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Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of the pancreatic islet beta
cells. Multiple genetic loci contribute to disease susceptibility in humans, with the most responsible locus being the major
histocompatibility complex (MHC). Certain MHC alleles are predisposing, including the common HLA-A∗02:01. After the MHC,
the locus conferring the strongest susceptibility to T1D is the regulatory region of the insulin gene, and alleles associated with
reduced thymic insulin expression are predisposing. Mice express two insulin genes, Ins1 and Ins2. While both are expressed in
beta cells, only Ins2 is expressed in the thymus. We have developed an HLA-A∗02:01-transgenic NOD-based T1D model that is
heterozygous for a functional Ins2 gene. These mice exhibit reduced thymic insulin expression and accelerated disease in both
genders. Immune cell populations are not grossly altered, and the mice exhibit typical signs of islet autoimmunity, including CD8
T cell responses to beta cell peptides also targeted in HLA-A∗02:01-positive type 1 diabetes patients. This model should find utility
as a tool to uncover the mechanisms underlying the association between reduced thymic insulin expression and T1D in humans
and aid in preclinical studies to evaluate insulin-targeted immunotherapies for the disease.

1. Introduction

Type 1 diabetes (T1D) is an autoimmunedisease characterized
by T cell-mediated destruction of the pancreatic islet beta
cells. Multiple genetic loci contribute to T1D susceptibility
in humans, with the most responsible locus being the major
histocompatibility complex (MHC) [1]. The ability of certain
class II MHC genes to influence disease risk has long
been appreciated [2, 3]. Multiple studies have also revealed
an association with certain class I MHC alleles, including
the common HLA-A∗02:01 [4–13]. These findings are not
surprising, given that CD4 and CD8 T cell responses to a
variety of beta cell antigens, including insulin, are observed
in T1D patients [14].

After the MHC, the locus that confers the strongest sus-
ceptibility toT1D in humans is the variable number of tandem
repeats (VNTR) regulatory region of the insulin gene [1, 15].
VNTR alleles with the smallest number of repeats, designated

as class I, predispose to T1D [16, 17], while the longer class
III alleles have a dominant protective effect [15, 18]. Class
III VNTR alleles are associated with thymic insulin RNA
levels that are increased two- to threefold compared to class
I alleles [19], leading to the hypothesis that impaired negative
selection of insulin-specific T cells in individuals with class I
VNTR alleles explains their predisposition to T1D [19, 20].
While findings from a single human study are consistent
with this idea [21], the development of a mouse model for
T1D that incorporates the reduced, but not abolished, thymic
insulin expression observed in patients would allow for more
rigorous future testing of this hypothesis.

The NOD mouse is the primary rodent model used for
studying T1D [22]. Unlike humans, mice express two insulin
genes, Ins1 and Ins2. While both genes are expressed in
beta cells [23], Ins2 expression predominates in the thymus
[24–27], with little [24] to no [25–27] detectable thymic
Ins1 expression. Ins2-deficient (Ins2KO) NOD mice develop
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diabetes at an accelerated rate [28–30], as do HLA-A∗02:01-
transgenic Ins2KO NOD mice [28], and both Ins2-deficient
strains have increased insulin-specific islet-infiltrating CD8
T cells compared to their wild-type (WT) counterparts [28].
While these Ins2KO mouse strains highlight the importance
of thymic insulin expression, they do not accurately repre-
sent a human patient, where thymic insulin expression is
diminished but still present [19, 20]. Here we have developed
an HLA-A∗02:01-transgenic NOD-based T1D model that is
heterozygous (het) for the Ins2KO allele, resulting in thymic
insulin expression that is decreased but not eliminated.
The mice develop accelerated disease compared to Ins2WT

mice, and this is true regardless of gender. Immune cell
populations are not grossly altered, and the mice exhibit
typical signs of islet autoimmunity, including CD8 T cell
responses to beta cell peptides also targeted in HLA-A∗02:01-
positive T1D patients. This model should find utility as a
tool to uncover the mechanisms underlying the association
between class I VNTR alleles and T1D in humans. It should
also aid in preclinical studies to evaluate insulin-targeted
immunotherapies for the disease.

2. Materials and Methods

2.1.Mice. NOD.𝛽
2
mKO.HHDmice [31] transgenically express

a single-chain chimeric HLA-A∗02:01 molecule in which
human 𝛽2-microglobulin (𝛽

2
m) is covalently linked to the 𝛼1

and 𝛼2 domains of HLA-A∗02:01. The 𝛼3, transmembrane,
and cytoplasmic portions of the molecule are derived from
H-2Db. Mouse class I MHC molecules are not expressed in
these mice due to the murine 𝛽

2
m deficiency. NOD.Ins2KO

mice have been described [29]. The two strains were inter-
crossed to transfer the Ins2KO allele to theNOD.𝛽

2
mKO.HHD

strain. The resulting progeny were bred as appropriate to
obtain Ins2WT and Ins2het NOD.𝛽

2
mKO.HHD mice for our

studies. Female 𝛽
2
mKO mice breed poorly in our hands

and so were rarely used for this purpose. Similarly, NOD
and NOD.Ins2KO mice were intercrossed and the result-
ing progeny bred as appropriate to obtain Ins2WT and
Ins2het NOD mice. The HHD transgene and the WT and
KO 𝛽

2
m and Ins2 alleles were identified by PCR using

the following primer pairs: HHD, 5-CTTCATCGCAGT-
GGGCTAC-3 and 5-CGGTGAGTCTGTGAGTGGG-3;
𝛽
2
MWT, 5-GAAACCCCTCAAATTCAAGTATACTCA-3

and 5-GACGGTCTTGGGCTCGGCCATACT-3; 𝛽
2
mKO,

5-GAAACCCCTCAAATTCAAGTATACTCA-3 and 5-
TCGAATTCGCCAATGACAAGACGCT-3; Ins2WT, 5-
GGCAGAGAGGAGGTGCTTTG-3 and 5-AGAAAA-
CCACCAGGGTAGTTAGC-3; Ins2KO, 5-GGCAGAGAG-
GAGGTGCTTTG-3 and 5-ATTGACCGTAATGGGATA-
GG-3. All animal experiments were approved by the Insti-
tutional Animal Care and Use Committee of Albert Einstein
College of Medicine.

2.2. Measurement of Thymic Ins2 RNA. Female Ins2WT and
Ins2het NOD.𝛽2mKO.HHD mice (four each) were sacrificed
and thymus was harvested. Total thymic RNA was isolated

using theRNeasyMidiKit (Qiagen,Valencia, CA) and treated
with DNase I (Qiagen) to eliminate DNA contamination.
1.5–2.3 𝜇g of RNA was reverse-transcribed to cDNA using
random hexadeoxynucleotides and oligo dT primers (Invit-
rogen). Equal amounts of cDNA were mixed with SYBR
Green PCR Master Mix (Qiagen) and each Ins2 primer (5-
CTTCTTCTACACACCCATGTCC-3 and 5-TCTACA-
ATGCCACGCTTCTG-3) or primers for the U6 normal-
ization control (5-CTCGCTTCGGCAGCACATATACTA-
3 and 5-ACGAATTTGCGTGTCATCCTTGCG-3) and
brought to a final volume of 25𝜇L. Real-time quantitative RT-
PCRwas performed in triplicate using an iQ5 Optical System
(Bio-Rad, Hercules, CA). Amplification was carried out as
follows: a single denaturing step at 95∘C for 10min followed
by 40 cycles of 95∘C for 15 sec, 59∘C for 30 sec, and 72∘C for
30 sec, followed by a final extension step of 72∘C for 3min.
Results were analyzed using the Relative Expression Software
Tool (REST) [32, 33].

2.3. Type 1 Diabetes Assessment. Glucosuria was monitored
weekly using Diastix reagent strips (Bayer, Elkhart, IN). Mice
were considered diabetic after two consecutive positive tests,
and the date of the first positive test was recorded as the time
of onset of disease.

2.4. Flow Cytometry. Splenocytes from NOD.𝛽
2
mKO.HHD

and NOD.𝛽
2
mKO.HHD.Ins2het mice were analyzed by flow

cytometry. Cells were stained with anti-B220, anti-CD11c,
anti-CD4, and anti-CD8 (all from BD Biosciences, San
Jose, CA). In some samples, cells were stained with anti-
CD25 (BD Biosciences), fixed and permeabilized with fixa-
tion/permeabilization buffer (eBioscience, San Diego, CA),
and stained with anti-Foxp3 (eBioscience).

2.5. Pancreas Histology. To assess insulitis in female
NOD.𝛽

2
mKO.HHD and NOD.𝛽

2
mKO.HHD.Ins2het mice at 4

and 8 weeks of age, pancreata were fixed in Bouin’s solution,
embedded in paraffin, and sectioned at nonoverlapping
levels. Sections were stained with aldehyde fuchsine to
readily visualize granulated beta cells and counterstained
with hematoxylin and eosin for detection of leukocytes. Islets
were scored as previously described [34]: 0, no insulitis; 1,
local insulitis without infiltration of islet itself; 2, less than
25% infiltration; 3, 25–75% infiltration; or 4, greater than
75% infiltration. An insulitis index was calculated by adding
the scores of all islets and dividing by four times the number
of islets scored. A minimum of 20 islets per mouse were
evaluated. Diabetic mice were assigned an insulitis index of
1.

2.6. Islet Isolation and Culture of Islet-Infiltrating T Cells.
Islets were isolated from female NOD.𝛽

2
mKO.HHD.Ins2het

mice at 8 weeks of age by collagenase P perfusion of
the common bile duct as previously described [35]. Islets
were handpicked using a micromanipulator and a dissecting
microscope and up to 50 islets were transferred per well to
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Figure 1: Diabetes development in NOD.𝛽
2
mKO.HHD and NOD.𝛽

2
mKO.HHD.Ins2het mice. (a) Female and (b) male NOD.𝛽

2
mKO.HHD

(filled circles) and NOD.𝛽
2
mKO.HHD.Ins2het mice (open circles) were followed weekly for diabetes development. (a) 𝑝 = 0.0002, Mantel-

Cox. (b) 𝑝 = 0.04, Mantel-Cox.

24-well plates in 500𝜇L R-10 medium (RPMI 1640 (Invit-
rogen, Carlsbad, CA) containing 10% FBS, 1mM sodium
pyruvate, 28𝜇M 𝛽-mercaptoethanol, 1x nonessential amino
acids (Invitrogen)) with 50U/mL recombinant human IL-2
(PeproTech, Rocky Hill, NJ). Cells were cultured for 7 days at
37∘C in 5% CO

2
, at which point the majority of the cells are

expected to be CD8 T cells [35].

2.7. IFN-𝛾 ELISPOT Assay. Human HLA-A∗02:01-positive
T2 cells [36], deficient for the transporter associated with
antigen processing, were cultured at 26∘C overnight prior
to use. ELISPOT plates (Millipore MAHA S4510, Billerica,
MA) were coated with anti-mouse IFN𝛾 antibody (BD
Biosciences) and blocked with 1% bovine serum albumin
(Sigma-Aldrich, St. Louis, MO). T2 cells were plated at 2
× 104 cells/well and pulsed with 10 𝜇M of the indicated
peptides for 1 hour at 26∘C. Cultured islet-infiltrating T
cells from NOD.𝛽

2
mKO.HHD.Ins2het mice were added at 2

× 104 cells/well in 50𝜇L R-10. Cells were incubated for 40
hours at 37∘C. Wells were then washed with 0.05% Tween
20/PBS and biotinylated anti-mouse IFN𝛾 detection antibody
(BD Biosciences) was added for 2 hours at 37∘C. After
washing, streptavidin-alkaline phosphatase (Zymed Labora-
tories, Carlsbad, CA) was added and incubated for 1 hour at
37∘C. Wells were washed and spots were developed using 5-
bromo-4-chloro-3-indolyl-phosphate/nitro-blue tetrazolium
substrate (Sigma-Aldrich). Spots were counted using an auto-
mated ELISPOT reader system (Autoimmun Diagnostika,
Strassberg, Germany). Responses are reported as a stimu-
lation index, which is defined as spot number in response
to the test peptide divided by spot number in response
to an irrelevant HIV-derived HLA-A∗02:01-binding peptide
(SLYNTVATL) [37]. The cutoff for positivity is a stimulation
index greater than 2 and a test peptide spot number greater
than 5 per 1 × 105 T cells [38].

3. Results

3.1. Accelerated Diabetes Development in NOD.𝛽
2
m𝐾𝑂.HHD.

Ins2ℎ𝑒𝑡 Mice. A previous study had demonstrated that
Ins2het mice of mixed, but primarily C57BL/6, background
experience a reduction in thymic insulin expression of
approximately 40% [24]. To develop a mouse model of T1D
having reduced thymic insulin quantity, and also expressing
the human class I MHC molecule HLA-A∗02:01, we gen-
erated NOD.𝛽

2
mKO.HHD.Ins2het mice. Using quantitative

RT-PCR, we similarly found a reduction in thymic insulin
expression of 35% in female Ins2het compared to Ins2WT mice
(𝑛 = 4 mice of each genotype). Diabetes development in
NOD.𝛽

2
mKO.HHD.Ins2het and NOD.𝛽

2
mKO.HHD mice of

both genders was then compared. Both female (Figure 1(a))
and male NOD.𝛽

2
mKO.HHD.Ins2het mice (Figure 1(b))

demonstrated accelerated diabetes development compared to
their Ins2WT counterparts. Female NOD.𝛽

2
mKO.HHD.

Ins2het mice developed diabetes as early as 9 weeks of age and
all were diabetic by 27 weeks (Figure 1(a)). The first onset of
diabetes in Ins2WT female mice was at 11 weeks, and only 47%
developed diabetes by 30 weeks. As also seen in standard
NOD males [39, 40], diabetes development was slowed and
overall incidence was reduced in NOD.𝛽

2
mKO.HHD males

(Figure 1(b)) compared to females. However, Ins2het males
exhibited an earlier onset of disease compared to Ins2WT

males (10 weeks versus 17 weeks), and a larger percentage
(56% versus 24%) had developed diabetes by 30 weeks of
age (Figure 1(b)). Thus, both genders of NOD.𝛽

2
mKO.HHD.

Ins2het mice faithfully model the circumstance in humans
where reduced thymic insulin expression is predisposing to
T1D [16, 17]. Note that this is not what we observed in the
case of NOD.Ins2het mice, where both female (Figure 2(a))
and male Ins2het mice (Figure 2(b)) exhibit a diabetes profile
that is statistically indistinguishable from that of NOD mice.
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Figure 2: Diabetes development in NOD and NOD.Ins2het mice. (a) Female and (b) male NOD (filled circles) and NOD.Ins2het mice (open
circles) were followedweekly for diabetes development. (a)𝑝 = 0.63 (not significant),Mantel-Cox. (b)𝑝 = 0.19 (not significant),Mantel-Cox.

3.2. Immune Cell Populations Are Not Grossly Altered in NOD.
𝛽
2
m𝐾𝑂.HHD.Ins2ℎ𝑒𝑡 Mice. To verify that the accelerated

diabetes development observed inNOD.𝛽
2
mKO.HHD.Ins2het

mice could not be attributed to a gross alteration in immune
cell populations, we examined the splenocyte composition of
8-week-old female nondiabetic NOD.𝛽

2
mKO.HHD and

NOD.𝛽
2
mKO.HHD.Ins2het mice (Figure 3(a)). It was previ-

ously shown that NOD.𝛽
2
mKO.HHD mice have a reduced

CD8 T cell population and elevated B and CD4 T cells
compared to standard NOD mice [31]. This was also true
for NOD.𝛽

2
mKO.HHD.Ins2het mice, and no differences were

observed in any of the cell types analyzed as a percentage of
total cells. To investigate whether a reduction in regulatory
T cells (Treg) might contribute to disease pathogenesis in the
Ins2het mice, NOD.𝛽

2
mKO.HHD and NOD.𝛽

2
mKO.HHD.

Ins2het splenocytes were monitored for expression of the
characteristic Treg cell phenotype, CD4+CD25+Foxp3+. No
difference was observed in Treg cells as a percentage of CD4 T
cells (Figure 3(b)). These results indicate that the accelerated
diabetes development seen in NOD.𝛽

2
mKO.HHD.Ins2het

mice is the result of neither an altered immune cell compo-
sition nor reduced Treg cells, at least at the level investigated
here, that is, without regard to antigenic specificity.

3.3. NOD.𝛽
2
m𝐾𝑂.HHD.Ins2ℎ𝑒𝑡 Mice Exhibit Typical Signs of

Islet Autoimmunity. In mixed background mice carrying
zero, one, or two copies of the Ins2 gene, pancreatic insulin
content is indistinguishable [24]. Furthermore, Ins2KO mice
perform identically to their Ins2WT counterparts in intraperi-
toneal glucose tolerance tests [41]. Thus, we hypothesized
that the diabetes observed in NOD.𝛽

2
mKO.HHD.Ins2het

mice was of an autoimmune nature, as is the case for the
NOD.𝛽

2
mKO.HHD parent strain [31], and not a deficiency

in pancreatic insulin production due to the presence of

only one functional copy of the Ins2 gene. To verify this,
histological sections of pancreata from female mice at 4 and
8 weeks of age were examined. All mice studied exhibited
some degree of insulitis, which progressed significantly with
age (Figure 3(c)), and islets showing a wide range of immune
cell infiltration and beta cell destruction were observed
(Figure 3(c)).

We previously identified several HLA-A∗02:01-restricted
beta cell epitopes, derived from the autoantigens insulin
and islet-specific glucose-6-phosphatase catalytic subunit-
related protein (IGRP) that are recognized by islet-infiltrating
T cells from NOD.𝛽

2
mKO.HHD mice [31, 42]. To further

confirm the autoimmune nature of the diabetes observed
in NOD.𝛽

2
mKO.HHD.Ins2het mice, islets from 8-week-old

females were cultured for 7 days and T cell reactivity to the
previously identified beta cell epitopes was monitored by
IFN𝛾 ELISPOT. All mice harbored autoreactive T cells spe-
cific for at least two epitopes (Figure 3(d)), further confirming
the autoimmune nature of their disease. A subset of these
epitopes (Ins B5–14, IGRP 228–236, and IGRP 265–273) have
previously been shown to be recognized by CD8 T cells in
HLA-A∗02:01-positive T1D patients [43–46], supporting the
clinical relevance of the model.

4. Discussion

Insulin is an important autoantigen recognized by T cells
in both human T1D and the NOD mouse model of the
disease [47]. Reduced thymic insulin expression is associated
with susceptibility to T1D in patients [16, 17, 19, 20], sug-
gesting that impaired negative selection of T cells specific
for insulin is responsible for this predisposition. Here we
have developed and characterized NOD.𝛽

2
mKO.HHD.Ins2het

mice as a model of T1D that incorporates reduced thymic
insulin. We find that, as in patients, disease is accelerated
(Figure 1), and we suggest thesemice as a new diabetes model
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Figure 3: Splenocyte composition, insulitis, and autoreactive CD8 T cell specificities in NOD.𝛽
2
mKO.HHD.Ins2het mice. (a) and (b)

Splenocytes from 8-week-old female NOD.𝛽
2
mKO.HHD (filled circles) and NOD.𝛽

2
mKO.HHD.Ins2het mice (open circles) were analyzed by

flow cytometry. Each symbol represents an individual mouse. (c) Female NOD.𝛽
2
mKO.HHD (filled circles) and NOD.𝛽

2
mKO.HHD.Ins2het

mice (open circles) were sacrificed at 4 and 8 weeks of age and insulitis indices were determined as described in Materials and
Methods and plotted. Each symbol represents an individual mouse. ∗𝑝 = 0.0037 (Mann-Whitney 𝑈). Representative islets from a single
NOD.𝛽

2
mKO.HHD.Ins2het mouse are also shown. In these images, beta cells appear dark purple and are denoted by red arrows, while the

more lightly stained infiltrating immune cells are marked by black arrows. The number on each image indicates the insulitis score of the islet
shown. (d) Islet-infiltrating cells from 8-week-old female NOD.𝛽

2
mKO.HHD.Ins2het mice were tested for reactivity to the indicated HLA-

A∗02:01-restricted insulin and IGRP epitopes by IFN-𝛾 ELISPOT. Stimulation index was calculated by dividing the number of spots detected
for a given peptide by the number of spots detectedwith an irrelevantHIV-derivedHLA-A∗02:01-binding peptide. A stimulation index greater
than 2 was considered a positive response.

that can be used to better understand this phenomenon.
The NOD.𝛽

2
mKO.HHD.Ins2het mice present advantages over

other disease models that have been described for this
purpose. For example, thymic insulin expression is abol-
ished in NOD.Ins2KO and NOD.𝛽

2
mKO.HHD.Ins2KO mice,

and both exhibit accelerated T1D [28–30] and increased

insulin-specific islet-infiltrating CD8 T cells [28] when com-
pared to their Ins2WT counterparts. While these findings
suggest the importance of thymic insulin expression, Ins2KO
models do not accurately represent patients, where thymic
insulin expression is reduced, but not eliminated [19, 20].
As for NOD.Ins2het mice, in our hands neither females
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nor males show accelerated disease (Figure 2). Two ear-
lier studies of NOD.Ins2het mice also showed no effect
on disease in males [29, 30], and only one of the two
showed acceleration in females [29]. In contrast, both male
and female NOD.𝛽

2
mKO.HHD.Ins2het mice show enhanced

disease (Figure 1). Indeed, the female and male incidence
curves are nearly overlapping until 15 weeks of age (cf.
Figures 1(a) and 1(b)). Thus, future mechanistic studies could
realistically be performed using both genders. These studies
should include the quantification of insulin-specific effector
T cells and Treg and analysis of their phenotype and function.
The recently described ability to isolate insulin-specific CD4
T cells from NOD mouse strains using enrichment with
peptide/MHC tetramer reagents will facilitate this work [48].

In NODmice, establishment of immunological tolerance
to insulin can lead to prevention of T1D [49–51] and remis-
sion of established disease [52]. Because of these findings,
there is great interest in immunological interventions for
human T1D that seek to manipulate the T cell response
to insulin [53]. The NOD.𝛽

2
mKO.HHD.Ins2het mouse strain

should be considered as an additional preclinical model to
be used to evaluate such therapies, as it incorporates aspects
of the human disease that are not represented in standard
NOD mice, including reduced thymic insulin expression. In
humans, VNTR alleles associated with diminished thymic
insulin have been shown to alter the frequency and avidity of
insulin-specific T cells [21], both of which could reasonably
influence the outcome of therapies designed to manipulate
the immune response to insulin. Given that human insulin-
specific CD8 T cells have been shown to have cytotoxic
activity against islets [54], an additional advantage of the
NOD.𝛽

2
mKO.HHD.Ins2het mouse model is the expression

of the T1D-predisposing human class I MHC allele HLA-
A∗02:01 [4, 6, 8, 12], which we have shown as support-
ing the development of T cells specific for HLA-A∗02:01-
restricted insulin epitopes in these mice (Figure 3(d)). In
terms of insulin-specific CD4 T cells, the class II MHC
allele expressed in the NOD.𝛽

2
mKO.HHD.Ins2het mice is

I-Ag7, which is structurally similar to the human T1D-
predisposing HLA-DQ8 [55, 56]. Indeed, I-Ag7 and HLA-
DQ8 are capable of presenting similar peptides [57–59]. The
NOD.𝛽

2
mKO.HHD.Ins2het mouse therefore has a variety of

potential uses as a humanized model of T1D, including CD8
and CD4 T cell epitope identification, analysis of the rela-
tionship between thymic insulin expression and tolerance,
and the evaluation of antigen-specific immunotherapies,
particularly those targeting the immune response to insulin.

5. Conclusions

NOD.𝛽
2
mKO.HHD.Ins2het mice represent a model for T1D

that incorporates the reduced, but not abolished, thymic
insulin expression observed in patients. This model should
find utility in investigations to probe the mechanisms under-
lying the association between reduced thymic insulin expres-
sion and T1D in humans. It will also be an important tool for
T cell epitope discovery and for the preclinical evaluation of
insulin-targeted immunotherapies for the disease.
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