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Abstract

We have investigated the importance of the rate of vaccination to contain COVID-19 in

urban areas. We used an extremely simple epidemiological model that is amenable to

implementation in an Excel spreadsheet and includes the demographics of social distanc-

ing, efficacy of massive testing and quarantine, and coverage and rate of vaccination as the

main parameters to model the progression of COVID-19 pandemics in densely populated

urban areas. Our model predicts that effective containment of pandemic progression in

densely populated cities would be more effectively achieved by vaccination campaigns that

consider the fast distribution and application of vaccines (i.e., 50% coverage in 6 months)

while social distancing measures are still in place. Our results suggest that the rate of vacci-

nation is more important than the overall vaccination coverage for containing COVID-19. In

addition, our modeling indicates that widespread testing and quarantining of infected sub-

jects would greatly benefit the success of vaccination campaigns. We envision this simple

model as a friendly, readily accessible, and cost-effective tool for assisting health officials

and local governments in the rational design/planning of vaccination strategies.

Introduction

COVID-19 vaccines are finally in reach. In December 2020, the vaccines from Pfizer-BioN-

Tech and Moderna-NIH were approved [1–3], after an unprecedentedly intense and rapid vac-

cine research campaign. Both of these vaccines are based on mRNA technology [2, 4–6] and

exhibit efficacies of nearly 95%, as evaluated in clinical trials [7]. As vaccination campaigns

have started already around the globe (e.g., in England, USA, Canada, and México), these and

other vaccines are expected to obtain approval during 2021 in different countries.

The availability of approved vaccines provides certainty in the international quest to con-

tain the greatest pandemic that we have experienced in modern times. However, the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0254430 July 19, 2021 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Alvarez MM, Bravo-González S, Trujillo-de
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widespread deployment of vaccines still faces some challenges [8]. The extent and rate of vacci-

nation in each country, and even in each city, will be determined by the global rate of vaccine

manufacturing, the local logistics of distribution and application, and even public perception

[9]. The cost of vaccines and vaccination campaigns is another aspect that will define the final

availability (rate and coverage) of vaccines in a particular community. In the end, each country

will have to design its own vaccination strategy based on cost, availability, public perceptions,

and logistic considerations. A few economies will be able to implement fast and wide-coverage

vaccination campaigns aimed at controlling COVID-19 progression within a few months. For

most countries, vaccine campaigns will have to be sustained long-term efforts that extend

throughout at least most of 2021 due to logistic limitations or cost (Moderna´s vaccine will

cost ~25 pounds per dose; Pfizer´s vaccine will cost ~15 pounds per dose) [7].

In this context, relevant questions related to the impact of different vaccination strategies

remain unanswered. What fraction of the population do we have to cover in a vaccination

campaign? How much does the rate of vaccination matter? After vaccination starts, how soon

can we go back to our “normal” lives? Are social distancing and widespread testing still needed

through the vaccination period?

Intuitively, we can infer the qualitative answer to some of these questions. After all, a vac-

cine is not effective immediately after application, and herd immunity will be only evident

after a significant fraction of the population is immune [10]. Both of the firstly approved vac-

cines (Pfizer-BioNTech and Moderna-NIH) have a high efficacy of η~0.95 [7, 11]. While indi-

viduals develop protective antibodies even after the first dose (i.e., η~0.50 efficacy, as

demonstrated through clinical trials [5]), they require administration of two doses in a time

frame of 21 or 30 days to reach a protection of 95% [5]. During that post-vaccination but pre-

immune period, the pandemic will evolve, as a dynamic process driven by infective subjects

(symptomatic and asymptomatic) that have not been diagnosed and quarantined and continue

spreading the virus among the susceptible (not yet immune) population. Therefore, the inter-

play between vaccination and COVID-19 evolution in a particular community is a dynamic

process, where several different rates compete.

The relevant rates are the local rate of infection, as influenced by the effectiveness of social

distancing measures, the rate of testing and effective quarantining of infected subjects, and the

rate of acquired immunity due to SARS-CoV-2 infection or vaccination. In turn, the rate of

infection is affected by the effectiveness of all social distancing measures in that community. In

principle, all these rates have to be considered when attempting to render an accurate forecast

of the evolution of COVID-19 in a particular territory. Several studies [12, 13] have used math-

ematical modeling to investigate the role of vaccine efficacy and vaccine coverage in the atten-

uation of the pandemic progression. However, one aspect that remains poorly explored is the

assessment of the effect of different vaccination rates on the progression of COVID-19. Again,

the effect of the rate of vaccination must be analyzed in the context of the dynamic process of

infection and in consideration of the effect of the social distancing and testing efforts as well.

Recently, we introduced an epidemiological model formulation that explicitly considers

demographic variables and epidemiological parameters to calculate the progression of

COVID-19 in urban areas [14]. This model can certainly be described as a variation of the

original compartmental model first introduced by McKendrick and Kermack [15] or a varia-

tion of the SIR models very commonly used in the context of epidemiology [10, 16]. Compart-

mental models describe the interplay between different subsets of individuals in an

epidemiological situation (infected symptomatic, asymptomatic, recovered, retrieved,

deceased). However, the present model exhibits important differences in the definition of

these compartments with respect to other models (i.e., we include the concept of retrieved sub-

jects), the formulation of its parameters (i.e., we define a rate of infection instead of a
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reproduction number (R)), and it allows for the easy incorporation of features (i.e., the testing

effort and the vaccination rate). The model also considers the effectiveness of social distancing

measures and of massive testing for expeditious identification and quarantining of infective

subjects as inputs, which is not straightforward in conventional SIR models [16].

In this communication, we have modified our original formulation to include the effect of vacci-

nation coverage and rate, and we use this simple model to predict the pandemic progress in highly

populated cities. We present a wide range of simulation scenarios for a hypothetical urban area,

and we evaluate the relative effect of different schemes of vaccination (i.e., combinations of social

distancing, testing intensity, and vaccination coverage and rate) on the evolution of COVID-19.

Materials and methods

Mathematical model

We used a simple epidemiological model for the propagation of COVID-19 in urban areas that

considers two variable populations of individuals, infected (X(t)) and retrieved (R(t)) (Fig 1; S1

File).

Fig 1. Do vaccination rates matter? Schematic representation of a demographic mathematical model that considers social distancing (σ), intensity of the

testing effort (α), vaccination coverage (φ), and vaccination rate (γ) to predict the evolution of pandemic COVID-19 in urban areas.

https://doi.org/10.1371/journal.pone.0254430.g001
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The model is based on a set of two simple differential equations.

dXðtÞ=dt ¼ moð1� sðtÞÞ ðXðtÞ� RðtÞÞ ðPo� XðtÞ� VðtÞÞ=Po Eq ð1Þ

dRðtÞ=dt ¼ aðXðtÞÞjt� delayq þ ð1� aÞðXÞjt� delayr Eq ð2Þ

The first equation describes the rate of new infections (X(t)). This rate of accumulation of

infected habitants (asymptomatic and symptomatic) in an urban area (assumed to be a closed

system) is proportional to the number of infective subjects present in that population at a

given point (X(t)-R(t)) and the fraction of the population still susceptible to infection ((Po-X

(t)-V(t))/Po). The second accounts for the rate of accumulation of retrieved (R(t)) subjects

from the infective population. The number of retrieved subjects is defined as the number of

inhabitants that have been retrieved from the general population and therefore are not con-

tributing to the propagation of COVID-19. Subjects are “retrieved” from the infective popula-

tion either because they have been effectively isolated from the non-infected population (i.e.,

hospitalized or quarantined after positive diagnosis), they have recovered from COVID-19

and are no longer infectious, or they have died.

Note that in this model, the quantity (X(t)-R(t)) is the driving force that sustains the local

evolution of the pandemics. The number of infective subjects is given by the difference

between the accumulated number of infected subjects (X(t)) and the number of retrieved sub-

jects (R(t)).

The proportionality constant in Eq 1 (μo) is an intrinsic rate of infection. However, this rate

of generation of new cases is modulated by several factors, including the effective degree of

activity in the region (1-σ(t)). Here, σ is a fraction that denotes the effective decrease in human

activity or mobility in the region (or the effective decrease in demographic density) caused by

the set of social distancing countermeasures (σ(t)) currently established among that population

(i.e., restrictions in social and economic activities, use of masks, restrictions in mobility, and

all measures that contribute to an effective decrease in demographic density).

The fraction of the susceptible population decreases over time, as more inhabitants in the

community get infected (X(t)) or are vaccinated (V(t)). Then, the model also considers that

the rate of generation of new cases is modulated by the fraction of the population that is sus-

ceptible to the infection (Po-X(t)-V(t))/Po. This is precisely where the number of vaccinated

subjects (V(t)) plays a role by reducing the pool of susceptible individuals.

The second equation (Eq 2) describes the rate at which infected patients are retrieved from

the infective population. Eventually, all infected subjects are retrieved from the population of

infected individuals, but this occurs at distinct rates. A fraction of infected individuals (α) is

effectively retrieved from the general population soon after the onset of symptoms or after a

positive diagnosis. Another fraction of infected subjects (1- α) is not effectively retrieved from

the population until they have recovered or died from the disease. Therefore, in our formula-

tion, the overall rate of retrieval (dR/dt) has two distinctive contributions, each one associated

with different terms on the right-hand side of Eq 2. The first term accounts for the active rate

of retrieving infected patients through the diagnosis and quarantine of SARS-CoV-2 positive

subjects. For this term, the delay from the onset of virus shedding to positive diagnosis and

quarantine (delay_q) is considered short (i.e., between two to five days), to account for a rea-

sonable time between the positive diagnosis and the action of quarantine. In our model formu-

lation, this term is represented by (1-α). A second term relates to the recovery or death of

infected patients (symptomatic or asymptomatic) and is represented by the integral of all

infected subjects recovered or deceased from the onset of the epidemic episode in the region,
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considering a delay of 14 days (delay_r), which accounts for the average time of recovery of an

infected individual.

Note that the simultaneous solution of Eqs 1 and 2 is sufficient to describe the evolution of

the number of asymptomatic individuals (A), symptomatic individuals (S), and deceased

patients (D) through the specification of several constants and simple relations.

a dX=dt ¼ dA=dt Eq ð3Þ

ð1� aÞ dX=dt ¼ dS=dt Eq ð4Þ

m ½ð1� aÞ dX=dt� ¼ dD=dt Eq ð5Þ

Here, a is the fraction of asymptomatic subjects among the infected population, (1-a) is the

fraction of infected individuals that exhibit symptoms, and m the mortality rate expressed as a

fraction of symptomatic individuals. Note tt a delay should be used to properly model the

number of deaths with time. In its current form, our model predicts the number of deaths

associated with people getting infected in the current time.

Parameter values and assumptions

This model relies on some basic assumptions that are sustained in clinical or epidemiological

data.

The clinical parameters include an intrinsic infection rate constant (μo) that can be calcu-

lated from the initial stage of the pandemic in that particular region, the fraction of asymptom-

atic patients (α), the delay between the period of viral shedding by an infected patient

(delay_r), the period from the onset of shedding to the result of first diagnosis and quarantine

in the fraction of patients effectively diagnosed (delay_q), and the fraction of infected patients

effectively diagnosed and retrieved from the population (α(t)). Demographic parameters

include the population of the region (Po), the effect of social distancing (σ(t)) in terms of effec-

tively decreasing the demographic density, the fraction of infected individuals retrieved from

the population due to massive and effective testing (α(t)), and the vaccine coverage (φ) and

vaccination rate (γ).

For illustrative purposes, we set the value of μo (the intrinsic rate of infection) in 0.33 day-1

in our simulations. This value is similar to that observed in Sao Paulo (~0.308), Mexico City

(~0.329), Toronto (~0.330), Lisbon (~0.341), Madrid (~0.358) and London (0.362), at the local

onset of pandemic COVID-19 in 2020. Other urban areas have exhibited values of μo between

0.2 and 0.65 day-1 (S1 Table). The value of μo (i.e., the intrinsic rate of infectivity of SARS-

CoV2 before interventions) can be calculated for any urban area assuming that the initial rate

of propagation is d(X)/dt = μo [X], where [X] is the number of initially infected subjects [14].

Subsequently, the intrinsic rate of infection can be calculated from the initial slope of a plot of

ln [X] vs time, which is a usual procedure for the calculation of intrinsic growth rates in cell

culture scenarios under the assumption of a first-order rate growth dependence.

The fraction of asymptomatic infected (a) is one of the critical inputs for the model; it deter-

mines the final and maximum feasible threshold of symptomatic infected. The current evi-

dence is not yet sufficient to support a conclusive value for this parameter. For the simulations

presented here, we set a = 0.85, based on a recent serological study conducted in New York

City (NYC) that found anti-SARS-CoV-2 IGGs among 21.2% of the population [17]. This

serological result, combined with simulation work, suggests that nearly 85% of exposed New

Yorkers were asymptomatic or exhibited minor symptoms. In addition, the average time of

infectiousness was set at 14 days in our simulations. Viral shedding can last for three to four
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weeks after the onset of symptoms [18]. However, according to current recommendations and

clinical guidelines, most ambulatory patients are generally considered COVID recovered and

no longer infectious after day 10 (from the onset of symptoms) unless they are immune com-

promised. This recommendation is consistent with recent reports that correlate SARS-CoV-2

infectivity in cell cultures versus CT values in PCR results of infected subjects during the first

10 days of infection [19]. Based on more conservative sources [20, 21], we adopted a period of

infectiveness of 14 days after infection for the simulations presented here. Similarly, asymp-

tomatic patients are only removed from the pool of susceptible persons 14 days post infection.

Asymptomatic patients are considered part of the population capable of transmitting COVID-

19; reported evidence that suggests that asymptomatic subjects (or minimally symptomatic

patients) may exhibit similar viral loads [22] to those of symptomatic patients and may be

active transmitters of the disease [23, 24].

The model also requires the definition of the mortality rate (m) associated with COVID-19.

The worldwide average fraction of patients that die as a consequence of COVID-19 is esti-

mated to be 0.029 of those infected 21 days before [25]. We also consider that the average time

for bed occupancy of hospitalized patients is 14 days. The estimated average hospitalization

stays range from 9.3 to 13 days in the United States [26] and China [27, 28], but much longer

stays were reported in intensive care units in Italy (20 to 25 days) [29]. Anecdotal data collected

in México suggests that hospitalization stays of at least two weeks are a more accurate figure

for Latin American societies.

The model assumes that infection results in short-term immunity upon recovery (at least

12 months). This assumption is based in experimental evidence that suggests that rhesus

macaques that recovered from SARS-CoV-2 infection could not be reinfected [30]. However,

the acquisition of full immunity to reinfection has not been confirmed in humans, although it

is well documented for other coronavirus infections, such as SARS and Middle East respiratory

syndrome (MERS) [31, 32].

Results and discussion

Using this simple epidemiological model, our aim was to reproduce representative settings for

COVID-19 progression. For illustrative purposes, we have selected a representative urban area

(i.e., more than 1,000,000 inhabitants and a population density above 4,000 habitants km-2). In

all our simulations, we calculated the number of symptomatic subjects, the number of new

cases per 1,000,000 of inhabitants, and the maximum hospital bed occupancy in that hypothet-

ical region.

For all simulations presented here, we assumed that vaccination occurs immediately after

the pandemic onset. We also assume that social distancing is in effect during the entire vacci-

nation campaign so that the level of activity in the city is decreased (and therefore the effective

population density) by 50% (i.e., σ = 0.50). Our simulations suggest that even aggressive vacci-

nation campaigns (i.e., 70% vaccine coverage in 1.5 months) do not have substantial effects in

the absence of social distancing and that they have only minor effects (S1 Fig) even at moderate

degrees of social distancing (i.e., σ = 0.25).

We explored the range of vaccination coverage from 30% to 70%. Recent reports suggest that a

vaccination coverage higher than 70% may be unattainable simply due to public perceptions [33].

In surveys conducted in 28 nations, a pooled average of 20% of the participants expressed their

intention to refuse SARS-CoV-2 vaccination. In addition, vaccine manufacturing is expected to

be at a developing stage during 2021 [8]. Therefore, in all probability, the rate of manufacture of

vaccines will be lower than their demand at least during the current year. In this context, reaching

vaccine coverage higher than 70% seems challenging for most countries.
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In a first set of simulations (Fig 2A and 2B), we investigated the effect of different rates of

vaccination at fixed vaccination coverage under the following set of common assumptions: (a)

the overall vaccination coverage will be limited to 30% of the population; (b) the intrinsic rate

of infection is μo = 0.33, similar to actual values observed in densely populated urban areas,

such as Mexico City and Madrid (S1 Table); and (c) σ, the effective value of social distancing,

is equal to 0.5. Vaccination consists of the application of two vaccine dosages during 30 days.

In this contribution, we assumed that vaccinated subjects will acquire 50% protection 14 days

after receiving the first dose and will exhibit a 90% protective level of anti-SARS-CoV-2 anti-

bodies only at ~30 to 45 days after they received the first dose.

In addition, for these sets of simulations, the testing effort is such that only 15% of the

infected subjects are tested and quarantined, while the rest of the infected subjects continue to

be active until recovery. This strategy is consistent with that adopted by countries that have

diagnosed essentially only those subjects who were symptomatic and asked for medical assis-

tance (i.e., México, Chile, and Bolivia, with fewer than 2 tests per confirmed case) [34].

Under this set of assumptions, we explored three different rates of vaccination (Fig 2A and

2B) to cover 30% of the population (φ = 0.3) in 1 year (orange curves; γ = Po year-1), in 6

months (grey curves; γ = 2 Po year-1), and in 3 months (yellow curves; γ = 4 Po year-1). These

three rates of vaccination are equivalent to coverage of 100% Po in one year (γ = Po year-), six

months (γ = 2 Po year-), or three months (γ = 4 Po year-).

The pandemic progression (number of cumulative symptomatic cases, and new infections

per day) is indicated with blue curves for a reference scenario with a social distancing of 50%

(i.e., an effective decrease of 50% in the demographic density) and a basal level of testing (i.e.,

only 15% of the infective subjects are tested and quarantined, while the rest of the infected sub-

jects continue active until recovery). The results of our simulations show that increasing the

rate of vaccination has a prominent effect on the epidemic curve. Fig 2A shows the cumulative

number of symptomatic cases at different vaccination rates when the vaccine coverage is lim-

ited to 30%. Fig 2B shows the new number of symptomatic cases per day at different vaccina-

tion rates and 30% coverage. The vaccination rate has a clear effect on both the shape and the

area of the epidemic curves. Note that the peak of new infections is substantially lower as the

vaccination rate is increased.

The total number of expected symptomatic cases (Fig 2A), the peak of new infections (Fig

2B), and the maximum bed occupation at hospitals (inset in Fig 2B) progressively and substan-

tially decreased as the vaccination rate is increased. Evidently, a great benefit is attained by

accelerating the distribution and application of vaccine as much as possible. The scenario of

achieving a 30% coverage (300,000 vaccines per million of habitants) in three or six months

seams feasible and reduces the overall number of symptomatic infected and the bed maximum

bed occupancy in nearly 70% and 40%, respectively, with respect to the base case.

Fig 2C and 2D show the cumulative number of cases and the number of new infections per

day, respectively, at different vaccination rates and at a vaccine coverage of 50% (φ = 0.5). The

maximum bed occupancy under this scenario is shown in the inset of Fig 2D. As before, we

included a base case (blue curves) in which no vaccination occurs, whereas social distancing

still has an effect equivalent to a decrease of 50% in the demographic density, and 15% of the

infective subjects are diagnosed and quarantined.

Similarly, Fig 2E and 2F show the cumulative number of cases and the number of new

infections per day, respectively, at different vaccination rates and at a vaccine coverage of 70%

(φ = 0.7). The pandemic indicators (i.e., overall number of symptomatic subjects, peak of new

cases per day and maximum bed occupancy) decrease modestly as vaccine coverage is

increased from φ = 0.30 to 0.50 or even 0.70. The benefit of increasing vaccine coverage at a

given vaccination rate is substantially smaller than the benefit of increasing the rate of
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Fig 2. Scenarios of pandemic evolution for vaccination at different values of vaccination coverage and vaccination rates and under conditions of

moderate social distancing (i.e., 50%) and basal values of testing effort (i.e.; α = 0.15). (A) Cumulative number of infections, (B) daily number of new

symptomatic cases and maximum bed occupancy (inset) for vaccination scenarios in which the vaccine coverage is kept constant at 30% Po (φ = 0.30), the

effectiveness of the social distancing measures is 50% (σ = 0.50), a basal level of testing is established (α = 0.15). (C) Cumulative number of infections, (D) daily

number of new symptomatic cases and maximum bed occupancy (inset) for vaccination scenarios in which the vaccine coverage is kept constant at 50% Po (φ
= 0.50; σ = 0.50; and α = 0.15). (E) Cumulative number of infections, (F) daily number of new symptomatic cases and maximum bed occupancy (inset) for

vaccination scenarios in which the vaccine coverage is kept constant at 70% Po (φ = 0.70; σ = 0.50; and α = 0.15). For all these cases, different vaccination rates

such that: the entire population could be vaccinated within a year (vaccination at γ = Po year-1; orange curve); within six months (vaccination at γ = 2 Po year-1;

grey curve); or within three months (vaccination at γ = 4 Po year-1; yellow curve). A reference scenario without vaccination is included in all panels (blue

curve). Numbers indicate the percentage of reduction of symptomatic cases that results from the application of each vaccination rate with respect to the

reference case. The number of immune subjects at different times, in accordance with different vaccination rates, is indicated with the same color code in the

secondary axis.

https://doi.org/10.1371/journal.pone.0254430.g002
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vaccination at a fixed vaccination coverage. Indeed, our results suggest that the overall vaccine

coverage of 30% of the population at a rate of 100% Po in 6 months is more effective than the

vaccine coverage of 50% of the population at a rate of 100% Po in one year, in terms of control-

ling the number of infections. Note that even increasing the coverage to 70% at the lowest rate

does not provide the same benefits as a coverage of 50% achieved over a shorter period (e.g., 6

or 3 months). A modest coverage of 30% of the population at a rate of 100% Po in 6 months

provides better results than a higher coverage of 70% at a rate of 100% Po in an entire year.

Results suggest that a high vaccination coverage implemented at a slow rate is not able to

exceed the rate of new infections. A modest coverage (i.e., 30%) executed in a very short time

(such as the strategy followed by the USA or Israel) delivers more vaccines per day than a slow

and high coverage vaccination. Therefore, modest but fast is more effective than ambitious

and slow, in this case.

Fig 3 presents predictions for scenarios where 50% social distancing is implemented, but

where the level of diagnostic testing is increased from a basal value (15% of infected are diag-

nosed and quarantined) to situations were 30% of infected patients (symptomatic and asymp-

tomatic) are diagnosed within the first 5 days of viral shedding and are quarantined. This set of

results allows observation of the effect of testing intensification combined with social distanc-

ing and vaccination. This would be a more realistic and recommended scenario. As before, the

trends related to the reference scenario of 30% testing (α = 0.30) and 50% social distance

enforcement (σ = 0.50) are indicated in blue. The combination of moderate testing and vacci-

nation renders better results than is achieved with basal testing and vaccination. The estimate

of maximum bed occupancy is reduced by at least 50% for all values of vaccination coverage

and vaccination rates analyzed. For example, at the feasible scenario of 50% coverage at 100%

Po in 6 months, the maximum bed occupancy decreases from 5800 to 900 beds if a moderate

testing effort (α = 0.30) is in place.

As before, increasing the rate of vaccination is more efficacious than simply increasing vac-

cination coverage at a slow vaccination rate. For example, a vaccination strategy aimed at

reaching 50% of the population at a rate of 100% Po in 6 months results in the maximum bed

occupancy of ~900 beds. By contrast, increasing the coverage to 70% at a rate of 100%Po in

one year yields a higher maximum bed occupancy (~2824 beds).

A graphical summary of the results for different combinations of scenarios is presented in

Fig 4. The effect of different vaccination rates is shown in terms of the number of symptomatic

individuals at different vaccine coverage in (Fig 4A) and the maximum bed occupancy (Fig

4B). Lines drawn in different colors indicate the different values of vaccine coverage (i.e., 30%,

50%, and 70%). The vaccination rate exhibits a dominant effect on the parameters of the local

evolution of the COVID-19 pandemic and defines the number of symptomatic cases (Fig 4A)

and the maximum bed occupancy (Fig 4B). Covering 70, 50, or 30% of the population at vacci-

nation rates of 100% Po in 12 or 6 months renders practically equivalent results. A higher vac-

cination coverage (50–70%) renders higher benefits than the lowest vaccination coverage

(30%) only at the highest vaccination rate evaluated (i.e., vaccinating 100% Po in 3 months).

In Fig 4A and 4B we selected a reduced set of scenarios to illustrate relevant relationships

between vaccination rate and coverage and reduction in some of the indicators of the local

evolution of pandemic COVID-19. However, the demographic model that we used is flexible

enough to simulate a wide range of additional scenarios that combine social distancing, testing

effort, vaccination coverage and rate, and vaccination efficacy (S2 Table).

For example, Fig 4C and 4D present an analysis of the effect of the use of vaccines with dif-

ferent efficacies (i.e., η = 0.95, 0.90, and 0.70). This type of analysis may be highly useful for

this and other epidemic emergencies since constraints in the availability, cost, or logistics of
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Fig 3. Scenarios of pandemic evolution for vaccination at different values of vaccination coverage and vaccination rates and under conditions of

moderate social distancing (i.e., 50%) and enhanced testing effort (i.e., α = 0.30). (A) Cumulative number of infections, (B) daily number of new

symptomatic cases and maximum bed occupancy (inset) for vaccination scenarios in which the vaccine coverage is kept constant at 30% Po (φ = 0.30), the

effectiveness of the social distancing measures is 50% (σ = 0.50), a moderate level of testing is established (α = 0.30). (C) Cumulative number of infections, (D)

daily number of new symptomatic cases and maximum bed occupancy (inset) for vaccination scenarios in which the vaccine coverage is kept constant at 50%

Po (φ = 0.50; σ = 0.50; and α = 0.30). (E) Cumulative number of infections, (F) daily number of new symptomatic cases and maximum bed occupancy (inset)

for vaccination scenarios in which the vaccine coverage is kept constant at 70% Po (φ = 0.70; σ = 0.50; and α = 0.30). For all these cases, different vaccination

rates such that: the entire population could be vaccinated within a year (vaccination at γ = Po year-1; orange curve); within six months (vaccination at γ = 2 Po

year-1; grey curve); or within three months (vaccination at γ = 4 Po year-1; yellow curve). A reference scenario without vaccination is included in all panels (blue

curve). Numbers indicate the percentage of reduction of symptomatic cases that results from the application of each vaccination rate with respect to the

reference case. The number of immune subjects at different times, in accordance with different vaccination rates, is indicated with the same color code in the

secondary axis.

https://doi.org/10.1371/journal.pone.0254430.g003
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vaccine storage or distribution will require countries to fulfill their vaccination requirements

using not one but several vaccine alternatives.

We illustrate the type of information that the model may provide in S2 Table. Five different

indicators are calculated for different vaccination scenarios, including the day of the epidemic

peak, the number of new infection cases at the epidemic peak, the cumulative number of

symptomatic infections after 150 days of the local pandemic onset, the maximum bed occu-

pancy, and the number of fatalities at different case fatality rates. Regardless of vaccination

coverage, a fast vaccination rate (i.e., equal than or higher than 2 Po) renders reductions of

more than 60% of symptomatic cases and maximum bed occupancies.

Fig 4. Effect of different values of vaccination coverage and vaccination rates on pandemic indicators. (A) Number of cumulative cases, and (B) maximum

bed occupancy predicted in response to the application of different vaccination rates whereby the entire population could be vaccinated within a year

(vaccination at γ = Po year-1), within six months (vaccination at γ = 2 Po year-1), or within three months (vaccination at γ = 4 Po year-1) at different values of

vaccine coverage: 30% Po (ϕ = 0.30: red), 50% Po (ϕ = 0.50: yellow), and 70% Po (ϕ = 0.30: green). Curves for two different values of the coefficient of testing

effort are presented (α = 0.15 and α = 0.30). The secondary axis indicates fractional values with respect to the same reference (i.e., no vaccination, moderate

social distancing (σ = 0. 50), and basal testing effort (α = 0. 15). (C) Number of cumulative cases, and (D) maximum number of new symptomatic cases per day

predicted in response to the application of different vaccination rates (γ = 0.5 Po to 4.0 year-1) and at different values of vaccine coverage (from 30% to 70%; ϕ =

0.30 to 0.70). Curves for three different values of vaccination efficacies are presented (η = 0.95; magenta rhombs, η = 0.90; blue squares, and η = 0.70; green

circles). The secondary axis indicates fractional values with respect to the same reference (i.e., no vaccination, moderate social distancing (σ = 0. 50), and

moderate testing effort (α = 0. 30).

https://doi.org/10.1371/journal.pone.0254430.g004
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Note that one of the limitations of our model is that we assume that all the individuals that

receive the vaccine are still part of the susceptible pool (i.e., they have not yet been exposed to

the virus). The error that we estimate from this assumption may be important in some cases.

For example, in urban areas severely hit by COVID-19, less than 5% of the population has

been infected. Therefore, for a modest vaccination coverage (i.e., 30%), the vaccination of peo-

ple that have already been infected (symptomatic and asymptomatic) would decrease the effec-

tive vaccination coverage to (0.30)×(0.04/0.15) = 8.6%. This may imply that the intended

vaccination coverage of 30%, 50%, and 75% probably result in an effective vaccination rate of

~ 21%, 35%, and 50% for the non-exposed population of largely affected regions. The model

can be easily modified to correct this situation and to subtract previously immunized individu-

als from the vaccinated set.

Conclusions

Within the next weeks, each country will have to design its own vaccination strategy based on

cost, availability, public perceptions, and logistic considerations. Here, we aim to provide a

friendly, easy-to-use modeling tool to assist governments and local health officials to rationally

design vaccination campaigns.

We constructed a simple demographic model based on two differential equations that fol-

low the accumulation of the number of infected subjects and the number of subjects retrieved

from the infective population. This model formulation is extremely flexible and enables the

prediction of the evolution of pandemic COVID-19 in urban areas based on simple reported

parameters related to COVID-19 epidemiology and under different scenarios that may con-

sider different degrees of social distancing and/or intensities of the testing effort, and different

vaccination strategies. In this study, we focus on analyzing the effect of different levels of vacci-

nation coverage and different vaccination rates on the local progression of COVID-19 in an

urban area.

Our results suggest that the rate of vaccination is highly relevant in controlling the evolu-

tion of COVID-19 in highly populated cities. Based on the predictions of our model, we rec-

ommend the implementation of vaccination campaigns capable of achieving an overall

coverage of at least 50% in short time periods (ideally within 3 or 6 months). In general, a faster

deployment of vaccines should be preferred over a higher vaccine coverage that implies slower

vaccination rates. Our model predicts that a vaccination campaign covering only 50% of the

population in 3 or 6 months is more effective in controlling COVID-19 progression than is a

vaccination strategy with a final coverage of 70% in longer times.

Importantly, our results clearly show that social distancing measures, including the use of

face masks and restriction of regular social and economic activities, must not be lifted during

at least the first three months of any vaccination campaigns. Only the combination of social

distancing and vaccination enables the control of COVID-19 progression in highly populated

cities within a time frame of 3–4 months. In addition, the intensification of the testing effort

during the implementation of vaccination campaigns yields relevant reductions in terms of

decreasing maximum bed occupancy and the number of symptomatic cases.

Supporting information

S1 File. Implementation of the demographic mathematical model in an excel spreadsheet.

(XLSX)

S1 Fig. Scenarios of pandemic evolution during the vaccination of 70% of the population

at different vaccination rates under conditions of modest social distancing (i.e., 25%). (A)
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The cumulative number of infections, (B) the number of new infections per day and the maxi-

mum bed occupancy (inset) are presented for vaccination scenarios in which the vaccine cov-

erage is kept constant at 70% Po (φ = 0.70), the effectiveness of the social distancing measures

is 20% (σ = 0.20), a basal level of testing is established (α = 0.15), and different vaccination

rates are imposed, such that: the entire population could be vaccinated within a year (Po year-1;

orange curve), within six months (2 Po year-1; grey curve), or within three months (vaccination

at 4 Po year-1; yellow curve). A reference scenario without vaccination is included (blue line).

Numbers indicate the percentage of reduction of symptomatic cases that results from the

application of each vaccination rate with respect to the reference case.

(TIFF)

S1 Table. Specific infection rates (μo) and the associated doubling times (td) for COVID-19

infection in different geographic regions. The intrinsic rate of infection ranges between 0.30

and 0.37 for territories with population densities between 4,000 and 7,000 hab km2.

(DOCX)

S2 Table. Effect of different vaccination scenarios in relevant indicators of the local evolu-

tion of pandemic COVID-19. Indicators are calculated for different vaccination scenarios,

including the day of the epidemic peak, the number of new infection cases at the epidemic

peak, the cumulative number of symptomatic infections after 150 days of the local pandemic

onset, the maximum bed occupancy, and the number of fatalities at different case fatality rates.

(DOCX)
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