validity that
are used for evaluating tests and assessments in the social sci-
ences. I introduce the main types of validity and illustrate their
relevance for the construction of PRSs by reflecting on several
topics in PRS research: the observation of PRSs as independent
effects, the consequences of relaxing SNP inclusion thresholds
and the accuracy of GWAS weights.

Types of validity

The validity of a test or measurement indicates whether it mea-
sures what it intends to measure (20,21). Assessing the validity of
a measurement is challenging when what needs to be measured
is difficult to describe and cannot be directly observed. When we
cannot directly evaluate the validity of a measurement, which is
the case for PRSs, then we need to rely on various sorts of indirect
evidence to assure that PRSs measure what we want the scores
to measure. But what do we want PRSs to assess? And how well
are they doing?

In psychometrics, three types of validity are commonly dis-
tinguished: construct, content and criterion validity (Fig. 1) (20).
Construct validity informs about the intention of the measure-
ment, about what is the construct that needs to be measured.
It relates the construction of the PRS, as a weighted sum of
risk alleles, to the underlying theoretical views about genetic
liability. It questions whether the genetic liability of a disease
is quantified by an additive model that combines the risk alleles
into a single score. Construct validity is examined by correlating
the PRS of a disease with assessments that measure the genetic
predisposition of related (convergent validity) or unrelated dis-
eases (discriminant validity).

Content validity relates the PRS to what ought to be measured
to assess the construct of genetic liability in a certain context.
Content considers the measurement of PRS in the practical
context of how the score will be applied. For example, when a
PRS is used to predict disease in the absence of non-genetic risk
factors, then the score needs to capture all polygenic variance.
If the score is included in a prediction model with clinical risk
factors that mediate part of the polygenic risk, then the score
needs to capture the polygenic risk that is not captured by the
intermediate phenotypes.

Criterion validity examines to what extent PRSs correlate
with other measurements that they are expected to be related
to, either at the same time (concurrent validity) or in the future
(predictive validity). Most evidence on the validity of PRS is

about this predictive validity, and for most common diseases,
this predictive validity is modest, except when the PRS includes
one or more SNPs that have a strong impact on disease risk.
The modest predictive validity may limit the PRS’s potential for
clinical utility, but it may be informative enough for establishing
criterion validity.

Finally, the widespread adoption and uniform application
of PRS suggest that the score certainly does have face validity,
the fourth type of validity that is often distinguished: the score
seems valid on its appearance (22). Strong face validity in the
context of limited construct, criterion and content validity is not
enough. Whether the construction of PRSs, as weighted sums
of risk alleles, is valid depends on the purpose of assessing the
polygenic contribution to disease. In the next sections, I will
illustrate why a PRS may be valid for the prediction of risk when
used on its own but not when it is combined with clinical risk
factors, and why a PRS that has its weights from GWASs or that
include millions of SNPs may not be valid in clinical applications
to inform people about their genetic risk of disease.

Independent effects

In recent years, researchers often report that PRSs predict the
risk of common diseases independently from clinical risk fac-
tors. Independent effects have been reported for PRSs in breast
cancer (23), coronary heart disease (24,25) and coronary artery
disease (26,27) and were based on a formal mediation analysis
(25), a statistically significant effect size for PRS after combining
with clinical risk factors (26), and the absence of correlations
or interactions between PRS and clinical risk scores (23,24). The
observation of independent effects suggets that the PRSs were
not associated with the clinical risk factors, but none of the
studies showed these associations. Associations would however
be expected as earlier studies on PRSs that included smaller
numbers of selected SNPs did report associations with clinical
risk factors (28,29), since PRSs are investigated for these inter-
mediate phenotypes themselves, such as for obesity (30) and
hypertension (31).

Independent effects may be expected between PRSs and
behavioral and environmental risk factors, such as diet and
lifestyle. These independent effects have been observed for
lifestyle in stroke (32), coronary heart disease (33,34), adiposity
(35,36), diabetes (37) and breast cancer (38), and for stressful
life events in depression (39). However, there is less evidence
of an independent effect of PRSs when they are combined with
clinical risk factors, early symptoms or early-life predictors that
represent the outcome. Examples include baseline glucose level
to predict type 2 diabetes later in life (40), social impairments to
predict psychosis (41), childhood obesity to predict adult obesity
(42) and education at younger ages to predict highest educational
attainment (43). SNPs that play a role in the pathways that lead
to disease through these clinical risk factors or early-life stages
may be associated with disease risk through these intermediate
variables (44). These clinical risk factors may be measured with
various levels of accuracy, which will affect how well they are
able to mediate a SNP disease relationship, but to a priori expect
that they are independent is incorrect. Developing prediction
models that combine genetic and non-genetic risk factors is
straightforward, but when the construction of the PRS needs to
consider the possible mediating role of various non-genetic risk
factors, then more consideration is needed to find out whether
and how each of the variables mediates the association between
SNPs and disease risk, and how the SNPs are best combined into
risk scores.



Human Molecular Genetics, 2019, Vol. 28, No. R2 R145

Figure 1. Three types of validity applied to the measurement of polygenic risk scores. Legend: ∗ In the context of the specific application of the measurement.

If we assume that SNPs are biologically related to inter-
mediate clinical risk factors, then we must rule out that the
observation of independent effects is an artifact introduced by
the method of calculating PRSs. To this end, we must verify
whether individual SNPs are associated with the intermediate
phenotypes, and find out, if they are, how polygenic predisposi-
tion is best quantified in a way that allows the associated SNPs to
predispose their intermediate risk factors. Evidently, when none
of the SNPs is associated with the clinical risk factors, then a
single PRS might suffice.

Figure 2 presents a simplified scenario of how SNPs and
PRS relate to coronary artery disease (CAD) with blood pressure
and cholesterol as intermediate clinical risk factors. The graph
is analogue to the directed acyclic graphs that are used in
epidemiological research to express the direct causal relations
between study variables (45–47), with the difference that, for
prediction, the relationships do not need to be causal. Drawing
‘causal’ graphs helps identifying which variables should be
considered in the construction of risk models that combine
genetic and clinical risk factors and how they need to be
modeled. Figure 2A shows that among the SNPs that predispose
to CAD are SNPs for blood pressure and cholesterol. From
mediation analyses, we know that the effects of these SNPs
on CAD risk decrease when their clinical risk factors are
included in the model. We expect that only the SNPs for which
no intermediate factors are included will impact CAD risk.
‘Residual’ effects may be observed based on measurement
error in the clinical variables and in the genetic data if
SNPs do not accurately capture the underlying risk-increasing
associations (16).

When SNPs from various known and unknown pathways are
combined into a single PRS, we should expect that the PRS may
not be associated with each of the clinical risk factors (Fig. 2B),
or the effect may be attenuated (33). The PRS then presents as
an independent risk factor, while some of the SNPs in the score
may still predispose the clinical risk factors. The effects of the
SNPs that predispose blood pressure and cholesterol would be
reduced when the SNPs were entered as separate variables in
the analysis, but they now remain part of the PRS. Their effects,
at least conceptually, are now counted twice: through the clinical
risk factor and in the score.

When a PRS is constructed for inclusion in a prediction model
with clinical risk factors, the score should not measure the
polygenic contribution (as illustrated in Fig. 1) but the part of the
polygenic contribution that is not captured by clinical risk fac-
tors. PRS needs to quantify the ‘residual’ polygenic contribution.

Figure 2. Independent effects between single-nucleotide polymorphisms, poly-

genic risk scores and clinical risk factors. Legend: PRS, polygenic risk score; SNP,

single-nucleotide polymorphism; CAD, coronary artery disease. For illustration

purposes, other possible associations between variables are omitted.

For this, we need alternative methods that capture the effects of
SNPs in ways that allow relevant clinical predictors to mediate
when their predisposing genes are included in the score. We may
need methods that divide the PRS into multiple scores that each
are optimized so clinical risk factors can act their predisposing
role in pathways (Fig. 2C) (48–50).

Vassy and colleagues investigated pathway specific PRSs
in type 2 diabetes (51). They predicted type 2 diabetes using
a total PRS consisting of 62 SNPs, as well as using separate,
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Table 1. A comparison of overall and pathway-specific polygenic risk scores in type 2 diabetes

Model 1 Model 2 Model 3 Model 4

PRSt PRSβ PRSir PRSβ PRSir

Framingham offspring study (n = 3471)
Demographic model 1.08

(1.06, 1.10)
1.11

(1.08, 1.15)
1.04

(1.00, 1.10)
1.11

(1.08, 1.15)
1.05

(1.00, 1.10)
Clinical model 1.06

(1.04, 1.08)
1.10

(1.06, 1.14)
0.98

(0.93, 1.04)
1.10

(1.06, 1.14)
0.99

(0.93, 1.04)
CARDIA study, whites (n = 1650)
Demographic model 1.08

(1.04, 1.12)
1.09

(1.02, 1.16)
1.06

(0.96, 1.17)
1.09

(1.02, 1.16)
1.06

(0.96, 1.17)
Clinical model 1.06

(1.02, 1.10)
1.09

(1.02, 1.17)
1.01

(0.91, 1.12)
1.09

(1.02, 1.17)
1.01

(0.91, 1.11)
CARDIA study, blacks (n = 820)
Demographic model 1.05

(1.01–1.09)
1.06

(0.98, 1.14)
1.09

(1.00, 1.20)
1.06

(0.98, 1.14)
1.10

(1.00, 1.20)
Clinical model 1.05

(1.00–1.09)
1.06

(0.99, 1.15)
1.05

(0.96, 1.15)
1.07

(0.99, 1.15)
1.05

(0.96, 1.16)

Data are obtained from (51). Values are odds ratios with 95% confidence intervals. Models 1–3 have one PRS in the model; model 4 includes both PRSβ and PRSir. PRS,
polygenic risk score; PRSt, PRS total; PRSβ , PRS beta-cell function; PRSir, PRS insulin resistance; CARDIA study, Coronary Artery Risk Development in Young Adults
study. Demographic models are adjusted for age and sex, and clinical models are additionally adjusted for parental history of diabetes, body mass index, systolic
blood pressure, fasting plasma glucose, high-density lipoprotein and fasting triglycerides. Reprinted with permission from Jason L. Vassy, Marie-France Hivert, Bianca
Porneala, Marco Dauriz, Jose C. Florez, Josée Dupuis, David S. Siscovickm Myriam Fornage, Laura J. Rasmussen-Torvik, Claude Bouchard and James B. Meigs: Polygenic
Type 2 Diabetes Prediction at the Limit of Common Variant Detection, Diabetes 2014 Jun; 63 (6): 2172–2182: https://doi.org/10.2337/db13-1663. Copyright 2014 by the
American Diabetes Association.

non-overlapping PRSs based on SNPs associated with insulin
resistance (10 SNPs) and beta-cell function (20 SNPs). Table 1
shows that the odds ratio of the beta-cell function PRSs were
higher than those of the insulin resistance PRSs, which is
explained by the fact that these scores included SNPs that
had the highest ORs of all SNPs considered in the total PRS.
In three different populations, the odds ratios of the overall
and beta-cell PRSs remained unchanged after adjustment for
clinical variables, but the ORs of all insulin resistance PRSs
reduced. This underscores that clinical risk factors may mediate
the association between PRS and the risk of disease when the
construction or PRS allows for this mediating role.

Unfortunately, Vassy et al. did not report the c-statistic as a
measure of the discriminative ability for the prediction models
that included either one or both pathway-specific PRSs. We
do not know if and how considering multiple pathway-specific
PRSs changed the c-statistic as in contrast to adding a single
PRS to clinical risk factors. The c-statistic may be higher when
pathways that are more heritable have PRSs with higher effect
sizes that are then not reduced by variants with weaker effects
from other pathways. This is illustrated by the data of Vassy
et al., which showed that the beta-cell function PRS consistently
had higher odds ratio than the total PRS (Table 1). It is also
possible that separate PRSs lead to a lower c-statistic when part
of the genetic effect is removed after adjustment for clinical risk
factors. And it might be that the two approaches yield the same
improvement in c-statistic when the contribution of the SNPs
was minimal to begin with.

Finally, the extent to which clinical risk factors can mediate
the association between SNPs and disease not only depends on
how the PRS is constructed but also on the assessment of the
clinical risk factors. Adequate assessment is a challenge when
biomarkers that fluctuate over time are not measured timely
and frequently enough to capture that variation. Such variations
may occur based on daily rhythms or be induced by that week’s
diet and other relevant lifestyle factors. The development of
combined risk models should therefore not only focus on how

to optimally assess the genetic contribution but also how to
optimally measure the clinical risk factors.

GWAS weights

PRSs are typically constructed using weights from large GWASs.
These effect sizes are preferred to using weights obtained
from the study in which the PRS is investigated for the
robustness of the estimates. Yet, taking weights from GWAS
assumes that SNPs have the same impact on disease risk
in all populations of the same ethnicity. This is unrealistic.
First, GWAS estimates are pooled across multiple studies that
differ in study design and study population and that may
even differ in the diagnostic criteria and assessment of the
disease of interest. The GWAS weight for each SNP may reflect
none of the effect sizes of the individual studies. Second, the
effect sizes may be overestimated because of winner’s curse
and biases (52–54). Even when the identified GWAS hits are
true positives, their effect sizes may be attenuated in other
populations.

The overestimation of GWAS effect sizes is illustrated in the
23andMe’s white paper about its new PRS for type 2 diabetes
(55). 23andMe compared its SNP weights with the weights of
the genome-wide significant SNPs in the GWAS of Scott et al.
(56). The sample size of the GWAS was about 160 000 individuals
and of the 23andMe study about 940 000. Figure 3 shows that
all effect sizes were in the same direction, but that most effect
sizes of the GWAS were more extreme than the estimates from
23andMe. If the GWAS estimates were used to predict type 2
diabetes risk in the 23andMe population, poorer calibration of
the PRS should be expected, especially at the tails of the risk
distribution.

The choice of weights is relevant for the content validity
of the PRS. If the PRS is intended as a measure of polygenic
variance (Fig. 1), then it can be argued that the PRS needs to be
designed such that it reflects the variation in the population that
is studied. The weights of the SNPs, the point estimates of their
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Figure 3. Per allele effect sizes for single-nucleotide polymorphisms in type

2 diabetes. Legend: Picture provided by 23andMe, reproduced from (55). The

dots represent the genome-wide significant polymorphisms in the study of

Scott et al. (56).

effect sizes, are at the core of the PRS calculation, and their ade-
quate estimation is important. Weights are typically obtained
from GWAS, but this may not be the obvious choice when study
populations are large enough to be used for estimating their
own weights. These cohorts do not need to be used to identify
SNPs, but they could be used for re-estimating or adjusting the
GWAS effect sizes. We need more insight in the variation of effect
sizes within populations of the same ethnicity if we want to
understand the generalizability of PRSs (53,54).

Relaxing SNP inclusion thresholds

A recent trend in the construction of PRSs is to use millions
of SNPs in the prediction of risks (27,57,58). These PRSs go
beyond only including genome-wide significant SNPs from
GWASs and beyond setting lower thresholds (higher P-values)
than genome-wide significance for the selection of SNPs (7).
These PRSs are constructed using methods like LDpred that
optimize the weights for all SNPs using their GWAS weights,
linkage disequilibrium and an estimate of the proportion of
SNPs that are expected to have non-zero weights (8). The often
millions of SNPs that are assumed to have zero weights are
generally kept in the PRS calculation even when their weights
are small and would have been zero if the weights would be
quantified using, say, only three or four digits after the decimal
point.

Most of these millions of SNPs have such negligible impact
on risk that their inclusion in the score does not affect the
predictions: excluding all SNPs except, say, the genome-wide sig-
nificant SNPS or the top 1000 SNPs with the largest weights will
unlikely change individual predictions (27,59–61). When Khera
and colleagues constructed 30 PRSs using up to 7 million SNPs
for each of five common diseases (27), most PRSs had lower c-
statistics than the PRSs based on genome-wide significant vari-
ants only (19). Considering millions of SNPs that have negligible
impact on disease risk might be a non-issue computationally, but
it is not a non-issue if the scores need to reflect the underlying

theoretical views on the genetic predisposition of the disease of
interest.

Construct and content validity are about semantics and label-
ing. When the weights of ‘risk’ alleles are as low as 0.0000001
(and lower), do we consider these SNPs to be associated with
disease risk, and should they be included in the PRS? When a
PRS is constructed based on 2 million of SNPs of which, say,
100 are able to change predicted risks before the decimal, will
we tell a patient that their risk is calculated using 2 million or
100 SNPs?

When researchers relax the SNP inclusion thresholds to
include millions of SNPs, they often aim for and select the
PRS with the highest proportion of explained variance or
the highest c-statistic, even when the differences in these
metrics are minimal and adding millions of SNPs is unlikely
to change predicted risks for individuals (24,27,58,62). These
minimally higher proportions of explained variance or minimal
improvements of the c-statistic do not evidently translate into
better health or more healthcare benefits. There may be no
benefit for relaxing threshold beyond GWA significance (63),
and there may be no good reason to go beyond the genome-
wide significant SNPs for PRSs that are to be used in healthcare.
If it is deemed valid to include millions of SNPs in PRSs, then
we need to challenge ourselves to specify what is basis for this
validity judgment.

Conclusion
PRSs do not ‘exist’ in the same way blood pressure and choles-
terol level exist. The latter may be measured inaccurately, but
blood flow has a pressure, and blood may contain more or less
cholesterol. PRS is constructed, a pragmatic solution introduced
when the number of SNPs became too large to be considered
as separate variables in a regression analysis. PRS might be
valid as an algorithm for predicting risk when used alone or
in combination with variables we expect to be independent,
such as age, sex and behavioral risk factors. Yet, when mod-
eled together with clinical risk factors that are associated with
its SNPs as intermediate phenotypes, the construction of PRS
should be such that these risk factors can act as intermediate
phenotypes, capturing the effects of the SNPs that predispose
them.

PRSs do not ‘exist’ in the same way clinical risk models do
not exist either. The validity of clinical risk models needs to be
demonstrated, and the choices in the model development need
to be justified (64). Clinical risk models need to be developed
and externally validated in relevant settings so that they predict
what they intend to predict in the population where the risk
model is intended to be used. They need to be compared with
other risk models that calculate the same risks using different
algorithms. The demonstration of validity should be no less
rigorous for PRS.

This paper aimed to reflect on the validity of PRSs by
introducing the types of validity that are deemed important
in the design of measurements, tests or questionnaires (20).
PRSs have strong face validity; they intuitively seem to make
sense, but this apparent face validity is not enough. More
comparative research is needed to investigate the construct,
content and criterion validity of PRS; to explore alternative
ways of quantifying polygenic risk; and to rigorously compare
new and current methods (3). A critical reflection of what
needs to be measured by PRSs, from a theoretical perspective
to assure their construct validity and from a practical per-
spective to assure their content validity, will help evaluating
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whether the PRSs that are constructed are the ones that were
intended.

Models are simplifications of reality. They can be useful even
when they are wrong. The same holds for PRSs, but we need
to keep questioning if what we assess is what we think we do
and to seek for alternative modeling strategies that might better
reflect the underlying biological pathways. The construction of
PRSs needs to acknowledge the biological reality, not create a
new one.
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