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Abstract

In the brain, synchronization among cells of an assembly is a common phenomenon, and thought to be functionally
relevant. Here we used an in vitro experimental model of cell assemblies, cortical cultures, combined with numerical
simulations of a spiking neural network (SNN) to investigate how and why spontaneous synchronization occurs. In order to
deal with excitation only, we pharmacologically blocked GABAAergic transmission using bicuculline. Synchronous events in
cortical cultures tend to involve almost every cell and to display relatively constant durations. We have thus named these
‘‘network spikes’’ (NS). The inter-NS-intervals (INSIs) proved to be a more interesting phenomenon. In most cortical cultures
NSs typically come in series or bursts (‘‘bursts of NSs’’, BNS), with short (,1 s) INSIs and separated by long silent intervals
(tens of s), which leads to bimodal INSI distributions. This suggests that a facilitating mechanism is at work, presumably
short-term synaptic facilitation, as well as two fatigue mechanisms: one with a short timescale, presumably short-term
synaptic depression, and another one with a longer timescale, presumably cellular adaptation. We thus incorporated these
three mechanisms into the SNN, which, indeed, produced realistic BNSs. Next, we systematically varied the recurrent
excitation for various adaptation timescales. Strong excitability led to frequent, quasi-periodic BNSs (CV,0), and weak
excitability led to rare BNSs, approaching a Poisson process (CV,1). Experimental cultures appear to operate within an
intermediate weakly-synchronized regime (CV,0.5), with an adaptation timescale in the 2–8 s range, and well described by
a Poisson-with-refractory-period model. Taken together, our results demonstrate that the INSI statistics are indeed
informative: they allowed us to infer the mechanisms at work, and many parameters that we cannot access experimentally.
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Introduction

It is well known that dissociated cultured neuronal networks

display spontaneous activity. This activity is not steady but shows

instead brief periods (0.1–0.2 s) during which most of the neurons

burst – a phenomenon called ‘‘network spikes’’ (NS) – separated

by almost silent intervals lasting several seconds [1–11]. Under-

standing how and why such synchronization occurs is crucial as

synchronization is assumed to play major functional roles in vivo.

NS’ time courses have been well characterized. For example, it

has been shown that typical NS’ rise time is shorter when GABAA

receptors are blocked [4]. Conversely, decay time is shorter when

blocking NMDA receptors [11]. Typical time courses also suggest

the presence of ‘‘pacemaker’’ neurons and adaptive synapses [9].

In comparison, the laws governing the inter-NS-intervals (INSIs)

are much less understood. Certain authors have suggested that the

experimentally-observed irregular NSs imply heterogeneities in

either neuron properties [12] or synaptic strengths [10]. Other

authors have focused on INSI distribution-tails, which has led to

controversial results with evidence for both scale-free distributed

INSIs [1] and narrowly-distributed INSIs [5]. However, all

authors agree that some fatigue mechanism(s) must be at work

to ‘‘quench’’ NS and to enforce a period during which subsequent

NSs are much less likely, if not impossible, to occur. Yet the nature

and timescales of these mechanisms are still under debate. In the

vast majority of simulation studies a single fatigue mechanism was

used: either cellular adaptation [2,12], or short-term synaptic

depression (STD) [6,9,10,13]. Importantly, these two mechanisms

are qualitatively different: adaptation completely prevents subse-

quent NSs, while STD only decreases their p [14] bility [14].

As we will show in this paper, it seems that realistic INSI

distributions can only be obtained by using both fatigue

mechanisms; adaptation having a much longer timescale than

STD. Furthermore, the fact that NSs typically come in series

suggests that some facilitating mechanism must be at work, most

likely short-term synaptic facilitation (STF), with a timescale that

must be longer than STD’s, but shorter than adaptation’s. We thus

simulated a spiking neural network (SNN) with these three

mechanisms, which, to our knowledge, had not been done before.

With this we were indeed able to generate realistic NSs and BNSs.
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In short, we conclude that STD is responsible for quenching NSs,

STF for promoting BNSs, and adaptation for interrupting BNSs

and for enforcing long inter-BNS-intervals (IBNSIs).

In addition, we systematically varied the SNN excitability for

several adaptation timescales. When strong, BNSs are produced

almost periodically (CV,0). When weak, BNS generation

approaches a Poisson process (CV,1). Experimental values

suggest an intermediate semi-regular regime (CV,0.5) with an

adaptation timescale in the 2–8 s range. Furthermore, BNS

generation, in both experiments and simulations, is reasonably

well described by a Poisson-with-refractory-period model, in

agreement with previous results [2]. The refractory period lasts

about four times as long as the adaptation timescale.

INSIs are thus indeed informative: they allow for both the

identification of the mechanisms at work and for the inference of a

number of variables which we are unable to access experimentally.

Materials and Methods

Cell preparation
Cortical neurons were obtained from newborn rats (Sprague-

Dawley) within 24h after birth using mechanical and enzymatic

procedures described in earlier studies [15]. Rats were killed by

CO2 inhalation according to protocols approved by the National

Institutes of Health. The protocol was approved by the Inspection

Committee on the Constitution of the Animal Experimentation at

the Technion, approval number IL-099-08-10. The neurons were

pre-treated by coating with PEI and then plated onto substrate-

integrated multi-electrode arrays, and allowed to develop func-

tionally and structurally mature networks over a time period of 2–

3 wk. The number of neurons in a typical network is of the order

of 1,300,000, covering an area of 380 mm2. The preparations

were bathed in MEM (Sigma-Aldrich), and supplemented with

heat-inactivated horse serum (5%), glutamine (0.5 mM), glucose

(20 mM), and gentamycin (10 mg/ml). They were then maintained

at 37uC, 5% CO2-95% air in an incubator and during the

recording phases. An array of 60 Ti/Au/TiN extracellular

electrodes, 30 mm in diameter and spaced 500 mm from each

other [MultiChannelSystems (MCS), Reutlingen, Germany], was

used (see Fig. 1a). The insulation layer (silicon nitride) was

pretreated with polyethyleneimine (Sigma; 0.01% in 0.1 M borate

buffer solution).

Electrophysiological recordings
Multi-unit activity (MUA) was recorded using a commercial

amplifier (MEA-1060-inv-BC; MCS, Reutlingen, Germany) with

frequency limits of 150–3,000 Hz and a gain of X1,024. Data were

digitized using a data acquisition board (PD2-MF-64–3M/12H;

UEI, Walpole, MA). Each channel was sampled at a frequency of

16 k samples/s. Data processing was performed using a Simulink-

(The Mathworks, Natick, MA, USA) based xPC target application

(see ref. [16] for details). We added 6 mM bicuculline–methiodide

to the bathing solution, and given that the dissociation constant is

around 5 mM [17] this was assumed to block most of the inhibitory

transmission.We used a total of seven recordings, each one

corresponding to a different culture: one 2h-recording, four 1h-

recordings, two 1/2h- recordings. Ages ranged from 14 to 35 days

in vitro (DIV). Spike sorting was not attempted.

Neuron model
The network consists in NE~800 excitatory neurons. Connec-

tivity is full. We used conductance-based leaky integrate and fire

(LIF) neurons. Their membrane potential V obeys the following

Langevin equation:

Cm
dV

dt
~{gm V{VLð Þ{IsynzIAHPzs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gmCm

p
j, ð1Þ

Where gm~1=Rm is the membrane leak conductance, Cm its

capacitance, VL is the resting potential, Isyn is the synaptic current

(described in the next section), IAHP is the After-HyperPolarization

adapting current (described in the Adaptation section), j is a

Gaussian white noise (with Sj tð ÞT~0 and Sx tð Þx sð ÞT~d t{sð Þ),
and s is the standard deviation of the resulting noise in the

membrane potential. The membrane time constant is defined by

tm~Cm=gm. When the membrane potential reaches the threshold

Vthr the neuron generates a spike, which is then transmitted to

other neurons. Next, the membrane potential is instantaneously

reset to Vreset and is maintained there for a refractory time tref ,

during which the neuron is unable to produce further spikes (see

Table 1 for parameter values).

Synapse model
Spikes arriving at a given neural synapse induce post-synaptic

excitatory potentials (EPSP), essentially given by a low-pass

filtering formed through the synaptic receptors. In our case, the

total synaptic current is given by the sum of glutamatergic AMPA

(IAMPA) and NMDA (INMDA) recurrent excitatory currents:

Isyn~IAMPAzINMDA, ð2Þ

where:

IAMPA tð Þ~gAMPA V tð Þ{VEð Þ
PNE

j~1

wjs
AMPA
j tð Þ, ð3Þ
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Figure 1. Spontaneous activity in neuronal cultures. (a) Cortical network on substrate-embedded multielectrode array. The dark circle is a 30-
mm-diameter electrode. Figure is modified from ref. [4]. (b) Raster plot showing the spikes recorded at each of the 60 electrodes (black dots) as a
function of time. The gray line shows the mean firing rate over 50 ms-time bins. NSs are all-or-none events, and thus easy to detect.
doi:10.1371/journal.pone.0075824.g001
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INMDA tð Þ~ gNMDA V tð Þ{VEð Þ
1zce{bV tð Þ

XNE

j~1

wjs
NMDA
j tð Þ, ð4Þ

Here gAMPA and gNMDA are the synaptic conductances, and VE

the excitatory reversal potentials. The dimensionless parameters

wj of the connections are the synaptic weights (subject to short-

term plasticity, see Eq. 11). The NMDA currents are voltage-

dependent and they are modulated by intracellular magnesium

concentration c. The gating variables si
j tð Þ are the fractions of

open channels of neurons, and are given by:

dsAMPA
j tð Þ

dt
~{

sAMPA
j tð Þ
tAMPA

z
X

k

d t{tk
j {D

� �
, ð5Þ

dsNMDA
j tð Þ

dt
~{

sNMDA
j tð Þ

tNMDA,decay
zaxNMDA

j tð Þ 1{sNMDA
j tð Þ

� �
, ð6Þ

dxNMDA
j tð Þ

dt
~{

xNMDA
j tð Þ

tNMDA,rise

z
X

k

d t{tk
j {D

� �
ð7Þ

Here xNMDA
j is an auxiliary gating variable for NMDA, and a is a

multiplicative constant. The sums over the index k represent all

the spikes emitted by the presynaptic neuron j (at times tk
j ). In

Equations (5-7), tNMDA,rise and tNMDA,decay are the rise and decay

times for the NMDA synapses, and tAMPA the decay times for

AMPA synapses. The AMPA synapse rise time is neglected

because it is very short (, 1 ms). D is a homogeneous conduction

delay. The values of the constant parameters and default values of

the free parameters used in the simulations are displayed in

Table 1. Figure 2 illustrates the different time-courses of NMDA

and AMPA synaptic currents and the resulting EPSP.

Adaptation model
A spike-frequency adapting mechanism is taken into account. It

is implemented in the network by including an additional leakage

after-hyperpolarization current IAHP into the dynamical equation

of the membrane potential of each neuron, given by the following

equation:

IAHP tð Þ~{ga V tð Þ{Vað Þ ð8Þ

where Va is the reversal potential and ga tð Þ the effective additional

leak conductance.

ga tð Þ is initially set to 0. Between spikes, it is modeled as a leaky

integrator with a decay time constant ta:

ta
dga

dt
~{ga: ð9Þ

If V tð Þ~Vthr, a spike is emitted and

V?Vthr

ga?gaza

�
ð10Þ

This adapting current may correspond to slow calcium- and

sodium-activated potassium currents, but also to other fatigue

mechanisms. ta is the apparent recovery timescale of all these

combined mechanisms, which, as we will see, may vary from one

culture to another.

Short-term plasticity model
All synapses are modulated by short-term plasticity (STP). The

phenomenological model proposed in ref. [18] was used. It is

based on the concept of the utilization of synaptic efficacy u, of

which only a fraction x is available:

0vxjv1

Uvujv1

wj~uj
:xj
:W0

8><
>: : ð11Þ

They obey a differential equation:

dxj

dt
~

1{xj

tD
{uj

:xj
:
X

k

d t{tk
j {D

� �
Depressionð Þ

duj

dt
~

U{uj

tF
zU: 1{uj

� �
:
X

k

d t{tk
j {D

� �
Facilitationð Þ

8>>><
>>>:

:ð12Þ

In other words, for each presynaptic spike:

u is increased by U 1{uð Þ
x is multiplied by 1{uð Þ.
Between presynaptic spikes:

x relaxes towards 1 with time constant tD

u relaxes towards U with time constant tF

Numerical parameters
Table 1 gathers the neuronal parameters taken from ref. [19].

An additional parameter d allows us to modify the ratio between

AMPA and NMDA currents [20]:

gNMDA? 1{dð ÞgNMDA

gAMPA? 1z10dð ÞgAMPA

�

The factor 10 results from the fact that near the firing threshold

the ratio of NMDA to AMPA components becomes 10 to 1 in

terms of charge entry [19]. We used d~0:08, as in ref. [21].

Table 1. Neuronal and synaptic parameters.

Excitatory Neurons Synapses

NE 800 neurons VE 0 mV

Cm 0.5 nF VI 270 mV

gm 25 nS tAMPA 2 ms

VL 270 mV tNMDA,rise 2 ms

Vthr 250 mV tNMDA,decay 100 ms

Vreset 255 mV tGABA 10 ms

tref 2 ms a 0.5 kHz

gAMPA,rec 0.104 nS b 0.062

gNMDA,rec 0.327 nS c 0.28

gGABA 1.250 nS

doi:10.1371/journal.pone.0075824.t001
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For the Gaussian white noise, we used s~6:5mV.

For conduction delays (homogeneous), we used D~3ms (which

is in the biological range, see ref. [22]).

For STP, we used tD~800ms (in the biological range, see

[9,13,14,18,23]), tF~1600ms, and U~0:025 (both in the

biological range, see ref. [18]). As we will see in the Result

section, the mechanism that we propose for BNS requires that

tDvtF, as found in ref. [18]. We note, however, that other groups

have reported tDwtF (see ref.[24] for a review).

For adaptation, we used (unless said otherwise): ta~4s,

a~0:145nS, Va~{80mV.

Simulations
We developed custom python code for the Brian clock-based

simulator [25]. The differential equations were integrated

numerically (Euler method) using a 25ms-time step. The code

has been made available on ModelDB (http://senselab.med.yale.

edu/modeldb/ShowModel.asp?model = 150437).

Detecting NS
In both the cultures and the model, NSs have an all-or-none

nature and are thus easy to detect. Therefore, we just counted the

spikes recorded at all electrodes in 50ms-time bins and used a

threshold equal to J of the maximum spike count recorded over

the session. We verified that the results were not very sensitive to

this threshold, nor to the bin duration.

Results

Spontaneous NS with bimodal INSI distributions
In all our cultures, neurons are spontaneously active (Fig. 1b),

and spontaneously synchronize every 1–50 s. These synchronous

events typically involve the whole network [4], hence the

denomination ‘‘network spikes’’. While the firing rates during

such NSs can reach 100 spikes/electrode/s or more, it is typically

of ,1spike/electrode/s between NSs or less (Fig 1b, gray line).

NSs are thus easy to detect, for example using a simple rate

threshold (see Materials and Methods). The results are not very

sensitive to the threshold nor to the time bin size.

In most cultures, NSs are not ‘‘isolated’’, but come in series

(‘‘burst of NSs’’, BNS) with short INSIs (,1 s or less), while the

intervals between BNSs are substantially longer (tens of s), leading

to bimodal INSI distributions (Fig. 3a). Importantly, these BNSs

are also commonly seen without blocking the GABAA receptors

[5]. The inset zooms in on the long INSIs (.6 s). Notably, their

distribution is slightly positively skewed, with a somewhat long tail

(we will come back to this point in the Working point identification

section).

Conversely, the NS magnitudes, expressed here in total number

of spikes emitted, appear to be normally distributed (Fig. 3b), with

a small standard deviation (lower than 4% of the mean). Note,

however, that we only included the first NS of each series;

subsequent ones tend to be weaker due to fatigue mechanisms.

Durations and maximum firing rates are also narrowly distributed

(data not shown). This confirms the all-or-none nature of NSs

previously reported in similar preparations, especially when using

bicuculline [4]. Magnitude statistics are thus not very informative

here.

Our goal was now to come up with a minimal spiking neural

network (SNN) model. It had to be as simple as possible, and yet

able to produce all-or-none NSs with bimodal INSI distributions

(Fig. 3c and d). What were the key ‘‘ingredients’’ needed? As

mentioned above, GABAA receptors were blocked in the

experimental recordings. Thus, inhibitory neurons were not

expected to impact on the dynamics and for the sake of simplicity

we thus ignored them in our model.

Implications for the mechanisms at work
To trigger an NS, two things are needed: random fluctuations

and positive feedback [12]. In our model, the random fluctuations
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Figure 2. Excitatory postsynaptic currents and potentials. (a) NMDA and AMPA current dynamics after the arrival of one presynaptic spike.
NMDA timescales are much longer. (b) Resulting EPSP.
doi:10.1371/journal.pone.0075824.g002
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are caused by the Gaussian white noise (j in Eq. (1)). The

recurrent excitatory connections, whose strength can be adjusted

(W0 in Eq. (11)), provide the positive feedback, causing an

exponential recruitment of cell activity in the early phase of each

NS [12], as observed experimentally [4].

Next, what are the mechanisms responsible for quenching the

NS? The candidate restoring forces are: the recruitment of the

inhibitory network (which can be discarded when blocking

GABAA receptors like here), cellular refractoriness and adaptation,

and short-term synaptic depression (STD). The long (,20–30 s),

semi-regular (CV,0.5) inter-BNS-intervals (IBNSI, Fig. 3a inset)

imply that at least one of these mechanisms has a long timescale

(,2–8 s, see Working point identification section). This is most

probably adaptation or STD, since cellular refractoriness is

typically in the millisecond range.

Besides, as said above, INSI distributions are often bimodal. In

other words, the probability of getting an NS is higher if there was

another one in a recent past (,1 s), even if activity has returned to

baseline. This suggests that a facilitating mechanism is at work,

most probably short-term synaptic facilitation (STF). Alternatively,

this could be due to waves of activity reverberating along the

network border, where connectivity is denser, and returning to the

point where the NS started with sufficient delay to find neurons

ready to fire again and ignite another NS [23]. This possibility,

demonstrated in large-scale simulations (10,000–50,000 neurons)

[23], is not considered further in this paper. Hence we assume that

STF is at work, with a time constant tF in the 1–3 s range (which

is in broad agreement with the experimental estimation of

179761247 ms [18]), and that there is at least one fatigue

mechanism with a long timescale (,2–8 s). This left us with four

possible scenarios (Table 2): the long fatigue timescale could

correspond to STD, or to cellular adaptation; and there could be

two or just one fatigue mechanism. To rule these four scenarios in

or out we performed exhaustive searches on the numerical

parameters (Table 2).

Using strong adaptation (high a in Eq. 10) we observed that it is

possible to quench an NS without STD (case A in Table 2). But

each NS is then followed by a period in which the network is

completely silent (data not shown). Thus facilitation, which

modulates input spike effect, did not help in triggering subsequent

NSs, and the network only produced isolated NSs. In other words,

we confirmed the results of ref. [14]: adaptation enforces a hard

refractory period, which prevents BNSs, while STD only decreases

NS probability, which can be compensated by STF. Case A was

thus ruled out.

Using only STD with a long timescale tDwtF (case B), again we

were only able to produce isolated NSs. Indeed, if tDwtF, then

the net effect of short-term plasticity (STP) shortly after an NS is
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doi:10.1371/journal.pone.0075824.g003
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depressing and does not promote subsequent NSs. Obviously,

adding adaptation here (case D) did not help us in getting BNSs.

We verified that it is possible to produce BNSs using tFwtD ,2–

8 s. However, not only were these time constants not very realistic,

but the intra-BNS INSIs were several seconds long, in contradic-

tion with experimental observation (1 s or less, see Fig. 3a).

Accordingly, both cases B and D were largely ruled out.

That left us with case C. STD is at work with a short timescale

tDvtF (respectively 0.8 and 1.6 s in the baseline simulation, see

Fig. 4). Hence the net result of STP shortly after an NS is

facilitative (Fig. 4b), promoting BNSs. Long timescale (weak)

adaptation is responsible for both interrupting the series, and for

enforcing long IBNSIs (Fig. 4c). However, the main restoring force

quenching each NS is STD, in line with experimentation [26] and

seminal modeling work [13].

Note that this reasoning would not have been possible without

blocking GABAA receptors, because inhibition would have

provided a third restoring force, of which the timescale would

be unclear [23]. But of course it seems reasonable to assume that

the mechanisms we have identified, namely STP and cellular

adaptation, with tDvtFvta, are also at work when GABAA

receptors are unblocked – although obviously the resulting

dynamics changes.

Fatigue timescales’ separation
As we have explained above, we suggest that STP with its time

constants tDvtF shapes short intra-BNS INSIs, while adaptation,

with a longer time constant ta, shapes the long IBNSIs. To what

extent did ta need to be greater than tD and tF in order to obtain

realistic BNSs? We kept tD = 0.8 s and tF = 1.6 s, and performed

an exhaustive search on ta, keeping ta:a constant (to maintain the

global level of adaption, see Eq. 9–10). It turned out that a

qualitative change of regime occurs between ta = 1.2 s and

ta = 1.6 s (Fig. 5).

For ta = 1.6 s (as in Fig. 4), adaptation conductance can

accumulate across intra-BNS NSs until it is high enough to

prevent subsequent NSs and the series terminates (Fig. 5a and b).

In this regime, BNS initiation is stochastic. What happens

next, however (exponential recruitment, STD-induced activity

decay, STF-induced subsequent NSs, adaptation-induced series

Table 2. Ruling in and ruling out fatigue mechanisms.

The long fatigue timescale is:
1 or 2 fatigue mechanisms: Adaptation STD

Adaptation XOR STD Case A (adaptation only): no BNS Case B (STD only): no BNS, at least if tFvtD

Adaptation AND STD Case C: BNS possible Case D: no BNS, at least if tFvtD

doi:10.1371/journal.pone.0075824.t002
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by a long silent interval.
doi:10.1371/journal.pone.0075824.g004
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termination), is much more deterministic, yet not fully so. A similar

regime has been identified in SNNs with adaptation but without

STP, and thus without resulting in BNSs [27].

For ta = 1.2 s, the adaptation conductance cannot accumulate

across intra-BNS NSs. Thus, it will not systematically terminate

the BNS. Instead, BNS termination is stochastic, which can lead to

very long BNSs (Fig. 5c and d). Such long BNSs have not been

observed in our cultures.

Hence, to get a clear separation of STP and adaptation

timescales, a necessity to get realistic BNSs, ta needs to be greater

than 1.2 s. This is consistent with the experimental range

estimated in the next section: 2–8 s.

Working point identification
In the following section, we will focus on long IBNSIs (.6 s, see

Fig. 3a and 3c insets). As explained above, two things are needed

to trigger an NS: a random fluctuation of a certain magnitude, and

a recurrent excitation that provides positive feedback. We

systematically varied excitability in the model (i.e. the recurrent

excitatory weight W0 in Eq. 11), keeping the noise parameter s
constant. As expected, the BNS frequency (respectively the mean
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Figure 5. Fatigue timescales’ separation. For panels (a–b) ta = 1.6 s, while for panels (c–d) ta = 1.2 s. In all cases, tD = 0.8 s, tF = 1.6 s, and
W0 = 8.6 (a) Mean population firing rate as a function of time. (b) Adaptation leak conductance ga (population-averaged) as a function of time. Inside a
BNS, it tends to accumulate across successive NSs, until it is high enough to prevent subsequent NSs. Thus BNS termination is almost deterministic,
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doi:10.1371/journal.pone.0075824.g005
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IBNSI) increased (resp. decreased) with W0 (Fig. 6), because

smaller fluctuations become sufficient to trigger NSs.

In addition, the shape of the IBNSI distribution changes. In the

case of large excitability as soon as the adaptation-induced

refractory period is over (say, after a few tas), an NS is rapidly

produced, because the required weak fluctuation appears quickly

(see also Fig. 7). Consequently, the IBNSI are regular; that is, their

coefficient of variation (CV) is low (Fig. 6). Conversely, with low

excitability, the required strong fluctuation may take longer to

appear, leading to a positively skewed IBNSI distribution.

In the limit case W0?0, neurons are independent. They spike

only due to the independent white noise they receive (j in Eq. 1),

with very long mean inter spike interval (,2 s with our

parameters). At such low rates spike generation approaches a

Poisson process (individual CV ,1). Thus, spike coincidences

between neurons, which cause the required fluctuations, also

follow a Poisson process. As a result, the IBNSI CV approaches 1,

while NS becomes extremely rare (Fig. 6). It is worth noting that

even when W0~0, one is guaranteed to see an NS if one waits

long enough, as at some point the independent neurons will fire

synchronously. In practice, however, and with reasonable time

bins and thresholds for NS detection, the expected waiting time

would be astronomical.

In addition, we also varied the adaptation time constant ta

(Fig. 6), from 2 to 8 s, keeping ta:a constant (to maintain the global

level of adaption). This shifted the curve of all possible (CV, Mean

INSI) values either up or down.

We then wanted to test how well BNS generation in the model

may be described by a Poisson point process with refractory period

T [28]. In such processes, the CV is linked to the mean interval m

by CV~(m{T)=m. We thus fitted one model of this kind for

each ta value (Fig. 6), adjusting T. We used the non-linear least

square method and we assigned a weight to each data point that

was inversely proportional to its error box area. The legend shows

estimated refractory periods T, which turned out to be around 4ta.

This confirms that the cause here of the refractory period is

adaptation, as opposed to STD. Overall, the fittings were good

(R2$0.93), indicating that the Poisson process with refractory

period sis a reasonable model for BNSs. This was also the

conclusion of a previous simulation study [2], which did not,

however, include STP, and thus had only isolated NSs. The

goodness of fit also confirms that adaptation has the capacity to

enforce a hard refractory period [14].

Finally, we placed our seven experimental data points,

corresponding to the different cultures on the (Mean IBNSI,

CV) plane (Fig. 6, gray circles). This allowed us to determine for
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each culture, and without ambiguity, the apparent timescale of

adaptation ta (given by the unique curve passing through the

experimental point), which turned out to be in the 2–8 s range,

and then the strength of recurrent excitation W0 needed to reach

that particular point on the curve.This strength could be mapped

to the density of excitatory synapses. Remarkably, this inference

was possible using the IBNSI statistics only. All cultures appeared

to operate in an intermediate, weakly-synchronized regime with

semi-regular BNS (CV,0.5).

The Kolmogorov-Smirnov statistical test used in ref. [28] failed

to provide evidence for power-law distributed, rather than

exponentially-distributed IBNSIs, in both experimental and

simulated data. This is again consistent with the Poisson point

process with refractory period, which leads to interval distributions

with exponentially decaying tails.

We also plotted the NS-triggered average of the adaptation leak

conductance ga, in case of strong (respectively weak) recurrent

excitation producing regular (resp. irregular) NSs (Fig. 7). As was

expected in the regular case, a relaxed adaptation conductance is a

necessary and sufficient condition for NS generation (black curve).

In the irregular case, it was only a necessary condition. A

significant fluctuation also needs to appear and this may take some

time During this waiting period the adaptation conductance was

typically low (gray curve).

Discussion

Time series of network synchronization events (NSs) demon-

strate complex statistics, both in vivo and in vitro. Current models

fall short of explaining these statistics. Here, we have shown that

the incorporation of three adaptive processes (short-term synaptic

facilitation, fast and slow fatigue) is sufficient to reconstruct the

experimentally- observed complex statistics. Our theoretical

framework was adjusted and validated by fitting to a data set we

had obtained from in vitro large-scale networks of excitatory

cortical neurons.

INSI statistics appear to have been somewhat overlooked by

many of the community. Most researchers focus on characterizing

and explaining NSs’ magnitudes and durations. For example, in a

number of preparations, these two variables have been shown to

follow power-law (scale-free) distributions [7,8], much like the so-

called ‘‘neuronal avalanches’’ in organotypic cultures and acute

cortical slices [29]. These power-laws, which seem to hold only

with inhibition [11,29,30] have been interpreted as a signature of

self-organized criticality (but see ref. [31,32]), which is theoretically

appealing [29,30,33,34].

In our experiments inhibition was blocked, and therefore NS

magnitudes were narrowly distributed. However, INSI statistics

turned out to be more interesting. They enabled us, firstly, to infer

the mechanisms at work, and secondly to estimate their timescales.

More specifically, bimodal INSI distributions suggest that both

STP and adaptation are at work, with tDvtFvta. In short, STD

is responsible for quenching the NS, STF for promoting BNSs,

and adaptation for interrupting the BNSs and enforcing long

IBNSIs. The long modes of the INSI distributions unambiguously

determine variables which we cannot access experimentally,

namely ta and the excitability. In turn, the variables determine

the system’s working point. With strong excitability, IBNSI are

short and regular (low CV), while with weak excitability NS

generation approaches a Poisson process with extremely long

irregular IBNSIs (CV,1). It seems that experimental cultures

operate in an intermediate mode, producing semi-regular IBNSIs

(CV,0.5) with a slightly positively-skewed distribution. A Poisson-

with-refractory-period model fits well with both simulated and

experimental IBNSI.

Importantly, we used a simple full non-plastic connectivity

(although random sparse ones gave similar results, data not

shown). It is likely that some modularity is needed to obtain more

graded, possibly power-law-distributed, NS magnitudes [34].

Spike timing-dependent plasticity may also help [34]. However,

evidence for such power-laws in dissociated cultured neuronal

networks remains rare [7,8]. In our experiments we observed

stereotyped almost all-or-none NSs, in line with previous reports

[4]. Power-law-distributed sizes and durations are more estab-

lished in organotypic cultures and acute cortical slices [29,35],

possibly because they have the required connectivity.

Remarkably, a full connectivity with homogeneous synaptic

weights turned out to be sufficient to capture the experimentally-

observed INSI statistics. Our neurons were indistinguishable, and

yet we observed non-periodic NSs. This could be seen as

incongruent with simulations that have shown that non-homoge-

neous cell properties [12] or synaptic weights [9] are required for

non-periodic synchronization. We admit, however, to injecting a

fair amount of independent white noise current to each neuron.

This noise may be playing a similar role as non-homogeneities.

However, a full connectivity with homogeneous weights is clearly

a limitation. Among other things, we cannot capture the fact that

some neurons are much more active than others, and that an

upcoming NS can be reliably predicted based on the activity of a few

‘‘privileged’’ neurons as early as 100ms before the NS peak [4].

NS in neuron cultures is a robust and well-documented

phenomenon [1–11]. These in vitro preparations offer an ideal

framework to combine experimental work with simulations.

Experimental conditions can be much more carefully controlled

than in most in vivo experiments. In particular, the external inputs

may be fully controlled or canceled (as in our experiments), and

pharmacological manipulations are also possible. However, it is

worth mentioning that NS-like synchronous events have been
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observed in vivo as well: in the cortex [36–38], the hippocampus

[39], and in LGN [40].

Synchronization is thought to play major functional roles in the

brain. Individual neurons are sensitive to synchronous inputs

[41,42] and these are favored by synaptic plasticity mechanisms

[43]. At the level of cell assembly, synchrony is thought to enable

feature binding [44], communication through coherence [20,45],

and phase-of-firing coding [46,47]. Understanding how and why

synchronization occurs is thus of crucial importance, and as we

have argued here, in vitro neuronal cultures might be useful as an

experimental model for generic cell assembly. One must, however,

keep in mind the obvious constraints on extrapolations from in vitro

to in vivo conditions, in particular because the networks are no

longer isolated (for review, see ref. [15,48]).
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