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AGENTS that act mainly by impairing cell reproductive integrity inevitably
damage proliferating populations of normal cells, such as those of the bone marrow
or intestinal epithelium. The main clinical problem in using such agents to treat
neoplasms or suppress unwanted immunological responses is therefore one of
selectivity. Much effort is being devoted to means of improving the selectivity
of antitumour and immunosuppressive agents. The purpose of this communica-
tion is to show that the relative selectivity of these agents for various cell types is
not an unalterable characteristic of the agent but may depend to a considerable
extent on the therapeutic schedule, that is, the size and frequency of doses.

In the preceding paper (Berenbaum, 1969) it was shown that the dose-response
curves of several clinically useful agents were either exponential or hyperbolic.
Simple exponential curves are described by the equation

F -e-D (1)
where F is the surviving fraction of the cell population, 1) the dose of agent, and
a a constant giving the slope of the curve. Examples of such curves are the
survival of mouse lymphoma cells after irradiation (Bush and Bruce, 1964), of
L1210 cells after treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (Skipper,
Schabel and Wilcox, 1965), and of haemopoietic stem cells after treatment with
cyclophosphamide (Bruce, Meeker and Valeriote, 1966).

More usually, exponential curves have a shoulder, due possibly to multiplicity
of cell targets or to repair mechanisms, or both. Extrapolation of the straight
portion of the curve to the zero ordinate gives a value ofF greater than 1, termed
the extrapolation number. An equation generating curves approximating to
those found experimentally is

F 1 (1 e-D)Dl (2)
where / is the extrapolation number.

The equation for hyperbolic dose-response curves, such as those given by
antimetabolites, is

F (D)Y- (3)

where Do is the threshold dose and y the slope of the curve. In considering the
effects of repeated doses of agent we shall examine three simple cases of cell
populations that are homogeneous in the relevant respects, constituting, in the
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statistical sense, single populations in respect of sensitivity to the agent and rate
of proliferation or of recovery after depletion.

The first case is that of a population proliferating exponentially and asyn-
chronously without homoeostatic controls. This case may be typified by some
murine leukaemias. The second case is that of a population growing according to
the Gompertz equation, its growth rate decreasing continuously from the start
until the population reaches a plateau. This case is typified by a large number of
solid and ascitic tumours (Laird 1964, 1965). The third case is that ofa population
maintained at a steady-state level by homoeostasis. Many normal populations,
e.g. bone marrow, behave in this way, but it must be pointed out that probably
no cell population quite fits the model prescribed here, for homoeostasis usually
implies the existence of precursor cell compartments and so of inhomogeneity in
the population. However, multicompartment analysis is outside the scope of
this paper and the single compartment case is sufficiently instructive to warrant
examination.

The aim of therapy in cancer is generally to eliminate certain populations of the
first two types (leukaemic and tumour cells), while conserving at tolerable levels
populations of the third type (bone marrow, intestinal epithelium, etc.).

The therapeutic regimens to achieve these aims for each type of population
will be considered in turn.

1 Exponentially Growing Populations
If the population doubling time is T, the increase in cell number from N0 to

N1 in time t is given by
Nt = No 2t/T (4)

Suppose a dose D of an antineoplastic agent reduces the population to a fraction F,
then, after n such doses at intervals t, the net surviving fraction S is given by

S = [F.2t /T]n (5)
If the product F. 2tT exceeds 1, the population will continue to grow in spite of
repeated depletions. If it is less than 1, the population will decline progressively
and will be eliminated when less than one cell is left, i.e. when S is less than the
reciprocal of the initial number of cells. This principle is illustrated in Fig. 1,
where the fates of populations with different values of F, t and T are shown.

2 Growth According to the Gompertz Equation
The form of this equation due to Laird (1964, 1965) will be used here, viz:

9(1-*ebt) (6)
Nt = N0.eb

where t is the time elapsed after commencement of growth and a and b are con-
stants. In this model, the tumour cells are regarded as multiplying exponentially,
but their accumulation is subject to a retardation that itself increases exponen-
tially during growth. Growth is therefore rapid initially but slows progressively
from the start, and tumour size approaches an upper limit asymptotically. Data
for plasmacytoma Pla-1, Cancer 755 and Sarcoma 180 presented by Skipper (1967)
suggest that, when such a population is depleted by a dose of a chemotherapeutic
agent, the survivors will adopt the faster growth rate appropriate to a population
of this new, reduced size, growth slowing again as the population approaches its
pre-depletion size.
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FIG. 1.-Effect of different dose-regimens on exponentially-multiplying cell populations,
showing that the surviving fraction at time t after a dose that reduces the population to a
fraction F is given by F. 2tIT, where T is the population doubling time, and that the surviving
fraction after n doses at intervals t is [F. 2t/T]n.

The requirements of a therapeutic regimen that will eliminate the tumour
population are thus readily specified. This population grows most rapidly when
there is, for the purposes of this calculation, one tumour cell. The fractional
reduction F caused by each dose, and the interval between doses t must therefore
be such that the population Nt to which one cell gives rise in time t is reduced to
less than one cell by the succeeding dose.
That is,

Nt = eq(1-ebt)
and

Nt.F < 1
so that

a 1e-btF < e- b(l-e) (7)

This principle is illustrated in Fig. 2 where it is shown that cells growing at the
fastest rate permitted by equation (6) will be eliminated if the dose is large enough
or the interval between doses short enough. If these requirements are not met,
the population is never eliminated for, when the surviving population is small and
growing fast, recovery after depletion equals or is greater than the fractional
reduction caused by each dose.

3 Steady-state Populktions
The behaviour of such populations is approximately described by the logistic

equation, the form due to Sacher and Trucco (1966) being used here

F + (1- F)e kt (8)
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FIG. 2.-Calculation of dose regimens required to eliminate populations obeying the Gompertz
growth equation. A regimen of doses, each causing a fractional reduction F, repeated at
intervals t, will eliminate the population only if it reduces the population faster than it can
grow at its maximal rate, which is when it consists of one cell. In time tL after the popula-

tion has been reduced to one cell, it grows to e bt1) and therefore reduction to a fraction

less8 thanI & b(iebt1) will leave less than one surviving cell and will eliminate the population
(X). The same fractional reduction at time t2 may allow some cells to survive (Y), and, to

eliminate it at that time, a reduction to less than e 5(e ) is necessay (Z). In this
example a = 10, b = 1.

where F1 is the fractional size of the population at time t after depletion (or in-
crease) to a fraction F of its original size and k is a constant (termed here the
recovery constant). The logistic equation gives only a working approximation
to biological systems for it implies that F1 approaches unity asymptotically after
depletion whereas real cell populations generally recover completely (when they
recover at all) and often with a temporary overshoot. When recovery is governed
by homoeostatic mechanisms it can reasonably be expected that, the greater the
depletion, the faster the initial rate of return to the steady-state level, subject to
a limit set by the maximum rate at which the population can recover. These
features are shown in Fig. 3, in which the course of recovery is plotted for different
degrees of initial depletion according to equation (8). The maximum rate of
growth is equal to ekt. Therefore, if the population were reduced to successively
lower levels by repeated doses of agent (each of which caused the same fractional
depletion from the preceding level), the intervening proportional recoveries would
become successively greater, but could not exceed ek .

It can be shown that the net survival S after n doses at intervals t is given by
s Fn (9)

Fn + e-kt[Fn-l - Fn + e-kt[Fn-2 - Fn-l + e-kt[(9
* * * e-kt [F2 - F3 + e-ktl[F - F2 + e-ki[- F]]]]]]
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Fia. 3.-Plot of the logistic equation for a hypothetical population kept in a steady state by

homoeostatic mechanisms. After depletion (or increase) to a fraction of the steady-state
level, the population tends to return to this level. The steady-state level is 1-0, Ft = the
fractional size of the population at time t after the initial depletion or rise F, and k is a
recovery constant. The greater the initial depletion, the greater the rate of recovery, but
there is a maximum rate of recovery equal to ekt (indicated by the straight portions of the
curves). In this figure, if k = 1, the horizontal ordinate indicates time, and the figure may
be used to show the recoveries of populations with different values of k if the time-scale is
adjusted, keeping the kt-scale unaltered (for instance, if k = 2, the time-scale would cover
0-5 instead of 0-10).

When F > e-kt, this series converges and a new steady-state level is reached,
given by

iS F - e-kt (l )
S=F(I - e-kt) (0

WhenF < e-kt, no steady state is reached and the population continues to decrease
under treatment. These principles are illustrated in Fig. 4, where the fates of
populations with different relations between F and kt are shown. It will be
noted that, in the case of a population that takes up a new steady-state level under
a continued therapeutic regimen, there is an illusory appearance of resistance to
the agent on the part of a fraction of the population, although the relevant
characteristics of the population have not changed in any way.

Equations (5), (7), (9) and (10) describe the fates of the three types of popula-
tion with reference to the fractional reduction F caused by each dose and the
interval between doses t. In order to determine the effects of particular regimens
we now substitute for F in these equations the expressions in equations (1), (2) or
(3) as required. If the values of the relevant parameters are known (i.e. those
related to cell sensitivity to the agent, D0, o,,/, y, those related to cell proliferation
characteristics, T, k, a, b, and those related to the dose regimen, D, t, n), the net
effect of any particular regimen is readily calculated, as will be shown later.
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FIG. 4.-Effect of a dose regimen on two different homoeostatically-controlled populations.
Population A is reduced to 0 07 of its previous level by each dose, and has a recovery constant
k of 1 day-l. Population B is reduced to 0-15 of its previous level by each dose, and has a k
of 0-5 day-'. The interval t between doses is 3 days, so that, for population A, e-kt = 005
< 0.07 = F and, for population B, e-kt = 0-223 > 0-15 = F. In both cases, the recovery
after each dose increases as the population falls. This enables population A to arrive at a
new steady state 0 3 of its original size. In the case of population B, the maximum rate of
recovery does not compensate for the reduction in population size caused by each dose, so
that no steady state is reached and the population is progressively eliminated.

Further, if the cell parameters are known, therapeutic regimens can be specified
to yield particular values for cell survival.

Now, a selective therapeutic regimen in this context can broadly be defined as
one that has a differential effect on undesirable and desirable cell populations,
reducing the former to or below a required low level and keeping the latter at or
above a required high level. The levels required depend on the circumstances.
In the case of neoplastic cells, complete elimination of the population is desirable.
For normal, essential cell populations, such as those of the bone marrow and gut,
the minimum tolerable level would probably be about half the normal. Regimens
with the requisite selectivity are specified by setting values for F in equations (5)
or (7) such that the neoplastic population in question is eliminated, and a value for
F in equation (10) such that the normal, homoeostatically controlled population
in question is maintained in a steady state at 05 of its normal value. The
appropriate expressions in equations (1), (2) or (3) are substituted for F and the
equations rearranged to give D in terms of t. Table I gives the equations so
derived.

A concrete example will show how these formulae may be used to design
selective dose regimens. Suppose we wished to treat a leukaemic individual with
an antimetabolite that gave hyperbolic dose-response curves with both leukaemic
and normal granulopoietic cells. It will be assumed that the leukaemic cells are
proliferating exponentially and therefore this population will be eliminated if the
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conditions of equation C in Table I are met. It will be assumed that normal
granulopoietic cells constitute a steady-state population which will be maintained
in a steady state if the conditions of equation I in Table I are met. More particu-
larly, if the steady-state value of S is put at 05, then, from equation I, it is
required that

D <D[D +ektf (11)

We therefore have to choose values of D and t (the therapeutic regimen) such that
equations C and (1i) are satisfied. We can do this if we know the values of the
cell parameters Do and y (which are determined from the dose-response curves)
and T and k (the proliferative or recuperative characteristics of the cells concerned).

We can then plot D against t for both equations and simply read the required
regimens (if they exist) from the graph. This has been done in Fig. 5 for L1210

DOSE
(mg./kg)

1,000 /A

100 /

10

1 2 3 4 5 6 7
TIME (Days)

FIG. 5.-Design of selective regimens for L1210 leukaemic cells using 5-fluorouracil (see
equations C and I, Table I). For L 1210 cells (population A), Do = 4.5 mg./kg., y = 1*7,
T = 0-55 day. For proliferating normal haemopoietic cells (population B), Do= 10 mg./
kg., y = 1-7, k = 0-5 day-1. S = 0-5. Regimens that will eliminate the leukaemic cells and
conserve normal haemopoietic cells are in the shaded area.

leukaemic cells and normal haemopoietic cells in mice treated with 5-fluorouracil.
These cell types have been chosen because sufficiently good information about
the relevant cell parameters is available and the predictions of the model may be
tested by experiment. The values of Do and y for the leukaemic cells have been
taken from Fig. lB in the previous paper, and the doubling-time of these cells
from Skipper, Schabel and Wilcox (1964). The relevant parameters for normal
haemopoietic cells are not known with such certainty. Dose-response curves for
actively proliferating bone marrow are considerably steeper than those from
normal marrow, which contains a significant proportion of resting cells (Bruce,

37
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Meeker and Valeriote, 1966; Bruce and Meeker, 1967). Depletion of the normal
marrow population by the first few doses of agent would tend to induce rapid
proliferation in the remaining cells. It is appropriate, therefore, to base a regimen
of repeated doses on parameters measured when the cells are actively proliferating.
A log-log plot of Bruce and Meeker's (1967) data for rapidly proliferating marrow
cells suggests a Do for 5-fluorouracil of about 10 mg./kg. and a value of 1-7 for y.
Consideration of published data on recovery of marrow cells after depletion
suggests 0-25 - 2 day-' as the usual range of values for k, and a value of 0.5 has
been selected for this example. In Fig. 5 the leukaemic cells would be progres-
sively reduced in number by all regimens of 5-fluorouracil above and to the left of
curve A, and the population of normal haemopoietic cells would remain above 0 5
of its normal size under all regimens below and to the right of curve B. Regimens
with the required selectivity are therefore those in the shaded area of the figure.

Consider, for instance, a regimen of 11 mg./kg. of fluorouracil given daily. The
size of the leukaemic cell population after n doses will be 0-77n (equations 3 and 5).
After 70 doses it will be about 10-8 of its original size, and continued therapy will
eventually eliminate it altogether. The population of normal haemopoietic cells,
on the other hand, should settle down to a steady-state level of about 0 75 of its
normal size under continued therapy (equations 3 and 10). This regimen there-
fore has the required specificity. Now take an incorrectly chosen regimen, say,
33 mg./kg. given every 3 days. From equations (3), (5) and (10) it can be seen
that this regimen eliminates the normal cells (F 0-13 < e-kt _ 0-22), yet it
allows the leukaemic cell population to grow, although at a slower rate than in
an untreated individual (this population increases by a factor of 1 48 between
each dose). It should be noted that, in this example, the overall dosage in a given
time is the same as that in the regimen with the desired selectivity; only the size
and frequency of the individual doses have been changed. Evidently, such
simple changes in regimen may radically alter the selectivity of action of a drug,
and may make all the difference between a treatment that is useful and one that
is disastrous. The small probability of picking by chance a regimen with the
required selectivity in this example is also clear from Fig. 5, and this is relevant,
not only to therapy, but to the screening of new drugs.

Now consider the design of therapeutic regimen aimed at destroying a solid
tumour growing according to equation (6), using an alkylating agent giving
exponential dose-response curves with tumour cells and normal haemopoietic
cells. It will be assumed that the dose-response curve for normal haemopoietic
cells is that given by Bruce, Meeker and Valeriote (1966) for cyclophosphamide.
This is a simple exponential curve without a shoulder, the value of a being 0-63.
The value of k will be taken as 0 5 as in the previous example. There are no
adequate available data from which to derive the parameters of the dose-response
curves for solid tumours; we shall here assume that the particular tumour cells in
question are highly sensitive and give an exponential dose-response curve with
a shoulder when treated with the agent, the value of ac being 0.7 and of fi, 5.
Typical values for the Gompertz equation parameters a and b are 0-2 and 0-02
(Laird, 1964). The appropriate equation for elimination of the tumour is equation
E in Table I, which gives

D > - 0-7 loge{1 - [1-el-O(e -e-o02t})](12
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The appropriate equation for conservation of haemopoietic cells is equation G,
which gives, for a required steady-state of not less than 0 5 of the normal level,

D < -1 [2elog,1 (13)0*63 lg[1 + e-0 5t]

Values of D against t have been plotted for equations (12) and (13) in Fig. 6.
Regimens with the required specificity are the high-dose, low-frequency regimens
in the shaded area of the graph.

DOSE
(mg*

4

3

0 2 4 IN J ; 0 -

FiG. 6. Design of selective regimens for a tumour obeying the Gompertz growth equation,
using cyclophosphamide. The dose-response curve for normal haemopoietic cells (popula-
tion B), has a simple exponential form (Bruce, Meeker and Valeriote, 1966), so equation G
in Table I is used; ax = 0-63, k = 0-5 day-'. It is assumed that the dose-response curve for
tumour cells (population A) has a shoulder and that the relevant values (equation E, Table I)
are a = 0-7, # = 5, a = 0-2, b = 0-02. Regimens that will eliminate the tumour and con-
serve normal haemopoietic cells are in the shaded area.

In practice, relatively few cell populations can be expected to behave in the
simple ways here described. Tissues such as the leucopoietic or erythropoietic
fractions of the bone marrow have to be considered as multi-compartment systems
and not homogeneous populations (Lajtha, Oliver and Gurney, 1962; Lajtha,
Gilbert, Porteous and Alexanian, 1964; Lajtha, 1968). If, for example, the cells
of a precursor compartment were more sensitive to the agent or recovered more
slowly after depletion than the cells of the compartment being studied, the latter
could be depleted far more by a prolonged dose regimen than would be suggested
by consideration of its dose-response curve and recuperative properties after single
doses of agent.

Considerable complexity would also be introduced by the existence of a non-
growing fraction, such as occurs in many tumours (Mendelsohn, 1963). Inhomo-
geneity might also arise from the presence of a small fraction of proliferating cells
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relatively resistant to the agent, as is suggested, for example, by the tendency of
the dose-response curves for methotrexate and thioguanine to flatten out at high
doses (Berenbaum, 1969, Fig. 2). If this resistance is characteristic of a particular
phase of the cell cycle it would probably not materially affect the considerations
advanced here, provided the doses used were in the range where the dose-response
curve is straight and the dosage interval was not in phase with the cell cycle
(Merkle, Stuart and Gofman, 1965; Stuart and Merkle, 1965). If, on the other
hand, high resistance were a genetic property of a particular fraction of the popula-
tion, then the properties of the population would change during treatment, and
dose-response curves based on experiments with single doses would become
progressively less valid with increasing length of treatment.

There is evidently a need for a more sophisticated mathematical analysis than
that outlined in this paper, and for more comprehensive experimental data on
which to base it. Nevertheless, the simplified approach adopted here suggests that
manipulations of the therapeutic schedule may influence not only the magnitude
and speed of the effect of an agent on particular cell types but also its selectivity
of action for these various types. The clinical relevance of this conclusion
requires no emphasizing.

These considerations also underline the importance of the dose regimen in the
clinical trial of antitumour and immunosuppressive agents. The examples
shown in Fig. 5 and 6 suggest that some drugs rejected after poor performance in
clinical trials might have appeared in a different light had different dose schedules
been used. The practical problems involved in the satisfactory trial of a new
agent are so large, however, that the thorough testing of a variety of dose schedules
for each agent is hardly practicable with present resources. The alternative
approach, which would supplement information obtained clinically, entails the
intensive study of those cell characteristics responsible for selectivity of drug
action, the determination of dose-response curves for cell types of clinical impor-
tance, and the measurement of other factors (generation times, growth and
differentiating fractions, parameters of homoeostasis, etc.) that influence the
overall effect of drugs on particular tissues. The difficulties of this approach are
formidable, but the possibility of rationally designing therapeutic regimens of
relatively high selectivity against neoplastic or immunologically active cells is
sufficient inducement to attempt this task.

SUMMARY

In a simplified model, the fate of growing or steady-state cell populations
under a regimen of repeated doses of a cell-sterilizing agent may be predicted
from equations containing two types of parameter-(1) those determined by the
dose-response curve and the proliferative or recuperative characteristics of the cell
populations and (2) those determined by the therapeutic regimen (i.e. size, frequency
andnumber ofdoses). Ifthe values ofthe former are known, those ofthe latter may
be adjusted to ensure either destruction or survival of the cell population.
Different cell types show different dose-response curves to the same agent and
have different proliferative or recuperative rates. Regimens may therefore be
chosen that selectively damage one cell population while allowing another in the
same individual to survive. The model suggests that, in some circumstances, the
fates of two cell populations in the same individual may be reversed by manipu-
lating the therapeutic regimen.

444



DOSE RESPONSE CURVES AND CANCER CHEMOTHERAPY 445

I am indebted to the Leukaemia Research Fund, the Medical Research Council
and the British Empire Cancer Campaign for Research for generous support.

REFERENCES
BERENBAUM, M. C.-(1969) Br. J. Cancer, 23, 426.
BRUCE, W. R. AND MEEKER, B. E.-(1967) J. natn. Cancer Inst., 38, 401.
BRUCE, W. R., MEEKER, B. E. AND VALERIOTE F. A.-(1966) J. natn. Cancer Inst. 37,

233.
BUSH, W. R. AND BRUCE, W. R.-(1964) Raiat. Res., 21, 612.
KENNEDY, J. C., TILL, J. E., SIMINOVITCH, L. AND MCCULLOCH, E. A.-(1965) J.

Immunol., 94, 715.
LAIRD, A. K.-(1964) Br. J. Cancer, 18, 490.-(1965) Br. J. Cancer, 19, 278.
LAJTHA, L. G.-(1968) Radiat. Res., 33, 659.
LAJTHA, L. G., OLIVER, R. AND GURNEY, C. W.-(1962) Br. J. Haemat., 8, 442.
LAJTHA, L. G., GILBERT, C. W., PORTEOUS, D. D. AND ALEXANIAN, R.-(1964) Ann.

N.Y. Acad. Sci., 113, 742.
MENDELSOHN, M. L.-(1963) in 'Cell proliferation'. Edited by L. F. Lamerton and

R. J. M. Fry. Oxford (Blackwell).
MERKLE, T. G., STUART, R. N. AND GOFMAN, J. W.-(1965) 'The calculation of treat-

ment schedules for cancer chemotherapy' UCRL-14505.
SACHER, G. A. AND TRUCCO, E.-(1966) Radiat. Res., 29, 236.
SKIPPER, H. E.-(1967) Cancer Res., 27, 2636.
SKIPPER, H. E., SCHABEL, F. M. JR. AND WILcox, W. S.-(1964) Cancer Chemother.

Rep., 35, l.-(1965) Cancer Chemother. Rep., 45, 5.
STUART, R. N. AND MERKLE, T. C.-(1965) 'The calculation of treatment schedules for

cancer chemotherapy-Part II' UCRL-14505.


