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A B S T R A C T

Background: Quantitative analysis of intracranial EEG is a promising tool to assist clinicians in the planning of
resective brain surgery in patients suffering from pharmacoresistant epilepsies. Quantifying the accuracy of such
tools, however, is nontrivial as a ground truth to verify predictions about hypothetical resections is missing.
New method: As one possibility to address this, we use customized hypotheses tests to examine the agreement of
the methods on a common set of patients. One method uses machine learning techniques to enable the predictive
modeling of EEG time series. The other estimates nonlinear interrelation between EEG channels. Both methods
were independently shown to distinguish patients with excellent post-surgical outcome (Engel class I) from those
without improvement (Engel class IV) when assessing the electrodes associated with the tissue that was actually
resected during brain surgery. Using the AND and OR conjunction of both methods we evaluate the performance
gain that can be expected when combining them.
Results: Both methods’ assessments correlate strongly positively with the similarity between a hypothetical re-
section and the corresponding actual resection in class I patients. Moreover, the Spearman rank correlation
between the methods’ patient rankings is significantly positive.
Comparison with existing method(s): To our best knowledge, this is the first study comparing surgery target as-
sessments from fundamentally differing techniques.
Conclusions: Although conceptually completely independent, there is a relation between the predictions ob-
tained from both methods. Their broad consensus supports their application in clinical practice to provide
physicians additional information in the process of presurgical evaluation.

1. Introduction

Epilepsy is one of the most prevalent neurological disorders and
affects at least 50 million people worldwide (World Health
Organization, 2001). In approximately one third of all patients seizure
freedom is not achieved by pharmaceutical therapies and in these cases
surgical treatment should then be considered. The goal of epilepsy
surgery is to selectively resect brain tissue with the aim that this pro-
cedure renders the patient seizure free. However, there is currently no
diagnostic method to unequivocally delineate the neuroanatomical
areas that are necessary and sufficient to generate epileptic seizures, the

epileptogenic zone (EZ) (Rosenow and Lüders, 2001; Lüders et al.,
2006). Instead, the area showing first ictal epileptiform EEG signals (the
seizure onset zone, SOZ) is often used in clinical practice as a proxy for
the EZ, since the SOZ is thought to overlap with the EZ (Rosenow and
Lüders, 2001). However, the exact boundaries of the SOZ and the actual
extent of overlap with the EZ for any given patient remain unknown.
Moreover, a recent study found that to attain seizure freedom, complete
resection of the SOZ was necessary in only one out of eight pediatric
patients (Huang et al., 2012). Together with evidence that long-term
seizure freedom is only achieved in up to 2/3 of patients who undergo
surgery (Wiebe et al., 2001; Téllez-Zenteno et al., 2005; de Tisi et al.,
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2011; Engel et al., 2012), doubt can be cast regarding whether the SOZ
is the best approximation to the EZ, or whether alternative methods to
identify which regions of tissue to resect could be beneficial. An addi-
tional challenge to the use of the SOZ is that it is determined pre-
dominantly by visual analysis of EEG recordings, which is not only time
consuming but also prone to inter-rater variability.

To address these shortcomings, a variety of quantitative intracranial
EEG (iEEG) analysis methods have been developed to aid identification
of candidate tissue for surgical resection. Many different approaches are
used to assign estimates about epileptogenicity of brain tissues asso-
ciated with specific channels of intracranial electrodes (see e.g. Pereda
et al., 2005; Lehnertz et al., 2009; Wendling et al., 2010; van Mierlo
et al., 2014). Some studies examined the relation of quantitatively de-
termined channels with the channels determined visually as the site of
seizure onset (see e.g. Urrestarazu et al., 2007; Worrell et al., 2008;
Jacobs et al., 2009; Gnatkovsky et al., 2011, 2014; Boido et al., 2014;
Geier et al., 2015). Others explicitly verified the potential of quantita-
tive measures to act as biomarkers of the epileptogenic zone by its re-
lation with the actually resected brain tissue or the post-surgical seizure
control. Some by capturing high-frequency oscillations (see e.g. Jacobs
et al., 2010; Wu et al., 2010; Modur et al., 2011; Park et al., 2012;
Roehri et al., 2017), others using graph theory to determine nodes’
values of connectivity, centrality or similar (see e.g. Jung et al., 2011;
Zubler et al., 2015; Wilke et al., 2011; van Mierlo et al., 2013) and also
different techniques (see e.g. Bartolomei et al., 2008; Kim et al., 2014,
2010). Many of these methods have shown to provide useful informa-
tion in the preoperative process. Rummel et al. recently investigated
how post-operative seizure control is associated with different qEEG
measures representative for four different classes of signal analysis
methods (Rummel et al., 2015). They calculated four different measures
and salient channels were selected by a data-driven manner for each
measure. For three of these measures, the overlap between salient
channels and actually resected channels was significantly larger for
class I patients compared to class IV patients. A measure derived from a
nonlinear interrelation matrix could best differentiate between actual
resections with favorable and unfavorable outcome by identifying their
overlap with the channels associated with the resected brain tissue.

Computational models capable of drawing inferences about specific
hypothetical resections under modifiable input conditions have been
developed rather recently. Hutchings et al. used diffusion tensor ima-
ging data and showed their model to successfully identify regions
known to be involved in temporal lobe epilepsy (TLE), however, it was
not validated with actual patient outcomes (Hutchings et al., 2015).
Sinha et al. used interictal electrographic recordings to generate their
model, which then in simulated resections showed agreement with the
clinical outcome for five of six patients (Sinha et al., 2014). These two
models allow to make predictions on the ictogenicity of individual
nodes of a derived network. Sinha et al. recently extended their ap-
proach to make predictions about the overall efficacy of a surgical re-
section by averaging the seizure likelihood of all nodes under a resec-
tion and comparing it to the average obtained from random resections
(Sinha et al., 2016). When simulating the actual resections the pre-
dicted outcomes coincided with the actual outcomes in 13 of 16 pa-
tients. Goodfellow et al. introduced a model that is able to quantify
local and global ictogenicity of a network under perturbations of spe-
cific nodes (Goodfellow et al., 2016). They found that the overlap be-
tween resected tissue and the nodes having the biggest ictogenicities is
significantly larger in patients with good response to surgery than in
class IV patients. Furthermore, the model predicts a greater reduction in
network ictogenicity when simulating actual resections of class I pa-
tients than for class IV patients. Based on the global network icto-
genicity they classified correctly 14 out of 16 patients (AUC=0.87).
Steimer et al. presented a distributional, soft clustering model for the
predictive modeling of multivariate, peri-ictal iEEG time series (Steimer
et al., 2017). This model permits patient-specific predictions about
seizure propensity under arbitrary simulated resections of brain tissue.

Whereas the simulated resection of the brain areas that were actually
surgically removed reduces the model's seizure probability in most
Engel class I patients, for most Engel class IV patients the model con-
firms the inefficiency of the actual resection to impede an imminent
seizure. Moreover, successful actual resections are significantly sepa-
rated from unsuccessful ones and from equally-sized random resections
while unsuccessful actual resections cannot be separated from random
resections.

The availability of many alternative methods to predict which tissue
should be resected raises the issue of selecting an appropriate method
for a given patient. Unfortunately, because the true effect of all possible
resections except those actually carried out cannot be known, de-
termining accuracies of such methods is always restricted to very few
data points and thus remains vague. A starting point to address this is to
explicitly compare predictions arising from different methods and
quantify, in the first instance, to what extent predictions differ, if at all.
Providing a framework to answer this question would significantly
advance the clinical usefulness of quantitative methods in epilepsy
surgery and other treatments for neurological and neuropsychiatric
disorders more generally.

For this cross-method verification of two fundamentally differing
methods we focus on comparing two methods that have recently been
developed and tested at our institute and have shown convincing per-
formances by quantitative comparison with the actual resection and
outcome in patients undergoing surgery. That is, we directly compare
the assessments of hypothetical resections by the nonlinear interrela-
tion measure examined by Rummel et al. (2015) with the resections’
seizure suppressing efficiencies as estimated by the model of Steimer
et al. (2017). Both methods have shown promise in the prediction of
tissue resection in epilepsy surgery. However, it remains unclear if their
predictions are coherent beyond the common feature that successful
actual resections are recognized as effective and thus get high perfor-
mances. To investigate the extent to which predictions from these
methods are in agreement, we compare in a first part the individual
performances of the two methods for a common set of patients. In ad-
dition, we examined the performance gain that can be expected when
combining the methods’ binary classifiers. In a second part we present
the results of the investigation looking for a link between these
methods’ classification of arbitrary resections. Finally, we discuss the
obtained results and address issues of possible future work aiming to
derive objective markers of target tissue or to assess such approaches.

2. Methods

2.1. Patients & data

In this study we included the peri-ictal intracranial EEG recordings
of 20 patients of the epilepsy surgery program of the Inselspital Bern
(15 female, 5 male; median age 31 years, IQR 16 year, range 10–66
years). A precondition for the selection of patients was the availability
of the information about the resected brain tissue (incl. the associated
electrodes) and their outcome according to the Engel classification
scheme (Engel et al., 1993). We included patients who were post-sur-
gically free of disabling seizures and auras for at least one year (Engel
class I) or who showed no worthwhile improvement following resection
(Engel class IV). All patients are listed with further details in Table 1.

All recordings were visually inspected by an experienced epi-
leptologist/electroencephalographer (K.S.) to remove channels ex-
hibiting permanent artifacts (< 5% of channels) and to determine the
clinical seizure onset (the time of earliest EEG change associated with
seizures) and its corresponding zone (SOZ). Furthermore, pre- and post-
operative MR images and post-implantation CT images were coregis-
tered to identify the resected brain tissue and the position of the elec-
trodes and thereby the channels recording from the subsequently re-
sected tissue. These channels constitute the actual resection. A more
detailed description of this procedure can be found in Rummel et al.
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(2015). In addition, the number of channels showing epileptiform ac-
tivity at least 10% of the total seizure time was determined according to
the channel-wise absolute signal slope as described in detail in
Schindler et al. (2007). Due to the fast low-amplitude and slow high-
amplitude EEG activity at the onset of and during intracranially re-
corded seizures this quantity increases and is thus an appropriate
marker of epileptiform activity.

As argued in detail in Steimer et al. (2017), since patients are sup-
plied again with seizure suppressing medication after resection, early
recordings are presumably more representative for the postoperative
state because remnants of the medication (withdrawn after implanta-
tion) may still be potent. Therefore we used the first occurring seizure
after implantation except for patients 8 and 13 where we used the
second seizure because the first one was corrupted by artifacts. In both
examined approaches the intracranial EEG data is used at a sampling
rate of 512 Hz, re-referenced against the median of all artifact-free
channels, band-pass filtered between 0.5 and 150 Hz using a fourth-
order Butterworth filter (applying forward and backward filtering to
minimize phase shift) and then subdivided into consecutive overlapping
windows. Further preprocessing steps of both approaches are specified
in their descriptions in Appendix A.

Retrospective data analysis had been approved by the ethics com-
mittee of the Canton of Bern/Switzerland. All patients gave written
informed consent that their EEG data may be used for research pur-
poses.

2.2. Distributional soft clustering of multivariate time series

The goal of this approach is to characterize certain signal dynamics
that are representative for different epochs of the peri-ictal segment of
an EEG recording. These particular dynamics, stored as states of a
model generated based on the EEG recording, ideally represent dif-
ferent brain states (e.g. interictal, seizure onset, etc.). The states that are
active during the seizure are considered the ictal states while the others
are the non-ictal states. The model also specifies the probabilities of all
states to emerge from any other state. The models were generated on a
peri-ictal part of the iEEG recordings including the complete seizure

and the preceding 180s of the preictal period. It is necessary to include
preictal data to allow the model to learn non-ictal states and the tran-
sition to ictal states (seizures). A more detailed description of this
method can be found in Appendix A.1.

With this data-specific model, it is possible to predict how probable
each representative state is for a given time point under changeable
input conditions. Phrased differently, it is possible to alter the input
signals and the model predicts how the system's dynamics evolve from a
given time point on. In the present case, altering the input signals
means simulating resections of certain brain regions (by eliminating the
input signals of the electrodes associated with these regions), and pre-
dicting the future dynamics means giving the probability of developing
ictal states. We used the same performance measure to rate simulated
resections as introduced by Steimer et al. (2017). Accordingly, when
talking about this soft clustering (SC) approach, performance of a re-
section describes how much more probable the model remains in a non-
ictal state under this very resection than without any resection. In Eq.
(1) (cf. Eq. 2.2 in Steimer et al., 2017), 〈pno,ict〉 is the summed prob-
ability of all ictal states when no channels are virtually resected,
〈pres,ict〉 is the summed probability of all ictal states when a resection res
is simulated and 〈pres,ict〉norm is the normalized dynamical outcome
performance that is used as performance measure of the soft clustering
approach (subsequently referred to as SC performance):

≔
−

p
p p

pres,ict
norm

no,ict res,ict

no,ict (1)

2.3. Multivariate nonlinear interrelation based functional networks

This approach defines functional networks with a patient's EEG
channels as nodes and the edges defined by their nonlinear interrela-
tions. As a measure of nonlinear interrelation, we used mutual in-
formation. In order to generate assessments of resections, it is necessary
to quantify some property of each node of the functional network. As
suggested in Rummel et al. (2015) we used the node strength of the
functional connectivity matrix as channel-wise quantifier of nonlinear

Table 1
Patients included in this study.

Patient Engel class Syndrome Etiology/MRI/Histology # of el. # of res. el. # of epi. el. Patient label in

Steimer et al. (2017) Rummel et al. (2015)

1 I MTLE (R) Non-lesional 64 20 49 9 I-1
2 I MTLE (L) Hippocampal sclerosis 64 13 51 6 I-2
3 I LTLE (L) Cluster of dysplastic neurons 56 5 56 – I-3
4 I PLE (L) Low-grade glioma 74 13 2 4 I-4
5 I MTLE (L) Hippocampal sclerosis 42 11 40 2 I-5
6 I FLE (R) Non-lesional 98 11 98 1 I-6
7 I TLE (L) Non-lesional 60 11 60 7 –
8 I PLE (R) Non-lesional 68 13 67 10 –
9 I MTLE (R) Hippocampal sclerosis 37 9 2 – –
10 I MTLE (L) Hippocampal atrophy 31 7 31 – –
11 I MTLE (R) Hippocampal sclerosis 38 8 4 – –
12 I FLE (L) Non-lesional 76 7 75 – –
13 I FTE (R) Aneurysmal subarachnoid haemorrhage 80 6 17 – –
14 IV LTLE (L) Dysplasia 59 2 20 5 IV-1
15 IV LTLE (L) Meningitis 61 10 61 8 IV-2
16 IV MTLE (L) Suspected amygdala dysplasia 49 8 13 18 IV-3
17 IV PLE (L) Non-lesional 62 4 0 21 IV-4
18 IV FLE (R) Tuberous sclerosis 36 3 23 NP IV-5
19 IV LTLE (L) Temporo-basal dysplasia 24 6 22 – –
20 IV FLE (L) Non-lesional 69 4 68 – –

Indicated is the outcome of the resective surgery according to the Engel classification scheme, the syndrome, laterality and etiology, the number of implanted
electrodes (el.), the number of electrodes associated with resected brain tissue (res. el.) and the number of electrodes showing epileptiform activity at least 10% of the
total seizure time (epi. el.). For easier comparison with earlier publications the labels used in Steimer et al. (2017) and Rummel et al. (2015) are also given (hyphen
means this patient was not used in the respective publication). Abbreviations: MTLE: mesial temporal lobe epilepsy, LTLE: lateral temporal lobe epilepsy, PLE:
parietal lobe epilepsy, FLE: frontal lobe epilepsy, TLE: temporal lobe epilepsy, FTE: fronto-temporal epilepsy, R: right, L: left.
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interrelation. For this approach, we considered data from the first half
of a seizure since this segment of the underlying data has been shown to
contain information relevant for the prediction of surgical outcomes
(Rummel et al., 2015; Goodfellow et al., 2016). A more detailed de-
scription of the derivation of the mutual information matrix and the
node strength can be found in Appendix A.2.

When talking about the functional network (FN) approach, the
performance of a resection is the fraction of nonlinear interrelation
(specified by the node strength) that is present in the channels of this
resection. In Eq. (2), n is the number of channels and channel i has node
strength si. For a virtual resection res, the collective node strength sres is
the sum of the channels’ individual values in that resection divided by
the summed node strength of all channels. So the performance measure
of this approach is proportional to the fraction of the total node strength
that is comprised by a virtual resection (subsequently referred to as FN
performance):

≔
∑

∑
∈

=

s
s

s
i i

i
n

i
res

res

1 (2)

Since the distribution of node strength across channels and the
number of channels in a resection vary between patients, each patient's
distribution of performances of non-overlapping random resections was
normalized to have a mean of 1 and the values of the actual resections
and the overlapping resections were adjusted with the respective pa-
tient's normalizing factor (see Section 2.4 for details on random resec-
tions). This simplifies comparison and aggregation of results, however,
FN preformance values can consequently not be interpreted as the
standardized fraction of the total node strength.

2.4. Comparison of methods

The main goal of this study was to investigate, to what extent two
different quantitative analysis methods rate resections similarly. To
address this question we sought to study not only the actual resections
that were performed, but also a suite of hypothetical resections. This
allows us to assess more generally whether insight would differ across
different methods. As our sample sizes (patient numbers) are small and
underlying distributions of measures are unknown, we used boot-
strapping to determine the significance of test results. For each test we
generated appropriate data that constituted the distribution of the test
statistic under the null hypothesis and the relative position of the actual
data in this distribution determined the corresponding p-value.
Specification of each test's null hypothesis and a detailed description of
what is done in every performed test using bootstrapping can be found
in Appendix B. This procedure is distribution-independent and takes the
possibility of sporadic samples not representative of the population into
consideration (Adèr et al., 2008). The significance level α for all tests
was 0.05.

To compare methods applied to patients’ actual resections we ex-
amined how each measure separates the two outcome groups. We
tested whether the mean ratings of the actual resections of both groups
are equal (see Appendix B.1 for test details). We further assessed the
extent to which the two measures yielded equivalent rankings for pa-
tients, in terms of the magnitude of “performance”. We did this by
computing Spearman's rank correlation coefficient between the re-
sulting patient ranks derived from both methods (see also Appendix
B.2). We also calculated each method's performance as binary classifier
by computing the receiver operating characteristic (ROC) and the cor-
responding area under the curve (AUC). In addition, we examined how
decisions about the benefit of resections were influenced when the se-
parate binary classifier performances of both methods were combined.
To do so, we determined the optimal binary classifiers by setting the
threshold according to the point on the ROC-curve with minimal dis-
tance to 100% sensitivity and specificity and combined them by an
AND-conjunction (resections are only assessed as beneficial if both

methods agree on it) and by an OR-conjunction (resections are assessed
as beneficial if at least one method concludes so). Then, we counted for
all classifiers the correct and incorrect classifications and calculated the
corresponding sensitivities, specificities, and positive and negative
predictive values. In this context true positives and true negatives are
correctly classified beneficial resp. not beneficial resections, false ne-
gatives are resections assessed as not beneficial although they rendered
the patient seizure free in reality and false positives are resections as-
sessed as beneficial although they did not have any curative effect in
reality. A similar procedure was applied to seizure prediction algo-
rithms and found to increase the classification performance (Feldwisch-
Drentrup et al., 2010).

In order to extend our insight into the performance and comparison
of our methods beyond resections that were actually performed, we
generated a suite of artificial resections. For each patient we created
two different sets of random resections of equivalent size to the actual
resection: 3000 random resections were not allowed to overlap with the
actual resection and 300 random resections were specified to overlap
with the actual resection in a varying number of channels. Using the
non-overlapping random resections of all patients, we determined how
likely the distribution of performances of these resections overlapped
with the actual resections of each outcome class. In order to do this we
used the L1-based distance between the cumulative distribution func-
tions to measure their similarity (see also Appendix B.3).

Using overlapping random resections, we determined to what extent
the rating of a random resection depends on its overlap (in terms of
channels) with the actual resection. Let the number of channels in the
actual resection be m. We generated m groups, each containing ⌊300/m⌋
random resections, and the resections of every group overlap with the
actual resection in a number of channels between 0 and m− 1. All
random resections were then evaluated by both methods and we de-
termined the dependence of resection ratings on their overlap with the
actual resection. We quantified this dependence with Pearson's product-
moment correlation coefficient and checked for a significant difference
between class I and class IV patients (see also Appendix B.4). To de-
termine the dependences between ratings and overlaps for groups of
patients, an additional step is necessary because the actual resections of
different patients contain different numbers of channels. First, we
transformed the size of every resections’ overlap to its fraction of the
corresponding actual resection. According to their overlap fractions, we
then split all virtual resections of the selected patients into 9 bins be-
tween 0 and 1 (nine is the mean size of all actual resections). Conse-
quently, if a patient's actual resection contains less than nine channels,
its virtual resections do not contribute to all bins and vice versa, if the
actual resection contains more than nine channels, some virtual resec-
tions with different overlaps contribute to the same bin. In this way, it is
possible to observe the same characteristic as before but for groups of
patients, namely class I and class IV patients. We then determined se-
parately for both outcome classes the Pearson's product-moment cor-
relation coefficients between the bin-wise mean ratings of both methods
(including the actual resections as an additional bin representing full
overlap) and the overlap (the bin centers). In addition we calculated the
correlation coefficient and its significance among the ratings (see also
Appendix B.5). To determine the relation between the methods’ ratings
excluding the overlap as an explanatory variable, we used the concept
of partial correlation. We computed the residuals of both ratings using
the overlap as regressor and then determined the correlation coefficient
between these residuals. This allows us to assess the conditional in-
dependence of the ratings, that is, if there is a direct dependence among
them or only via the overlap as a third variable (see also Appendix B.5).

3. Results

We first studied the performance of each method in terms of their
ability to separate class I and class IV patients. We found that using the
soft clustering approach the majority of the random resections did not
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considerably decrease the likelihood of the seizure states compared to
no resection (most random resections are clustered towards 0 perfor-
mance in Fig. 1a). The actual resections of all class I patients are un-
likely to originate from this distribution (p=5.9 * 10−4, test section
B.3). In contrast, the actual resections of all class IV patients are very
likely to originate from the distribution of random resections
(p=0.467, test section B.3). A notable outlier is patient 15 for whom
the model wrongly predicts that the actual resection would be highly
seizure prohibiting. We also found that some random resections had
high performances. This is not surprising as it is very likely that re-
sections other than the actual resection could have had a curative effect
for the patient if performed. Class I and class IV patients are also sig-
nificantly separated by the class-wise performances of the patients’
actual resections (p=3.1 * 10−4, test section B.1). Using SC perfor-
mance as a classifier, the area under the ROC curve is 0.85, indicating
good patient-level classification.

Fig. 1b illustrates the ability of the functional network approach to
separate class I from class IV patients. As for SC, most actual resections
of class I patients were found to lie outside or at the very edge of the

distribution of random resections (p=5.7 * 10−4, test section B.3),
whereas class IV patients showed strong overlap with this distribution
(p=0.294, test section B.3). Again, patient 15 was misclassified as
having good response. For the FN measure, patient 5 was also clearly
misclassified, as a poor, rather than a good, responder. Despite these
two failures the method significantly separates class I and class IV pa-
tients by the class-wise performances of their actual resections
(p=1.6 * 10−4, test section B.1). The ROC analysis for the FN measure
yielded an area under the ROC curve of 0.86.

In conclusion, both methods are individually able to distinguish
class I from class IV patients by rating the actual resections and also by
comparing them to random resections. In addition, the rankings of the
patients by both methods correlate positively and significantly:
Spearman's ρ=0.60, p=0.0027 (test section B.2). This correlation is
visualized in Fig. 2.

We further determined the performances of the optimal binary
classifiers of both methods and their combinations by AND- and OR-
conjunction. The thresholds lie between patients 12 and 20 for the SC
approach (see Fig. 1a) and between patients 10 and 19 for the FN

Fig. 1. Assessments of random and actually carried out resections by the soft clustering (a) and the functional network (b) approach. Ratings of all patients’ random
resections are accumulated in the histograms and ratings of actual carried out surgeries are shown beneath as red diamonds for class I patients or blue diamonds for
class IV patients. The ROC-curves illustrate the methods’ performances as binary classifiers. The point on the ROC-curve with minimal distance to perfect perfor-
mance (cross) determines the threshold of the optimal binary classifier (dotted vertical line). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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approach (see Fig. 1b). The measures of all classifiers are given in
Table 2. These thresholds additionally point out a considerable differ-
ence between the methods. While in the SC approach the random re-
sections above this threshold account for about 25% of all random re-
sections, it is only about 2% in the FN approach.

Next, we analyzed the methods’ dependences on a random re-
section's overlap with the actual resection. We grouped random resec-
tions according to the size of their overlap with the patient's actual
resection and evaluated how the methods’ assessments are related to
this overlap. Fig. 3 shows the results of one class I and one class IV
patient. It is clear that both methods rate virtual resections with a larger
overlap with a higher performance in the class I patient. However, no
such dependence exists for the class IV patient. Panels (b) and (d) again
indicate a relation between the two methods. Whereas the methods’
common positive trend (increasing performance with increasing
overlap) observable in panel (b) appears in most class I patients, the
negative trend (decreasing performance with increasing overlap) ob-
servable in panel (d) is not a general characteristic of class IV patients.

We quantified the relationship between overlap and performance
using the correlation coefficient for each patient. Results are shown in
Table 3. The null hypothesis that both classes have the same mean
correlation coefficient, can be rejected for the soft clustering approach
(p=0.0403, test section B.4) and for the functional network approach
(p=0.0051, test section B.4). The high correlations of most class I
patients in the functional network approach are induced by the fact that
this approach's rating of a set is the fraction of node strengths

comprised by the channels in this set. For this reason it is inherent to
the functional network approach that ratings of sets change gradually
with cumulative alterations. Thus, the more channels of the actual re-
section do have among the highest node strength values, the more likely
any additive exchange of channels will cause the set's fraction of total
node strength to decrease. This consequently induces a positive corre-
lation between overlap and ratings. Hence, these results confirm that
the functional network approach has a strong tendency to assign high
node strengths to actually resected channels in class I patients.

Fig. 4 visualizes the results for class I and IV patients grouped se-
parately. For class I patients, a significant correlation between the
overlap of random resections (with the actual resection) and their
rating exists in the functional network approach (ρ=0.9707, p=0,
test section B.5) and in the soft clustering approach (ρ=0.8584,
p=6.5 * 10−4, test section B.5). For class IV patients, the ratings of the
soft clustering approach do not show significant correlation with the
overlap of virtual resections (ρ=0.2476, p=0.245, test section B.5),
while the ratings of the functional network approach do correlate sig-
nificantly with the overlap of virtual resections (ρ=0.5619, p=0.046,
test section B.5). This correlation is obviously induced by the strong
correlations of patients 15 and 19 (Table 3) since without them the
significant correlation disappears (ρ=−0.3199, p=0.788, test section
B.5). Accordingly, the ratings of the two methods significantly correlate
positively for class I patients (ρ=0.8748, p=8.2 * 10−4, test section
B.5), whereas for class IV patients the same cannot be stated
(ρ=0.1303, p=0.366, test section B.5).

When the overlap is used as an explanatory variable for the ratings
of each method and the correlation is calculated on the residuals, the
significant correlation between the methods’ ratings disappears also in
the outcome class I group (ρ=0.3369, p=0.169, test section B.5). This
suggests the ratings of the methods to be conditionally independent
given the overlap of a hypothetical resection.

Although apparently the methods’ ratings do not generally coincide
for resections not overlapping with a successful actual resection, such
cases exist. In Fig. 5 we show a resection of class IV patient 16 that is
assessed by both methods as highly beneficial and among the best
random resections without overlap with the actual resection. Its per-
formance values are 0.88 in the SC approach and 0.68 in the FN ap-
proach whereas this patient's actual resection has performance values of
0.12 (SC) and 0 (FN). While the actual resection was focused on the
temporal pole, the methods’ selection targets mainly the posterior areas
of the temporal lobe. This resection would however hardly be per-
formed in reality because of possible compromise to the posterior lan-
guage area (including Wernicke's area), something the quantitative
methods do not account for at present. Irrespective of its overlap with
eloquent cortex it is impossible to verify the benefit of such a hy-
pothetical resection retrospectively, a fundamental limitation regarding
the validation of quantitative methods we further discuss in Section 4.

4. Discussion

We analyzed the agreement of two methodologically entirely dif-
ferent methods’ assessments of possible epilepsy surgery targets. One
method is based on functional network theory and estimates the non-
linear interrelation between EEG channels (here referred to as func-
tional network approach). It defines EEG features that stand out from
the background in a dynamic and data-driven manner. Thus, it assigns
properties to time series but does not permit predictions for future time
points where no information about the time series is available or if the
underlying system is modified. The other method uses machine learning
techniques to predict the likelihood of a seizure state (here referred to
as soft clustering approach). A probabilistic clustering model for iEEG
time series is derived which allows for predictions about the effects of
resective surgery under controlled modulation. In particular, it provides
the possibility to judge a set of virtually resected channels collectively
instead of each channel separately. Despite their different procedures,

Fig. 2. Comparison of the patients’ rankings by both methods. Red diamonds
show class I patients while blue diamonds show class IV patients with the
corresponding patient label to the right. The dotted diagonal indicates complete
agreement between the ranking of both methods. The rankings of both methods
correlate positively and significantly (Spearman's ρ=0.60, p=0.0027). (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

Table 2
Binary classifier performances.

SC FN AND-conj. OR-conj.

False negative 2 2 4 0
False positive 2 1 1 2

Sensitivity 0.85 0.85 0.69 1.0
Specificity 0.71 0.86 0.86 0.71
PPV 0.85 0.92 0.90 0.86
NPV 0.71 0.75 0.60 1.0

Classification errors and corresponding measures for the separate optimal
binary classifiers of both methods and their combinations. Abbreviations: PPV:
positive predictive value, NPV: negative predictive value.
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both can be used to predict the effect of hypothetical resections.
The statistical claims in this study are limited by the restricted

amount of data that was available and matched our inclusion criteria,
especially the need to have knowledge about the post-surgical outcome
for at least 1 year. To countervail this limitation we used bootstrapping
in all hypothesis tests. Also, one should note that the fraction of re-
sected electrode channels was significantly smaller in class IV patients
compared to class I patients (test analog to Section B.1 using fractions of
resected electrodes instead of ratings: p=0.0197). This difference is
consistent with the fact that in class I patients a better hypothesis of the
SOZ could be generated based on non-invasive procedures before the
implantation and thus the intracranial electrodes were more targeted
towards this area. Having this in mind, it is not surprising that the
fraction of resected channels also correlated with the methods’ ratings.
While some data suggested a true relation between resection size and
ratings (e.g. patient 15: large resection and high ratings despite class
IV), others contradicted this assumption (e.g. patients 12 and 13: high
ratings albeit small resections). Additional class I patients with small
resections and/or class IV patients with large resections will be neces-
sary to identify a potentially true, unbiased relation between resection
size and rating. To test for a possible influence by the area of seizure
spread, we determined the fraction of channels to where the ictal ac-
tivity propagates during the seizure. If a channel showed epileptiform

activity at least 10% of the total seizure time according to a procedure
described in Schindler et al. (2007) it was considered as involved in the
seizure. The fraction of involved channels cannot be separated sig-
nificantly outcome-class-wise (test analog to Section B.1 using fractions
of involved channels instead of ratings, p=0.112), nor do they sig-
nificantly correlate with the fractions of channels actually resected (test
analog to Section B.2 using fractions of involved and resected channels
instead of rankings, p=0.302) or the assessments of either method
(test analog to Section B.2 using fractions of involved channels and each
method's rating instead of rankings, both p > 0.65). Thus, we conclude
the seizure spread to have no relation with the outcome, the size of the
actual resection or the ratings of the examined quantitative methods.

First, we compared the ability of each method to correctly assess
actual resections. Both methods were able to separate class I and class
IV patients by the ratings of the actual resections and their probabilities
to originate from the distribution of random resections’ ratings (Fig. 1).
In addition, the ranking of patients according to the performances of
their actual resections correlated positively and significantly between
the two methods (Fig. 2). We also defined the optimal binary classifier
of both methods and compared their separate performances to their
combined performances to determine a potential benefit from com-
bining multiple quantitative methods. In general, the false positive
(false negative) rate of an AND-conjuncted (OR-conjuncted) classifier is

Fig. 3. Single patients’ evaluation of random resections having a defined overlap with the actual resection. Panels (a) and (b) show the results for class I patient 8.
Panel (a) shows the separate ratings of all 300 virtual resections by both methods (top: SC, bottom: FN). The overlap of the random resections with the actual
resection is indicated on the x-axis and also color coded. The actual resection is shown as diamond. Panel (b) shows the group-wise means of both methods with
errorbars indicating the standard error of the mean and the same color coding for the overlap as in panel (a). Panels (c) and (d) show the same for class IV patient 16.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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at most the lowest value of the separate classifiers, and thus its speci-
ficity (sensitivity) is at least as good as the best separate specificity
(sensitivity). An AND-conjuncted classifier is thus rather preferable if
the individual classifiers have high sensitivities but low specificities and
vice versa, an OR-conjuncted classifier is rather preferable if the in-
dividual classifiers have high specificities but low sensitivities. In our
case, no clear tendency to one or the other situation is observable. If a
low false negative rate is important the OR-conjuncted classifier would
be the obvious choice. Likewise, if a low false positive rate is important
the best classifier would be the one by the FN method. One could also
set the individual methods’ thresholds to yield perfect sensitivity or
specificity and then combine them by the designated conjunction (see
above). While this approach maximizes one of the two measures it
completely disregards the other. Consequently, this procedure results in

classifiers with unbalanced behavior and we did not notice distinct
advantage from using it (results not provided). However, also due to the
methods’ correlated rankings, the differences between all examined
classifiers are small and preferences could easily change with additional
patients. At this point, this Boolean combination of the methods does
not have an evident beneficial effect on their decisive performance.

We further compared the ratings of arbitrary resections in terms of
their overlap with the patient's actual resection. In general, for both
methods, virtual resections with a larger overlap had better ratings if
the actual resection rendered the patient seizure free (class I). If the
actual resection had no beneficial effect for the patient (class IV), this

Table 3
Pearson's correlation coefficient between the rating of random resections and
their overlap with the corresponding actual resection.

Patient Class CC SC CC FN

1 I 0.29 0.94
2 I 0.20 0.91
3 I −0.07 0.33
4 I 0.59 0.76
5 I 0.60 −0.25
6 I 0.61 0.94
7 I 0.22 0.89
8 I 0.75 0.93
9 I 0.39 0.58
10 I 0.32 0.71
11 I 0.59 0.93
12 I −0.02 0.97
13 I −0.18 0.76
14 IV −0.16 −0.02
15 IV 0.55 0.94
16 IV −0.23 −0.40
17 IV −0.41 0.46
18 IV 0.04 0.31
19 IV 0.59 0.64
20 IV 0.07 −0.14

Classes have significantly different means in both, the soft clustering approach
(p=0.0403) and the functional network approach (p=0.0051).

Fig. 4. Comparison of both methods’ evaluations of all random and actual resections of all patients, assembled class-wise and grouped by their overlap with the
corresponding actual resection. All random resections of all patients in an outcome class are split into nine bins according to their overlap as fraction of the respective
patient's actual resection. The bin-wise means of both methods’ ratings are shown with the corresponding overlap color coded. The mean of the class’ actual
resections is shown as diamond (red for class I and blue for class IV). Errorbars indicate the standard error of the mean. Panel (a) shows the relation of both methods
in class I patients and panel (b) the same for class IV patients. (The larger errorbars for the groups of actual resections compared to those of random resections is due
to the much smaller number of data points in the groups of actual resections.) (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 5. Representation of the actual resection of class IV patient 16 and a hy-
pothetical resection assessed by both methods as highly beneficial. A pre-sur-
gical MR recording was coregistered with a post-implantation CT recording do
determine the position of the iEEG-electrodes (colored dots). The channels re-
moved during the actual resection are located around the temporal pole (blue
dots) whereas the hypothetical resection is mainly located in the posterior
temporal lobe (yellow dots). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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relation became significantly weaker. Thus, in both methods the ratings
of virtual resections were generally influenced by the overlap with the
actual resection and its outcome (Figs. 3 and 4 and Table 3). In the soft
clustering approach this dependence occurred particularly for large
overlaps. Partial correlation analysis with overlap as controlling vari-
able, however, suggested conditional independence of both methods.

Nevertheless, the methods also agreed on the misclassification of
patient 15 who clearly showed the behavior of a class I patient in all
tests (including the clinical assessment on which the surgery was
planned), although in reality the surgical intervention did not have any
beneficial effect. This suggests a connection between both quantitative
methods that goes beyond the recognition of successful actual resec-
tions as effective and the dependence on the overlap with these resec-
tions. However, there were also some disagreements between the
methods. Most prominently was patient 5 (class I) who was a clear true
positive in the soft clustering approach but a similarly clear false ne-
gative in the functional network approach (Fig. 1). Consequently, pa-
tient 5 is also the one clear discrepancy in the ranking analysis (Fig. 2).
Disagreement does not necessarily invalidate the methods as their
predictions may also be based upon different signal features. Another
noteworthy difference between the methods is the portion of random
resections lying above the threshold of the optimal binary classifier
(Fig. 1). While their fraction is relatively low in the FN approach (about
2%) it is substantial in the SC approach (about 25%). Higher fractions
may indicate rather low specificity (see discussion below) which is
consistent with our findings in Table 2 although no random resections
were integrated in this analysis.

There are many studies with the goal to assess hypothetical resec-
tions or directly predict their outcome based on quantitative iEEG
analysis (see e.g. Urrestarazu et al., 2007; Bartolomei et al., 2008;
Worrell et al., 2008; Jacobs et al., 2009, 2010; Kim et al., 2010, 2014;
Wu et al., 2010; Jung et al., 2011; Modur et al., 2011; Wilke et al.,
2011; Gnatkovsky et al., 2011, 2014; Park et al., 2012; van Mierlo et al.,
2013; Boido et al., 2014; Sinha et al., 2014, 2016; Geier et al., 2015;
Hutchings et al., 2015; Rummel et al., 2015; Zubler et al., 2015;
Goodfellow et al., 2016; Steimer et al., 2017). However, all methods so
far share the shortcoming that they have only been tested in a single
study and although they have shown the potential to yield clinically
relevant information, they are not yet applied in clinical routine. To
raise further trust in such techniques and their assessments, they should
be tested on larger sets of patients and, as in the present study, on their
consistency among each other. This study addresses the latter problem
by directly comparing two fundamentally differing methods to assess
hypothetical resections based on iEEG recordings, using one common
set of patients. The examined two methods show a high level of
agreement despite their fundamentally differing techniques. As a con-
sequence of the extensive agreement, a potential benefit of combining
them is not identifiable. In general, the larger the agreement of different
methods, the smaller is the potential performance increase by com-
bining them. On the other hand, larger discrepancy among methods
raises suspicion about their assessments and is therefore not desirable.
Our results showing high agreement are encouraging and request fur-
ther such studies to establish quantitative methods in the clinical pre-
operative process of epilepsy surgery.

One of the biggest impediments regarding an objective evaluation
and comparison of such methods is the lack of a ground truth. For
methods with the purpose to quantify the effect of hypothetical re-
sective surgeries, it is obviously very crucial to quantify their correct-
ness. However, the lack of a ground truth in terms of complete
knowledge about the outcome of every hypothetical resection poses an
inevitable challenge in this regard. In fact, the actual outcome of all
possible surgeries except the one realized is unknown. Thus, only one
true positive or one true negative result is known for every patient. This
hinders the calculation of common evaluation measures such as sensi-
tivity and specificity. Sensitivity in this scenario means that resections

leading to seizure freedom in the patient if actually carried out are also
classified as seizure prohibiting by a decisive method. Sensitivity de-
termination can thus only be based on class I patients, where one true
positive outcome is known. A more precise classification based on real
data is hardly possible because no other resection with proven curative
effect can be known. Specificity means that resections that would not
render the patient seizure free if actually carried out are also classified
as such by a decisive method. This is also difficult to determine as the
only resections proven to be unhelpful are those carried out in class IV
patients. Apart from the possibility to use the actual resections of class
IV patients, one can compare the assessment of a class I patient's actual
resection to random resections. Although there are probably other re-
sections than the actual one that would have also had a curative effect,
it is plausible to suppose that most random resections would have had
no beneficial effect in reality. Hence, a large number of random re-
sections resulting in a similar assessment as a successful actual resection
is a strong indication for low specificity. Similar considerations apply to
related measures like positive and negative predictive value and on the
whole, the calculation of accuracies on this very limited amount of real
data remains rather unsatisfying and thus an open issue.

5. Conclusion

In this study, we investigated the relationship between two quan-
titative iEEG methods regarding their predictions for the effects of re-
sective epilepsy surgery. Both methods are individually able to distin-
guish successful surgeries from unsuccessful and random ones and
based on the predicted effectiveness of performed surgeries, patients
are ranked in a correlated order between the two methods. Further, we
showed that the ratings of both methods typically depend on the
number of channels in a virtual resection that is also present in a suc-
cessful actual resection. In general, the methods came to the same as-
sessment for most patients, even for one of the few misclassifications.
We conclude that there is a connection between the ratings of these
conceptually completely different methods, however, it is obviously not
straight forward as the partial correlation analysis revealed. Thus,
further research is needed to unravel the nature of this connection.
Nevertheless, both methods can already provide clinically relevant in-
formation and support physicians in the presurgical evaluation process
by enabling them to test their planned resection on its predicted ef-
fectiveness.

Provided positive evaluation on larger and unselected datasets, such
methods could objectify and simplify the cumbersome preoperative
process by providing automatically generated data. Additionally, they
have the potential to reveal signal features and dynamics that are un-
detectable by expert EEG reading. However, the missing ground truth
and its simultaneous necessity to validate such approaches poses a
fundamental conflict. One possibility to improve on this problem could
be the congruence of multiple methods, which was investigated here for
fundamentally differing techniques.
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Appendix A. Quantitative methods in detail

This section describes for both examined quantitative methods the procedures carried out from an intracranial EEG recording to the final
prediction about the efficacy of a particular resection of brain tissue associated with certain intracranial electrodes. The signal preprocessing was
identical for both methods (see Section 2.1).

A.1. Distributional soft clustering of multivariate time series

After bandpass filtering the EEG data, all channels were independently normalized to a mean of zero and a standard deviation of 1. The signals
were then discretized to seven bins along the y-axis, with± σ (SD) being the centers of the seventh and first bin (this corresponds to a bin width of σ/
3). Values outside these bins were assigned to the nearest bin. Thus, a discretized recording of n channels has one out of m=7n states at every
sampled instant. The discretized EEG time series were then partitioned by a moving window and all sampling points in a window, each being 1 of m
states, were condensed into a single data point (feature). Such a feature is thus given by the m-dimensional empirical distribution of the states in that
window. These distributions of all time windows were clustered into K=6 clusters, being the regions in phase space (of possible distributions)
where the system under study typically resides during different epochs of its temporal evolution. Each cluster centroid was represented by a
graphical model, specifically by a Chow–Liu tree as second-order, distributional approximation (Chow and Liu, 1968). (This is why discretization of
the signals was necessary, as Chow–Liu trees are defined for discrete data only.) Additionally, the temporal evolution of the probabilities of these K
cluster centroids is specified by a Markov chain. Thus, the goal in the process of generating a model is to compute the cluster centroids, Markov chain
parameters and the posterior probabilities of the cluster centroids. The generated model specifies for every time window in the recording the
probability of every centroid to represent the current state. The summed probability of all centroids at any time point is always one and the Markov
chain specifies expected future centroid probabilities through its set of transition probabilities. The model can now be used to predict probabilities of
the centroids under various different conditions. On the one hand, the data of individual channels can be modified which directly alters the
probabilities of the centroids to represent the data. On the other hand, the data of all channels can be cut at any time point inside the recording,
leaving the future development of the centroid probabilities to the system. All specifications necessary to reproduce the model can be found in
Steimer et al. (2017).

We used this approach to assess the effectiveness of simulated resections to prevent a developing seizure. Specifically, we used a peri-ictal
recording to generate a model and classified the centroids as ictal or non-ictal according to their activities in the preictal and the ictal period of the
recording. Moreover, we cut the data of all channels right at the beginning of the seizure (when ictal centroids are already highly probable), leaving
the seizure to develop according to the model's predefined temporal evolution (Fig. 6, panel 2). Then, we set the data of the channels whose resection
we wanted to simulate to zero (the middle bin) and compared the likelihood of the ictal centroids to the situation without simulated resection(Fig. 6,
panel 3). A decrease in the summed probability of all ictal centroids corresponds to the model's prediction that this particular resection would
decrease the patient's propensity to develop seizures when actually carried out.

A.2. Multivariate nonlinear interrelation based functional networks

In this approach, the channels of the intracranial EEG recording constitute the nodes of a functional network. To define the network's edges, we
used mutual information which is based on information theory and is not restricted to Gaussianity or linear dependence. Mutual information
quantifies the deviation of the observed joint distribution of the amplitudes of two time series from the product of their marginal distribution (which
would imply statistical independence). After bandpass filtering, the EEG data was partitioned by a moving window and the mutual information
between all pairs of channels was calculated for every window giving the mutual information matrix μ. To correct for the influence of linear
correlation we used multivariate IAAFT (iterated amplitude adjusted Fourier transform) surrogates (Schreiber and Schmitz, 2000). These surrogate
time series, generated for each window, have the same autocorrelations and the same cross-correlations as the original time series. However, any
nonlinear structure is removed and their corresponding mutual information matrices μsurr can thus be used as a baseline compensating for the effects
of linear signal interrelations. This baseline was subtracted from the original matrix μ to get the surrogate corrected mutual information matrix M
(Eq. (3)). Here, 〈μsurr〉 is the median of the values obtained from the set of surrogate time series and s is a significance factor that is 1 if the original
matrix element is significantly different from the corresponding elements of the surrogate matrices and 0 otherwise. Hence, M is a sparse matrix
specifying only nonlinear interrelations between EEG channels:
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Since we wanted a single value per channel (to eventually assign one value to an arbitrary set of channels) we condensed the matrix M by
calculating the average node strengths over time. If n is the number of channels and T is the number of time windows in the examined segment, M
has the dimensions n× n× T. The node strength of a channel was derived by summing over the absolute values of all its interrelations (minus the
interrelation with itself) (Fig. 6, panel 4), and to average over time we took each channel's mean over all time windows in the first half of the seizure
(Eq. (4)). Channel i accordingly had the node strength si:

=
∑ ∑ −

= =( )M
s

T

(| |) 1
i

t
T

j
n

i j t1 1 , ,

(4)

To use this approach to assess the effectiveness of simulated resections, we calculated the fraction of the total node strength comprised by a
particular set of channels. This value is the relative predicted performance of this set to decrease the patient's propensity to develop seizures if the
corresponding resection would actually be carried out.

Appendix B. Bootstrapping tests in detail

The essential idea of bootstrapping is to determine the significance of some statistical measure based completely on the empirical data. This has
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the advantage that no assumptions about the underlying distribution have to be made. It is also appropriate when the sample size is small and
sporadic samples could distort its representation of the population. Both conditions, the unknown underlying distribution and the small sample sizes
are present in our case. Hence, we chose to apply bootstrapping methods in all our significance tests. The basic concept of these methods is to
generate the test statistics’ distribution exclusively from the distribution of the empirical data. To do so, we selected and, if required, modified the
empirical data in a way that depends on the specific null hypothesis and is described below separately for every test. From each resulting data set, we
independently drew Nsamp=100,000 random samples. In this context, sample means a set of values drawn with replacement from an original set and
having the same size as the original set. Calculating the desired test statistic on these random and independent samples, gives an appropriate
distribution of values under the null hypothesis. The same test statistic is also calculated on the original data. The fraction of random samples having
a higher value than the actual data is the corresponding p-value.

This basic idea was applied in all performed significance tests. Subsequently, for every test a short description is given for how the data under the
null hypothesis and the corresponding p-value were calculated. Additionally, Fig. 7 summarizes the procedure for all cases in a flow chart.

Fig. 6. EEG data and evaluations of both examined methods of patient 8 (cf. Fig. 3a). Panel 1: Intracranial EEG recording. Clinically determined seizure onset is at
180 s and channels recording from tissue that was resected later are in red. Panels 2 and 3 show the evaluation of the soft clustering method. The probabilities of the K
cluster centroids (y-axis) are shown over time, whereof clusters 3–6 are classified as ictal. The cyan lines indicate the time point where the input data was cut and
subsequent centroid probabilities developed according to the model. Panel 2 shows the probabilities of the centroids if no resection is simulated and panel 3 shows
the same if the actually performed resection is simulated. Panel 4 quantifies for each channel (y-axis, same order as in panel 1) the nonlinear interrelations over time.
The cyan lines enclose the first half of the seizure, the segment used for evaluation, and the arrows indicate the actually resected channels. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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B.1. Separation of the two outcome groups by their actual resections

The goal of this test was to examine for both methods separately if the ratings of the actual resections separate the groups of class I and class IV
patients. We shifted the empirical distributions (the ratings of both outcome groups) so they both have a mean=0 and drew randomly Nsamp samples
of each distribution. The differences in the means of the pairwise but independent samples constituted the distribution under the null hypothesis that
both distributions have the same mean. The corresponding p-value was the fraction of random sample-pairs having a bigger difference in their means
than the actual outcome groups.

B.2. Correlation of patients’ rankings as given by their ratings

The goal of this test was to examine if the methods rank the patients in a correlated order according to the ratings of their actual resection. Hence,
we independently drew Nsamp samples of each empirical distribution (each method's ranking) to generate pairs of uncorrelated data which con-
stituted the distribution under the null hypothesis that there is no correlation between the rankings of both methods. The corresponding p-value was
the fraction of random sample-pairs having a bigger rank correlation coefficient than the actual rankings.

B.3. Congruency of the distributions of the actual resections and the random resections

The goal of this test was to examine if the actual resections of an outcome class are likely to originate from the same distribution as the random
resections. Hence, for both methods and both outcome groups separately, we generated Nsamp independent pairs of samples of the empirical dis-
tribution (the ratings of actual resections) and measured the L1-based distances between the pairs’ cumulative distribution functions (CDF). These
values constituted the distribution under the null hypothesis that two empirical distributions have the same source. In addition, we determined the
average L1-based distance between these samples and the CDF given by the ratings of the random resections. The fraction of values in the dis-
tribution under the null hypothesis that was bigger than this average L1-based distance was the corresponding p-value.

B.4. Class difference in correlation of random resection ratings and overlap

The goal of this test was to examine if, depending on the outcome of the patient, the ratings of random resections correlate differently with their
overlaps (the number of channels that are also in this patient's actual resection). Hence, the means of both datasets (each containing the appropriate
correlation coefficients of one outcome group) were set to zero and the differences between the means of Nsamp independent pairs of randomly drawn
samples constituted the data under the null hypothesis that both classes have the same mean correlation coefficient. Accordingly, the fraction of
random sample-pairs having a bigger difference in their mean correlation coefficient than the actual datasets was the corresponding p-value.

B.5. Group-wise correlation between overlap and ratings and partial correlation of ratings

The goal of these tests was to examine relations between ratings of resections and their overlaps with the actual resection. First, we determined
for both methods and both outcome groups separately the relation between the ratings and the overlaps of all virtual resections. We randomly drew
Nsamp samples of each empirical distribution (the ratings and the overlaps) to generate pairs of uncorrelated data which constituted the distribution
under the null hypothesis that there is no correlation between a methods’ ratings and the overlaps of random resections. Accordingly, the

Fig. 7. Flow chart summarizing all boot-
strapping tests. The original data is modified
in a specific way and 100,000 random sam-
ples are drawn with replacement to constitute
the data under the null hypothesis. The same
test statistic is calculated on the original data
and on all randomized samples. The value of
the original data in the distribution of the null
hypothesis determines the p-value.
Abbreviations: CDF: cumulative distribution
function.
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corresponding p-value is the fraction of random sample-pairs having a bigger correlation coefficient than the actual datasets. Then, we used the
ratings of both methods as empirical distributions to examine in exactly the same way the correlation among the ratings of both methods. Finally we
used the concept of partial correlation to excluded the possible influence of the overlap as a controlling variable by calculating the residuals of both
methods’ ratings using the overlap as regressor. These residuals then were the empirical distributions to examine in the same way as before the
correlation between the ratings but with the effect of the overlap removed.
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