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Asthma is characterized by recurrent episodes of wheezing, shortness of breath, chest tightness, and coughing. It is usually caused
by a combination of complex and incompletely understood environmental and genetic interactions. We obtained gene expression
data with high-throughput screening and identified biomarkers of children’s asthma using bioinformatics tools. Next, we explained
the pathogenesis of children’s asthma from the perspective of gene regulatory networks: DAVID was applied to perform Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enriching analysis for the top 3000 pairs of relationships in differentially
regulatory network. Finally, we found thatHAND1, PTK1, NFKB1, ZIC3, STAT6, E2F1, PELP1, USF2, andCBFBmay play important
roles in children’s asthma initiation. On account of regulatory impact factor (RIF) score, HAND1, PTK7, and ZIC3were the potential
asthma-related factors. Our study provided some foundations of a strategy for biomarker discovery despite a poor understanding
of the mechanisms underlying children’s asthma.

1. Introduction

Asthma is the most common chronic inflammatory dis-
ease of the trachea in childhood characterized by variable
and recurring symptoms, reversible airflow obstruction, and
bronchospasm [1]. There are significant variations in preva-
lence in different regions and ethnics; generally, a developed
country has a higher prevalence than a developing country.
Asthma prevalence is rising worldwide now, and according
to the report of International Children’s Asthma and Allergic
Organization (ISAAC), the incidence rate of British children’s
asthma rose from 10.2% at 2000 to 20.9% at 2011 [2]; the
prevalence in American children below 17 years increased
from 3.2% at 1999 to 5.7% at 2010 [3]. In China, the incidence
rate of urban children aged 0–14 increased from 0.5% at 1998
to 4.33% at 2008 [4]. Thus, there is an urgent need to identify
the underlying basis of asthma.

Asthma is thought to be caused by a combination of
genetic and environmental factors [5], which influence both
the severity and responsiveness of asthma in treatment [6].
Smoking during pregnancy and after delivery [7], low air
quality, and exposure to indoor allergens [8], such as dust
mites, cockroaches, animal dander, and mold, have been
found to be associated with children’s asthma. Asthma is

believed to have a strong genetic background, and hundreds
of genes have been identified to be related with asthma,
including GSTM1, IL10, CTLA-4, SPINK5, LTC4S, IL4R,
and ADAM33 [9]. Some genetic variants may cause asthma
only when they are combined with specific environmental
exposures [10], for example, a specific single nucleotide
polymorphism in theCD14 region and exposure to endotoxin
[11]. Understanding the genetic basis of asthma susceptibility
will allow disease prediction and risk stratification [12].

Bioinformatics plays an important role in addressing
the complexity of the underlying genetic basis of common
human disease [13]. Microarray data analysis enables the
identification of disease marker genes and gene regulatory
networks [14, 15]. In this study, we obtained the gene expres-
sion profiles using high-throughput technology and screened
differentially coexpressed gene pairs. The availability and
integration of high-throughput gene expression data with
computational bioinformatics analysis may shed new lights
into molecular biomarker identification of children’s asthma.

2. Materials and Methods

2.1. Data Source and Preprocessing. The expression profile of
GSE18965 [16] was downloaded fromGene ExpressionOmn-
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ibus-GEO database (http://www.ncbi.nlm.nih.gov/geo/) of
NCBI (National Center of Biotechnology Information) based
on GPL96 [HG-U133 Plus 2] Affymetrix Human Genome
U133 Plus 2.0 Array. Seven normal tissues’ microarray and
nine children’s asthma tissues’ microarray were available.
Then, probes in expression profile were transformed to
corresponding symbols based on GPL96 platform. For genes
related to many probes, the average expression value was
calculated as the only symbol, and there were 13,046 gene
symbols after transformation. Next, limma package in R
language was used to screen the differentially expressed genes
(DEGs), and false discovery rate (FDR) < 0.05 was set as the
threshold.

2.2. Screening of Transcriptional Regulatory Relationships.
According to the central dogma, approaches resulting in gene
expression differences are varied, but on transcription level,
regulatory molecules are the decisive factors, for example,
transcription factors (TFs), which regulate the turn on and
off of genes. Firstly, human h18 transcription factor binding
sites data and genetic coordinate position information were
downloaded from the UCSC database [17]. Secondly, we
searched transcription factor binding sites between the range
of 1 kb upstream and 0.5 kb downstream in the transcription
start site of each gene, and the found TF was considered to be
associated with this gene, and finally we got 214,608 pairs of
gene regulatory relationships on 216 TFs for 16,863 genes.

2.3. Differentially Coexpressed Analysis [18]. Differentially
coexpressed analysis determines the discrepancy in coex-
pression of gene pairs or gene-TF pairs under different
conditions [19]. Previous differentially coexpressed analyses
have revealed many insightful biological hypotheses. In this
study, for any pair of genes or pair of gene versus TF (𝑋, 𝑌),
the Pearson correlation coefficient (PCC) in normal tissues
(P-normal) and tumor tissues (P-tumor) was calculated, and
then their absolute difference was obtained. Finally, the pairs
with absolute difference >1 were selected as differentially
coexpressed pairs. There were two kinds of coexpression
relationships: negative, when P-normal ∈ [−1, 0]; positive,
when P-tumor ∈ [−1, 0] and vice versa. Consider

Diff = abs (𝑟1
𝑖𝑗
− 𝑟2
𝑖𝑗
) . (1)

In this term, 𝑟1
𝑖𝑗
represents PCC of gene/TF 𝑖 and gene/TF 𝑗

at normal state; 𝑟2
𝑖𝑗
represents the PCC of gene/TF 𝑖 and 𝑗 at

tumor state.

2.4. Regulatory Impact Factors (RIF) Calculation. Regulatory
impact factor (RIF) appears to be a robust and valuable
methodology to identify the regulators with the highest
contribution to differential gene expression in two biological
conditions. It is a metric given to each TF that combines
the expression values of target genes and the coexpression
values of TFs and the target genes. The measures of RIF are
computed as follows [20]:
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Table 1: Some differentially coexpressed gene pairs.

Gene1 Gene2 Diff.
ATF6 AACS 1.198925
MYCN AAGAB 1.031
DDIT3 AAMP 1.237609
RREB1 AAMP 1.005331
STAT2 AAMP 1.085082
STAT3 AAMP 1.268363
STAT4 AAMP 1.067587
CBFB AASS 1.027421
NFYA AASS 1.028667
ARNT AATF 1.000478

where 𝑛de is the number of DEGs; 𝑒1
𝑗
and 𝑒2

𝑗
represent

the expression values of the DEG 𝑗 in conditions 1 and 2,
respectively; 𝑟1

𝑖𝑗
and 𝑟2

𝑖𝑗
represent the coexpression corre-

lation between the TF 𝑖 and the DEG 𝑗 in conditions 1 and 2,
respectively.

2.5. Pathway Enrichment Analysis. In order to facilitate the
functional annotation and analysis of large lists of genes
in the regulatory network, we inputted all the DEGs into
DAVID for KEGG term enrichment analysis. The DAVID
enriches canonical pathways by calculating the association
between a given set of genes and a canonical pathway using
hypergeometric test [21]. A 𝑃 value <0.05 was the screening
criterion.

3. Results

3.1. Screening of Differentially Coexpressed Gene Pairs. If the
expressions of two genes or gene versus TF in a series of sam-
ples are similar, they are called coexpression pairs. If the pairs
are coexpressed in conditionA, but not in condition B, or vice
versa, then they are called the differentially coexpressed genes
pairs. We calculated the PCCs between two genes and gene
versus TF with their expression profile data at normal and
tumor stages and then used formula (1) to screen differentially
coexpressed gene pairs. A total of 9,775,369 differentially
coexpressed genes pairs were obtained (Table 1).

3.2. Construction and Analysis of Differentially Regula-
tory Network. Transcriptional regulation pairs were selected
based on the selected differentially coexpressed gene pairs
and then were used for the construction of differentially reg-
ulatory network. The transcriptional regulation relationship
in the network under disease states was different from that
under normal state, which may possess a significant impact
on the incidence of disease. The constructed differentially
regulatory network was comprised of 10,899 pairs of regula-
tion relationships, including 133 TFs and 5,083 target genes.
The top 25% relationships were visualized using Cytoscape
software (Figure 1).

3.3. Impact Analysis of Transcription Factor. The above net-
work generated vast amounts of data. In order to focus on
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Table 2: Top 10 TFs in differentially regulatory network.

TF RIF score RIF rank
HAND1 3.675835 1
PTK7 3.646741 2
NFKB1 3.341134 3
ZIC3 3.321142 4
STAT6 3.301687 5
E2F1 3.206273 6
PELP1 3.051003 7
USF2 3.037221 8
CBFB 2.996446 9
SOX9 2.968472 10
FOXO4 2.837118 11
RIF: regulatory impact factors.

Figure 1: Differentially regulatory network (showing the top 25%
relationships). Green nodes represent TFs, pink nodes represent tar-
get genes, and lines represent the regulation relationships between
them.

the most meaningful information, we evaluated the impact
of TFs by calculating their RIF. The top 10 ranked TFs with
higher RIF were HAND1, PTK1, NFKB1, ZIC3, STAT6, E2F1,
PELP1, USF2, CBFB, SOX9, and FOXO4 (Table 2).

By searching PubMed, NFKB1 [22, 23], STAT6 [24], E2F1
[25], USF1 [26], and CBFB [21] were the verified asthma-
related TFs, while NFKB1 [22, 23] and STAT6 [24] were the
newly discovered asthma-related genes in 2013. In addition,
HAND1, PTK7, and ZIC3 were found to be potential asthma-
related factors considering their TIF values.

3.4. Enrichment of KEGG Pathway. We used DAVID to
perform KEGG pathway enriching analysis for the top 3000
pairs of relationships in differentially regulatory network. As
shown in Table 3, the differentially regulatory network was
mainly enriched in some important pathways, such as cancer
pathway, Wnt, and MAPK pathway.

4. Discussion

Molecular biomarkers are useful in improving diagnostic and
prediction accuracy in clinic and treatment efficacy. Since
microarray can interrogate expression levels of thousands of
genes in human genome simultaneously, it has been widely
used in the discovery of disease biomarkers [27–29]. In this
work, we analyzed gene expression data with computational
methods with the aim of uncovering biomarkers that were
potentially dysregulated in children’s asthma. We identified
a total of 9,775,369 differentially coexpressed gene pairs
between normal tissue microarray and children’s asthma
tissue microarray. After regulatory network construction and
RIF analysis, we found that the TFs: HAND1, PTK1, NFKB1,
ZIC3, STAT6, E2F1, PELP1, USF2, CBFB, SOX9, and FOXO4
may play important roles in children’s asthma initiation.
On account of RIF score, HAND1, PTK7, and ZIC3 were
considered as potential asthma-related factors.

Heart and neural crest derivatives-expressed protein 1
(HAND 1) is a protein encoded by the HAND1 gene in
human [30]. The protein encoded by this gene belongs to the
basic helix-loop-helix family of TFs. A recent study provides
evidence that HAND1 is indeed an important regulator of
the interventricular boundary [31], but the role of HAND 1
in asthma has not been reported. Tyrosine-protein kinase-
like 7 (PTK7) is a human enzyme encoded by the PTK7
gene [32]. Receptor protein tyrosine kinases could transduce
extracellular signals across the cell membrane, and PTK7
is thought to mediate signals by recruiting other signaling
molecules as defective receptor tyrosine kinases [33]. Our
research showed that PTK7 gene was association with the
occurrence of asthma in children. Zinc finger protein ZIC 3
is a protein encoded by the ZIC3 gene [34], which encodes a
member of the ZIC family of C2H2-type zinc finger proteins.
Our results highlight a role of Zic3 in the maintenance of
asthma. However, further experimental verification is needed
on the possible roles of HAND1, PTK7, and ZIC3 in asthma
proposed in this study.

NFKB1, STAT6, and E2F1 were the verified asthma-
related TFs in PubMed, and they were discovered to exert
regulatory impact in this study. NFKB1 (nuclear factor of
kappa light polypeptide gene enhancer in B cells 1), which
located within the linkage peak, encodes the p105/p50 sub-
unit of the NF𝜅B family of proteins [35]. By detecting the
RNA expression in buccal mucosa samples of patients with
asthma, NFKB1 was found to be differentially expressed [23].
NFKBIA/I𝜅B𝛼 is identified to be a central hub in transcrip-
tional responses of prevalent childhood lung diseases, includ-
ing asthma [22]. STAT6 gene (human signal transducer and
activator of transcription 6) is considered as one of the most
promising candidate genes for asthma [36]. Genomewide
association studies have revealed that special polymorphism
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Table 3: Enriched KEGG pathways of differentially regulatory network.

Category Term FDR (%)
KEGG PATHWAY hsa05200: pathway in cancer 3.26𝐸 − 07

KEGG PATHWAY hsa04010: MAPK signaling pathway 0.001322
KEGG PATHWAY hsa05221: acute myeloid leukemia 0.040656
KEGG PATHWAY hsa04520: adherens junction 0.062934
KEGG PATHWAY hsa04310: Wnt signaling pathway 0.092027
KEGG PATHWAY hsa05215: prostate cancer 0.120383
KEGG PATHWAY hsa05220: chronic myeloid leukemia 0.326993
KEGG PATHWAY hsa05210: colorectal cancer 0.77687
KEGG PATHWAY hsa04060: cytokine-cytokine receptor interaction 1.783078
KEGG PATHWAY hsa04330: Notch signaling pathway 2.388182
KEGG PATHWAY hsa04062: chemokine signaling pathway 2.592513
KEGG PATHWAY hsa04630: Jak-STAT signaling pathway 2.884224
KEGG PATHWAY hsa04350: TGF-beta signaling pathway 3.093238
KEGG PATHWAY hsa04720: long-term potentiation 3.63158
KEGG PATHWAY hsa04960: aldosterone-regulated sodium reabsorption 4.945282
FDR: false discovery rate.

haplotype variants and epigeneticmodifications of STAT6 are
associated with asthma in childhood [24]. The transcription
factor E2F1 is an additional target of c-Myc promoting cell
cycle progression [37]. E2F1 was differentially expressed in
asthma-diagnosed human donor lung tissues compared with
normal bronchial epithelial cells [38].

During cellular processes, genes interact with each other;
thus, disease-related genes may form differential coexpres-
sion patterns with other genes in different conditions. Most
of the previous analysis applied a single gene differential
expression method, whereas we applied differential coex-
pression analysis. The differential coexpression approach
provides a FDR controlled list of interesting gene sets, with
no requirement that genes be highly correlated in at least
one biological condition, and it is now readily applied to
data from individual andmultiple experiments. Nevertheless,
the differential coexpression gene pairs identified using the
computational bioinformatics method should be further
confirmed by in vitro analysis with normal controls.

In conclusion, our analysis identified 9,775,369 differen-
tially coexpressed genes pairs associated with asthma initi-
ation using a computational bioinformatics analysis of gene
expression. We also uncovered a network of transcription
factors that putatively contribute to the dysregulation of
several genes in asthma. In the differentially regulatory
network, transcription factors HAND1, PTK1, NFKB1, ZIC3,
STAT6, E2F1, PELP1, USF2, CBFB, SOX9, and FOXO4 were
found to have altered expression levels in asthma patients.
We suggested that HAND1, PTK7, and ZIC3 may be used
as biomarkers for asthma; however, more work is needed to
validate our result.
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