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Abstract: The fetal and neonatal periods are critical and sensitive periods for neurodevelopment,
and involve rapid brain growth in addition to natural programmed cell death (i.e., apoptosis) and
synaptic pruning. Apoptosis is an important process for neurodevelopment, preventing redundant,
faulty, or unused neurons from cluttering the developing brain. However, animal studies have shown
massive neuronal cell death by apoptosis can also be caused by exposure to several classes of drugs,
namely gamma-aminobutyric acid (GABA) agonists and N-methyl-D-aspartate (NMDA) antagonists
that are commonly used in pediatric anesthesia. This form of neurotoxic insult could cause a major
disruption in brain development with the potential to permanently shape behavior and cognitive
ability. Evidence does suggest that psychoactive drugs alter neurodevelopment and synaptic plasticity
in the animal brain, which, in the human brain, may translate to permanent neurodevelopmental
changes associated with long-term intellectual disability. This paper reviews the seminal animal
research on drug-induced developmental apoptosis and the subsequent clinical studies that have
been conducted thus far. In humans, there is growing evidence that suggests anesthetics have the
potential to harm the developing brain, but the long-term outcome is not definitive and causality has
not been determined. The consensus is that there is more work to be done using both animal models
and human clinical studies.
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1. Introduction

Apoptosis, known as one form of programmed cell death (PCD) or cell suicide, is a natural
process by which neurons in the developing brain are selectively deleted in a process that contributes
to normal neurodevelopment, before or after neuronal differentiation. PCD may delete 50% or more
of all newly formed neurons, an important process critical for the formation of a highly structured
and efficient fully formed human brain. In the periphery, PCD was revealed to be regulated by
the competition for a limited amount of nerve growth factor (NGF), which allows for a pattern of
connections to form between proliferating and target cells [1–3]. In the central nervous system (CNS),
however, the process is more complex, relying on neuronal activation and neurotransmitter activity
rather than the simple presence of growth factors [4–6]. Abnormal patterns of apoptosis can be
triggered by altering neurotransmitter activity through exposure to psychoactive drugs. The amount
of drug-induced apoptotic cell death depends on timing, dose, and duration, and can be a significant
adverse event that results in a widespread neurodegeneration throughout the developing brain, which
is particularly vulnerable to environmental insult during the fetal and neonatal period [7]. Of particular
concern is the effect that drugs have on the developing brain, as exposure to a wide variety of drugs
may significantly alter the course of neurodevelopment, which may lead to permanent changes
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and a lifetime of intellectual disability that includes both cognitive and behavioral deficits [8–12].
An underlying factor in the alteration of brain development may be drug-induced neurodevelopmental
apoptosis (DIDNA). DIDNA was first identified in the neonatal rodent brain, caused by classes of
drugs that have N-methyl-D-aspartate (NMDA) receptor antagonist or gamma-aminobutyric acid
(GABA) mimetic properties, such as ethanol (which has both properties) [13–17], some drugs of
abuse [18–20], anticonvulsants [21,22], sedatives, and anesthetics [23–28]. The results of early studies
provided evidence that pointed to the fact that this type of neurotoxicity is a major public health
concern if agents administered in obstetric and pediatric medicine could have the potential to cause
brain damage. It is also not uncommon for pregnant women to abuse drugs, or to undergo therapeutic
treatment that involves the use of anticonvulsants, sedatives, and anesthetics [8]. The premature
infant is also routinely exposed to sedatives, analgesics, and anesthetics, sometimes for prolonged
periods during a stay in the neonatal intensive care unit. Neonates and infants also may be exposed to
sedatives and anesthetics for procedural sedation and surgery [29].

Results of years of research have shown that, in animals, DIDNA may cause permanent
changes in brain receptor function and circuitry that results in sensorimotor, social, and cognitive
deficits [30]. In humans, fetal or neonatal drug exposure has been linked to learning disabilities and
behavioral/developmental deficits [8]. This converging evidence led researchers to propose the need
to investigate the potential neurotoxicity of pediatric sedatives and anesthetics [31]. The objective of
this paper is to review the seminal animal experiments on DIDNA and examine the current status of
the evidence regarding pediatric anesthetic neurotoxicity in humans.

2. Methods

This is a review of the research that has been a part of a major scientific movement in the
field to design and conduct animal and human studies that set out to answer the research question
as to whether or not pediatric sedatives and anesthetics are neurotoxic to the developing brain.
This review begins with the seminal research from the laboratory of John W. Olney beginning in
1999 [25], and follows the progress from there, ending with the most recent clinical studies that
have been completed as of June 2016. The PubMed database was used to search for relevant
literature using keyword searches for original research and review articles that included the
following terms: anesthesia/anesthetics, pediatric anesthesia/sedation, neurodevelopment, apoptosis,
and neurodegeneration.

3. DIDNA

The finding that drug exposure can cause changes in the neurodevelopment is decades old,
with an early focus mostly on drugs of abuse such as alcohol [32] and morphine [33]. There were
few studies on therapeutic exposure to sedatives and anesthetics [23,24]. The discovery of DIDNA
was first identified by the Olney lab at Washington University School of Medicine in St. Louis when
Ikonomidou et al. [25] found that NMDA antagonist drugs caused widespread apoptotic cell death
in the neonatal rat brain. In a series of subsequent reports from the Olney lab they showed that a
similar effect could be observed in the rat or mouse brain by several other types of drugs, including
γ-aminobutyric acid type A (GABAA) mimetics, and drugs with combined GABA mimetic and NMDA
antagonist properties, such as ethanol, anticonvulsants, drug combinations, and anesthetic agents
such as ketamine, midazolam, propofol, and isoflurane [13–15,20,25–28]. It was determined, and is
now widely accepted, that the brain growth spurt period is when the fetal or infant brain is most
vulnerable to DIDNA. In rodents this period is postnatal, during the first week of life. In the human
brain, this period begins during fetal development and extends throughout early childhood [34].
Vulnerability to DIDNA is not limited to just one brain region, and has been found to occur through the
entire brain including the forebrain, midbrain, cerebellum, and visual system [13–15,35,36]. The pattern
of cell death is dependent on the timing of exposure during synaptogenesis. The underlying mechanism
was shown to be Bax-dependent and to involve mitochondrial injury, extramitochondrial leakage



Brain Sci. 2016, 6, 32 3 of 12

of cytochrome c, and activation of caspase-3 [37–39]. Subsequent studies provided evidence that
brain-derived neurotrophic factor-dependent and death receptor-dependent pathways were also
involved [39–41].

This early evidence was not immediately accepted—the translational relevance to the human
clinical experience was questioned, based on observations that the doses and durations used in the
animal models were too high and for too long, respectively [42–44]. It was subsequently argued that
a clinically relevant dose is dependent upon effect for the given species. For example, the doses of
anesthetics that should be tested are those that produce a specified anesthetic effect in animals or
humans, and these doses may not be the same on a strictly mg/kg basis. When this metric based on a
clinically effective dose is applied, the cross-species comparison can be made [45]. In the next 10 years,
DIDNA was confirmed by multiple labs using in vitro and in vivo animal models, including the
non-human primate [46–50]. As the debate among researchers and clinicians began about whether
these results should influence clinical practice [51–53], multiple reviews of the animal research all
came to the same conclusion—results animal studies on drug-induced neurotoxicity were robust
enough to suggest that anesthetics and sedatives used in pediatric and obstetric medicine may have
the ability to damage the developing brain, and clinical research was needed [54–58]. The research
focus moved from the preclinical to the clinical realm, leading to the establishment of national and
international research consortiums, groups, and organizations devoted to determining if anesthetics
pose a significant risk to the developing human brain [59–62].

4. Clinical Investigations

Certainly the discovery and documentation of fetal alcohol syndrome as early as the 1970s was
an early indicator that there could be serious consequences to exposing the developing brain to
other psychoactive drugs [32], especially those that, either alone or in combination, influence GABA
agonist and NMDA antagonist activity in the brain. Based on the initial results published by Olney
and colleagues [13–15,25–28], pediatric anesthetic regimens were identified as suspect because they
use drugs that have GABA mimetic or NMDA antagonist properties. Researchers began clinical
retrospective research using archived data sets from a population of children, already exposed to
anesthesia, available for analysis. Respectably, an international clinical research community set to
work. In 2009, published results of retrospective studies of children exposed to anesthesia before age 3
suggested that there may be an association between early exposure to anesthesia and an increased
risk of behavioral/developmental disorders [63–65]. The results of these studies were consistent with
earlier studies that, until this point, had not received much attention from clinicians and researchers in
the field [66,67]. Taken together, this evidence suggested that early anesthesia exposure could result in
poor neurodevelopmental outcomes that persist into childhood.

Not all studies found an association, however [68], and this early research did not immediately
sway clinical opinion, as prospective studies had not been conducted and causality could absolutely
not be determined [69–72]. Subsequent research added to the evidence that neonatal exposure to
anesthesia may, or may not, have long-term adverse effects on behavioral and cognitive development
(see Table 1). Overall, the findings suggest that early multiple exposures to surgery/anesthetics may
increase the risk for a behavioral developmental disorder, but a single exposure likely does not [73–76].
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Table 1. Clinical research conducted to investigate the effects of early exposure to anesthesia, in order by publication date.

First Author Date Age at
Exposure Study Groups Drugs Study Design and Population Outcome Measure

and Endpoint Conclusions

Roze [77] 2008 <33 weeks Exposed (n = 115); non-exposed
(n = 1457)

Daily exposure to sedatives
and/or opioids

Prospective, population-based
study, France Presence of disability at age 5

Prolonged sedation/analgesia
(>7 days) not associated with
poor outcome

Kalkman [78] 2009 <2 years <24 months (n = 178);
>24 months (n = 65)

Isoflurane, halothane,
enflurane, fentanyl, sufentanil

Retrospective cohort
study, Netherlands Child Behavior Checklist No ability to confirm an effect,

study underpowered

Wilder [65] 2009 <4 years
No exposure (n = 4,764);

Single (n = 449);
Multiple (n = 144)

Isoflurane, halothane,
enflurane, sodium thiopental,
etomidate, ketamine, nitrous
oxide, diazepam

Population-based, retrospective
birth cohort study; USA

Reading, language, and math
LDs before age 19

Significant increased risk of
LD with multiple, but not
single exposure

Bartels [68] 2009 <3 years
Exposure before age 3 vs.

exposure age 3–12;
n = 1143 twin pairs

Information not available
to researchers

Monozygotic
concordant-discordant twin study,

Netherlands Twin Registry

Educational achievement and
cognitive problems at age 12

No difference between
exposed and unexposed twin

Sprung [64] 2009 Perinatal Cesarian (n = 497) vs.
vaginal delivery (n = 4823)

Isoflurane, halothane,
enflurane, sodium thiopental,
etomidate, ketamine, nitrous
oxide, methoxyflurane

Population-based birth cohort: USA Incidence of learning
disability (LD) before age 19

No association between
anesthetic exposure during
birth and risk of LD

DiMaggio [63] 2009 ≤3 years
Hernia repair (n = 383) vs.

Age-matched controls
(n = 5050)

Not provided
Retrospective cohort study of

hernia patients; NY State Medicaid
Program enrollees, USA

Risk of
behavioral/develop-mental
disorder diagnosis at or
before age 4

Children who had hernia
repair >2x as likely to be
diagnosed

Hansen [79] 2011 <1 year Hernia repair (n = 2689) vs.
Age-matched controls (14,575) Not provided Retrospective birth cohort

study, Denmark
Academic achievement test at
15 or 16 years

No evidence of any effects of
a single exposure

Guerra [80] 2011 ≤6 weeks Cardiac surgery (n = 95)
dose-response

Inhalationals, opioids,
benzodiazepines, ketamine,
chloral hydrate

Prospective post-operative
follow-up

Mental, motor, and
vocabulary assessment at
18–24 months

No association between
dose/durationof
sedation/analgesia and
neurodevelopmental outcome

DiMaggio [73] 2011 <3 years
Surgery before age 3

(1–3 exposures) (n = 304) vs.
unexposed controls (n = 10,146)

Information not available
to researchers

Retrospective sibling birth cohort
design; NY State Medicaid

Program enrollees, USA

Incidence of developmental
and behavioral disorder at or
before age 6

Anesthesia-exposed group
risk of diagnosis 60% higher;
no causal connection can
be made
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Table 1. Cont.

First Author Date Age at
Exposure Study Groups Drugs Study Design and Population Outcome Measure

and Endpoint Conclusions

Flick [74] 2011 <2 years

General anesthesia exposure
once (n = 286), more than once
(n = 64) vs. unexposed controls

(n = 700)

Combination of halothane
and nitrous oxide
(most common)

Retrospective matched
cohort study, USA

LD diagnosis, achievement,
cognitive tests before age 19

Multiple exposures to
anesthesia increases risk
for a LD, but no
intervention required

Sprung [75] 2012 <2 years

No exposure (n = 10,146);
single exposure (n = 210);
two exposures (n = 71);
three or more (n = 23)

Combination of halothane
and nitrous oxide
(most common)

Retrospective birth cohort
design, USA

Attention-deficit/hyperactivty
(ADHD) diagnosis before
age 19

No increased risk with single
exposure, but increased risk
for ADHD diagnosis with
repeated exposure

Ing [81] 2014 <3 years

Disability class: none (n = 1135);
language and cognitive (n = 96);

behavioral deficits (n = 151);
severe deficits (n = 62)

Information not available
Retrospective birth cohort study,
Western Australian Pregnancy

Cohort (Raine) Study

Language, cognition, motor
skills and behavior at age 10

Deficits in language and
abstract reasoning associated
with anesthesia exposure.
Phenotype of interest
may be specific
language/cognitive delays

Ko [82] 2014 <3 years Exposed (n = 3293) vs.
unexposed (n = 16,465) Sevoflurane

Population-based retrospective
matched birth cohort design,
National Health Insurance

Database of Taiwan

Risk of ADHD before age 10
No increased risk of ADHD
diagnosis for single or
multiple exposure

Ko [83] 2015 <2 years Exposed (n = 5197) vs.
unexposed (n = 20,788) Sevoflurane

Population-based, retrospective
matched birth cohort design,
National Health Insurance

Database of Taiwan

Risk of autism disorder
diagnosis before age 10

No increased risk of AD; no
relationship between total
number of exposures and
AD risk

Creagh [84] 2015 <3 years ASD diagnosed (n = 262) vs.
non-ASD (n = 253)

In utero exposure—specific
agents not known

Population-based sibling cohort
study, Puerto Rico

Risk of autism spectrum
disorder (ASD) diagnosis

Early exposure to
anesthesia not linked to
an ASD diagnosis

Gleich [85] 2015 <3 years

No exposure (n = 250);
single (n = 150 );

multiple (n = 100);
Hypothetical sample sizes

Data to be collected Population-based, retrospective
propensity-matched study, USA

Neuropsychological test
battery (also used in
primates), ages 8–12 or 15–19

Analyses not completed;
goal is to determine whether
a neurobehavioral
phenotype exists

Hu [86] 2016 <3 years
No exposure (n = 465);

single exposure (n = 466);
multiple exposure (n = 126)

Data to be collected Population-based,
retrospective birth cohort

LD or ADHD diagnosis,
group achievement test at
age 5 or 6

Only slight differences
between study groups, not
expected to affect future data
analysis comparing risk

Sun [76] 2016 <3 years Sibling pairs (n = 105);
single exposure vs. unexposed Inhaled anesthetic agents Sibling matched cohort study,

at 4 U.S. University-based hospitals
Global cognitive function
(IQ) at age 10

No risk for healthy children
with single exposure
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In an attempt to synthesize the clinical data from retrospective studies, DiMaggio et al. [87]
conducted a search of studies published from 2002 to 2012 [63–65,68,73–75,77–80,88] and conducted
a Bayesian analysis of selected studies [63,65,68,77,78,80,88]. The authors concluded that the results
indicated a modest, but elevated risk of adverse behavioral/developmental outcomes, but that
the uncertainty of the available epidemiological evidence might preclude further research using
existing data sources. The focus then shifted to studies designed to investigate associations
between anesthetic exposure and a diagnosis for specific disorders such as learning disorder (LD),
attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorders (ASD), but no
associations were found [66,67,82–84]. It has since been suggested that studies should be designed that
focus on more specific outcome measures, because the variability in the results of clinical data may
be due to lack of consistent and well-defined dependent measures, such as tests designed to assess
specific cognitive and behavioral deficits, rather than more global measures using an intelligence
quotient (IQ) or performance on academic achievement tests. For example, Ing et al. [81] did show
that results were dependent on clinical outcome measures used—there was evidence for an increased
risk for specific cognitive deficits, but no increased risk was observed when academic achievement
results were analyzed. This new focus on outcomes could lead to future studies that reveal deficits
to be domain-specific and may be unable to be discovered using global measures such as IQ, LD
diagnoses, or group academic achievement tests. Future research is dedicated to minimizing confounds,
maximizing control, and using specific test batteries to characterize a neurobehavioral phenotype
that is specifically associated with anesthetic neurotoxicity [81,84–86,89–92]. New patient populations
are also being considered [93,94], but are complicated and have raised important new questions
about potential perioperative risks that are also potential sources of brain injury (i.e., hypotension,
hypoxia/ischemia, hypocapnia) [95]. The debate among researchers and clinicians has been vigorous
and productive—several review articles have been written in the past few years that simultaneously
acknowledge a potential risk and conclude that we simply cannot know if anesthesia causes neurotoxic
effects in the human brain that would require a change in clinical practice or if this risk should be
included as part of informed consent. Most agree, however, that important questions remain that
cannot be answered without continued preclinical and clinical research [95–103].

5. Conclusions

Summary of Findings

• There is abundant evidence from animal research that suggests that pediatric sedation and
anesthesia has the potential to be neurotoxic in the developing brain.

• Studies in humans are mostly retrospective, and have found that a single exposure to anesthesia
is likely not a concern, but it cannot be ruled out that multiple exposures could increase the risk
for poor neurodevelopmental outcome.

• Prospective human clinical research is needed; retrospective studies should focus on
neurobehavioral and domain-specific outcome measures rather than diagnoses or global outcomes
such as standardized test and academic achievement scores.

• New research in animals should focus on finding the safest protocols, drugs, and
drug combinations.

• There is not enough evidence to prompt significant changes in clinical practice, but elective or
non-urgent surgeries should be avoided.

• More research is needed – preclinical and clinical.

There is no question that this issue has become a global health concern, and a network of research
labs and groups has been actively pursuing answers that will lead to best practice. It is also the
case that the issue of anesthetic neurotoxicity is debatable—not everyone is convinced that it is
anesthesia that presents the greatest risk. Inherent limitations to research with human participants
that start with the intrinsic differences within the patient population, and are often underpowered
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and heavily confounded by differences among and between groups place major limitations on our
ability to accurately link anesthesia to long-term developmental outcomes. It should also be noted
that other drugs that do not cause apoptotic neurodegeneration in the brain are also linked to
poor neurodevelopmental outcomes. The simple fact of the matter is that exposure to anesthesia
is unavoidable and necessary to mitigate pain and distress, which itself has been shown to have
adverse effects on development. Future directions are to conduct more prospective studies and to
design more controlled retrospective studies that include the use of domain-specific outcome measures.
The overall goal is to prevent or limit any potential brain injury using evidence-based clinical strategies.
The evidence thus far is not strong enough to change clinical practice, but has asked and answered
important questions that have rightly advanced our knowledge in significant ways.

Conflicts of Interest: The author declares no conflict of interest.
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