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Aeolian abrasion of rocks as a 
mechanism to produce methane in 
the Martian atmosphere
E. Safi1, J. Telling1, J. Parnell2, M. Chojnacki3, M. R. Patel   4, J. Realff1, N. J. F. Blamey5, 
S. Payler6, C. S. Cockell   6, L. Davies7, I. M. Boothroyd8, F. Worrall8 & J. L. Wadham7

Seasonal changes in methane background levels and methane spikes have been detected in situ a metre 
above the Martian surface, and larger methane plumes detected via ground-based remote sensing, 
however their origin have not yet been adequately explained. Proposed methane sources include the 
UV irradiation of meteoritic-derived organic matter, hydrothermal reactions with olivine, organic 
breakdown via meteoroid impact, release from gas hydrates, biological production, or the release of 
methane from fluid inclusions in basalt during aeolian erosion. Here we quantify for the first time the 
potential importance of aeolian abrasion as a mechanism for releasing trapped methane from within 
rocks, by coupling estimates of present day surface wind abrasion with the methane contents of a 
variety of Martian meteorites, analogue terrestrial basalts and analogue terrestrial sedimentary rocks. 
We demonstrate that the abrasion of basalt under present day Martian rates of aeolian erosion is highly 
unlikely to produce detectable changes in methane concentrations in the atmosphere. We further show 
that, although there is a greater potential for methane production from the aeolian abrasion of certain 
sedimentary rocks, to produce the magnitude of methane concentrations analysed by the Curiosity 
rover they would have to contain methane in similar concentrations as economic reserved of biogenic/
thermogenic deposits on Earth. Therefore we suggest that aeolian abrasion is an unlikely origin of the 
methane detected in the Martian atmosphere, and that other methane sources are required.

The Mars Science Laboratory Curiosity rover has measured background levels of atmospheric methane a metre 
above the Martian surface of 0.41 ± 0.16 ppb/sol with spikes of up to 7 ppb1,2. Ground-based observations sug-
gest larger methane spikes (plumes) with an average peak of 33 ppb and a maximum value of 45 ppb3. The UV 
irradiation of meteoric-derived organic matter within surface sediments appears to be one of the most plausi-
ble mechanisms for producing low background levels of methane4,5. However, the cause(s) for seasonal changes 
in methane background levels and methane spikes remain enigmatic. Additional proposed sources of meth-
ane include hydrothermal reactions with olivine6,7, organic breakdown via meteoroid impact4,8, release from gas 
hydrates9, or biological production6,10. It has also been suggested that the release of methane from fluid inclusions 
in basalt during aeolian erosion could release detectable methane to the Martian atmosphere11, yet to date, there 
has been no quantitative estimate of this flux. Further, the potential for the aeolian abrasion of sedimentary 
rocks to produce the methane concentrations detected by Curiosity and ground-based observations is completely 
unexplored, despite the presence of abundant sedimentary rocks on the Martian surface, including Gale Crater12.

Due to the current lack of significant liquid water, it is likely that aeolian abrasion has been a dominant mech-
anism of surface weathering on the Martian surface for the last 3 billion years13. The average erosion rate on 
Mars between the Hesperian and present are many orders of magnitude lower than those on Earth, of the range 
1 × 10−5–0.01 µm yr−1 14. More recent examination of HiRISE time-lapse images have suggested far higher rates 
of local abrasion underneath active sand dunes that can match those in some arid regions on Earth. Inter-dune 
field abrasion rates of local basaltic bedrock are in the range of 0.1–50 µm yr−1 15,16. Importantly, many terrestrial 
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minerals and rocks contain gases trapped in discrete inclusions, fractures or within the grains themselves (intra-
granularly)11,17. This includes not only igneous rocks, such as basalts, but evaporites and mudstones, all of which 
are exposed on the Martian surface12,18. A recent analysis of a range of Martian meteorites has confirmed the 
presence of methane gas trapped within Martian basalt inclusions, with coincident concentrations of other gases 
indicating a Martian origin rather than later terrestrial contamination19. Methane in terrestrial basalts (and by 
analogy Martian basalts) most likely derives from a combination of original magmatic methane and methane 
generated through water-rock interactions at elevated temperatures19,20. In contrast, methane preserved within 
sedimentary deposits formed in surface environments on Earth, typically has a biogenic origin (from the local 
activity of in situ methanogenic bacteria living within the sediments of the primary evaporitic environment) and/
or a thermogenic origin (resulting from the thermal alteration of biological organic matter)21.

On Earth the release of methane from fluid inclusions is a negligible component of atmospheric methane. This 
is due to the far greater fluxes of methane from extant biology21, anthropogenic sources21, thermogenic sources21, 
and to a smaller extent abiogenic sources from active volcanism and hydrothermal activity21. On present day 
Mars, however, there is greater potential for fluid inclusion release to have a significant impact on atmospheric 
chemistry. This is owing to the combination of far lower atmospheric pressures (approximately 7–10 mbar22), 
meaning the escaped methane would be less diluted, with very low background methane concentrations (sub 
ppb) in the Martian atmosphere1,2,19. Additionally, there is a lack of evidence for present day substantial methane 
fluxes from biogenic, thermogenic or abiogenic sources23.

Here, via unpublished and previously published laboratory measurements, we estimate the potential pro-
duction of methane in the Martian atmosphere from the release of methane within fluid inclusions via aeolian 
abrasion.

Estimation of methane fluxes from aeolian abrasion at varying time-scales.  We estimate meth-
ane fluxes from aeolian abrasion by combining estimates of a range of current Martian surface abrasion rates 
(µm yr−1) with published and newly determined methane contents (nmol g−1) from a range of SNC meteorites 
and analogue terrestrial rocks. For basalt, we used abrasion rates of 1 × 10−5 µm yr−1 as measured by Pathfinder 
to represent average rates since the Hesperian14 and assume a tenfold greater rate of abrasion for softer layered 
sedimentary rocks (e.g. mudstone)15. We used an average rate of abrasion of 0.75 µm yr−1, as measured from radi-
ometric dating by Curiosity12, to represent long term abrasion rates in Gale Crater where Curiosity has observed 
background methane and methane plumes2. A rate of 0.75 µm yr−1 is also representative of rates of basalt sand 
abrasion under actively moving sand dunes15. To represent the highest estimates of abrasion in active sand dune 
fields on vertical rock faces, we used 50 µm yr−1 for basalt16, and tenfold greater (500 µm yr−1) for evaporites and 
mudstones/shales. The methane contents of Martian and terrestrial basalts, and terrestrial evaporites, minerals 
(quartz, plagioclase feldspar, magnetite) and mudstones/shales from a combination of published literature and 
new experiments were determined by a variety of different methods (Supplementary Methods).

We first calculated gas fluxes from aeolian abrasion for a period of one hour, assuming vertical mixing over a 
0.5 km atmospheric height. These calculations are relevant for short-term (20 min to 1 hour) in situ measurements 
taken by the Curiosity Rover around Gale Crater1,2. We also calculated gas fluxes integrated over 30 sols, assuming 
vertical mixing over the entire Martian atmospheric column. These calculations are relevant for the formation of 
larger scale methane plumes3 (Supplementary Methods).

Aeolian abrasion of basalt is unlikely to explain observed methane plumes.  Figures 1a,d,g and 
2a,d,g show the methane flux from basalt and Martian meteorite samples using three different abrasion rates over 
a period of 1 hour and 30 sols respectively. Over a time period of 30 sols, abrasion rates of 1 × 10−5 µm yr−1 and 
0.75 μm yr−1 are unable to produce sufficient methane to compete with estimates generated from the breakdown 
of meteoritic material by UV irradiation5. Even the highest abrasion rate of 50 μm yr−1 is incapable of producing 
concentrations of methane above the atmospheric background levels determined by the Curiosity rover (Fig. 1). 
Our data (Figs 1 and 2) also demonstrate that, when analysed by the same method (crush-fast scan technique), 
the range of methane contents of terrestrial basalts encompasses that of Martian meteorites. Therefore, it seems 
unlikely that Martian basalt will have substantially higher methane contents than their terrestrial counterparts, 
particularly given the potential for incorporation of biogenic carbon into terrestrial basalts via plate tectonic recy-
cling. From our data, we conclude that the aeolian erosion of basaltic-type rocks and derived sand grains on Mars 
is an unlikely mechanism for the elevated methane concentrations detected by both ground-based observations3 
and the Curiosity rover2 unless there were substantially higher concentrations contained within other types of 
igneous rocks on Mars (e.g. peridotites24).

The potential formation of methane plumes from the aeolian abrasion of sedimentary 
rocks.  At Gale Crater, the surface geology is dominated by mudstones and sandstones12. The mudstones are 
thought to represent an ancient lake environment with potentially habitable conditions12. Clay minerals have 
also been identified in the east of the Arabia Terra, Nili Fossae and the southeast quadrant of Syrtis Major3. 
These regions represent the potential source area of the larger methane plume identified by ground-based obser-
vations. Additionally, sulphate-bearing materials have been detected by visible images obtained by the MRO 
High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX)5 and by visible‐near infrared 
reflectance spectra obtained by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) from 
orbit stratigraphically above Curiosity’s current location25. The latter showed an abundance of hydration sig-
natures interpreted as either sulphate-cemented clays or alternating thin beds of clay minerals and sulphates25. 
The detection of sulphates in the Gale Crater and their distribution on Mars as a whole provides evidence for 
widespread evaporitic environments involving surface to near subsurface aqueous processes extending into the 
Hesperian25.
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Our results indicate that the aeolian abrasion of terrestrial analogue sedimentary rocks (evaporites, mud-
stones/shales) have the potential to produce significantly higher fluxes of methane to the Martian atmosphere 
compared to basalt. This is due to a combination of higher maximum methane contents and higher susceptibil-
ity to abrasion (Figs 1 and 2). For example, using the average abrasion rates of mudstones/shale at Gale Crater 
(0.75 μm yr−1) over a time period of one hour produces, in some cases, more than an order of magnitude greater 
methane concentrations than the highest methane concentrations detected by Curiosity2

. At an elevated abrasion 
rate of 500 µm yr−1, the most methane-rich evaporites also produce methane above measured atmospheric back-
ground levels. While such high rates of abrasion are clearly implausible averaged over the long term, they may be 
achievable during the abrasion of e.g. vertical faces during short duration elevated abrasion events16. On a larger 
scale over 30 sols, our calculations demonstrate that at an abrasion rate of 0.75 µm yr−1, the most methane-rich 
mudstone/shale terrestrial samples could even provide enough methane to exceed the fluxes required for the 
formation of larger plumes, as documented in the east of Arabia Terra, Nili Fossae, and the southeast quadrant of 

Figure 1.  Estimated methane fluxes from the aeolian abrasion of analogue Martian rock samples using a one 
hour time period and assuming vertical mixing over 0.5 km. A range of abrasion rates from published literature 
were used to calculate the methane fluxes: (a) basalt with an abrasion rate of 1 × 10−5 µm yr−1, (b) evaporites, 
1 × 10−4 µm yr−1, (c) mudstone/shale, 1 × 10−4 µm yr−1, (d) basalt, 0.75 µm yr−1, (e) evaporites, 0.75 µm yr−1, 
(f) shale, 0.75 µm yr−1, (g) basalt, 50 µm yr−1, (h) evaporites, 500 µm yr−1, (i) mudstone/shale, 500 µm yr−1. The 
purple line is the average (33 ppb) methane flux of the plume measured by ground-based observations3, the red 
and blue lines are the peak (700 ppb) and average (400 ppb) values of methane measured by the Curiosity rover 
respectively2 and the dashed line represents the methane flux from organic breakdown5. The box that represents 
each sample is bound by the maximum and minimum flux from a range of measurements (see Supplementary 
Information), and the line situated in the box represents the median value of the fluxes from the samples.
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Syrtis Major3. However, as sedimentary deposits on Mars tend to be localized, even if the vertical methane fluxes 
were maintained over 30 sols, the concentrations documented in Fig. 2 would be greatly diluted via horizontal 
mixing1,26.

Crucially, however, the relatively high methane fluxes from the aeolian abrasion of sedimentary rocks are 
obtained by the use (in the absence of other data sources) of terrestrial rock analogues that include organic-rich 
biogenic/thermogenic deposits. In contrast, analyses of the mudstones at Gale Crater by Curiosity have so far 
detected organic molecules up to only 24 ppm organic carbon27,28 similar to the organic content of a range of 
igneous Martian meteorites (20 ± 6 ppm29), which, as we discuss above, are a highly unlikely source of detecta-
ble Martian atmospheric methane. Furthermore, the sum of inorganic carbon gases produced from Curiosity’s 
evolved gas analyser only suggests a total organic content of up to 2384 ppm; similar to the organic content 
in fine grained sediments beneath middle portions of the South Pacific Gyre (SPG) region on Earth30, rather 

Figure 2.  Estimated methane fluxes from the aeolian abrasion of analogue Martian rock samples using a period 
of 30 sols and assuming vertical mixing over the entire Martian atmospheric column; a – g the methane flux 
was calculated from: (a) basalt with abrasion rate of 1 × 10−5 µm yr−1, (b) evaporites, 1 × 10−4 µm yr−1, (c) shale, 
1 × 10−4 µm yr−1, (d) basalt, 0.75 µm yr−1, (e) evaporites, 0.75 µm yr−1, (f) mudstone/shale, 0.75 µm yr−1, (g) 
basalt, 50 µm yr−1, (h) evaporites, 500 µm yr−1, (i) mudstone/shale, 500 µm yr−1. The purple line is the average 
(33 ppb) methane flux of the plume measured by ground-based observations3, the red and blue lines are the 
peak (700 ppb) and average (400 ppb) values of methane measured by the Curiosity rover respectively2 and 
the dashed line represents the methane flux from organic breakdown5. The box that represents each sample is 
bound by the maximum and minimum flux from a range of measurements (see Supplementary Information), 
and the line situated in the box represents the median value of the fluxes from the samples.
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than the highly productive marine or lacustrine environments responsible for terrestrial economic hydrocarbon 
deposits31. Furthermore, recent gravimetric surveys suggest that Gale Crater sediments have not been buried to 
sufficient depths to commence the onset of methane generation via significant organic matter thermogenesis32. 
Therefore, it seems highly unlikely that sediments in Gale Crater could contain comparable methane contents 
to methane-rich terrestrial sedimentary rocks shown in Figs 1 and 2, unless the methane is produced by a very 
different mechanism.

One such speculative alternative mechanism for methane production is suggested by the presence of features 
termed ‘hollow nodules’ within the Sheepbed member mudstones at Gale Crater. A possible interpretation of 
these hollow nodules is they represent ancient gas bubbles formed during authigenic mineral precipitation33. 
Subsequent geochemical modelling has indicated that sufficient hydrogen gas could be produced during auth-
igenic magnetite precipitation to produce these gas bubbles26. Combined with CO2 this hydrogen could have 
generated the required redox gradient to drive potential biological methanogenesis26. We note, however, that 
although the majority of any gas might be expected to escape during the drilling process, no elevated methane 
concentrations were detected during the pyrolysis of Gale Crater sediment associated with the hollow nodules34.

Finally, a recent summary of aeolian activity in Gale Crater35 demonstrates that elevated aeolian activity has 
occurred at Gale Crater in the southern summer season over the last several Martian years (between approxi-
mately Ls 180-Ls 360). The strong seasonality of sand fluxes at Gale Crater is consistent with observations at other 
sites on Mars; for example sand fluxes in the Nili Patera dune field in the Northern hemisphere are three times 
higher during the southern summer compared to winter36. Crucially, however, the observed sand activity at Gale 
Crater does not appear to have a correlation with the observed background methane concentrations detected by 
Curiosity at approximately Ls 180 or methane spike at Ls 90. This indicates that an alternative source of methane 
is required to explain the seasonal background changes and isolated higher peaks in methane detected by the 
MSL Curiosity.

Production and destruction of methane gas via UV and cosmic irradiation of surface rocks.  A 
significant difference between Martian and terrestrial surface rocks is in their differing exposures to UV and cos-
mic radiation. Collectively the Earth’s atmosphere and magnetic field absorb a substantial fraction of short-wave 
solar UV radiation, and deflect charged particles such as galactic cosmic rays and solar energetic particles37. In 
contrast, Martian surface rocks are currently exposed to relatively high levels of UV-C irradiation and cosmic 
radiation. The shielding depth of the Earth’s atmosphere from ionising radiation is 1000 gcm−2 33 compared to 
Mars’ 16 gcm−2. Indeed, it has been suggested that UV photolytic processes could be responsible for the formation 
of the detected background methane via the breakdown of meteoric/cometary derived organic matter in surface 
sediments38 (see dashed line in Figs 1 and 2). It has been estimated from laboratory experiments that approxi-
mately 20% of meteoritic/cometary organic matter in Martian surface sediments could be converted to methane 
via UV irradiation, although the exact figure will depend on a variety of other factors, including the availability 
of water and mineral oxidants5. This conversion rate would input 64 tonnes of methane into the atmosphere per 
year, equivalent to an atmospheric column integrated concentration of 2.2 ppbv5. However, the penetration depth 
of UV in rocks is limited to a range of a few microns to less than a millimetre depending on composition39,40, and 
hence unlikely to make a significant impact on atmospheric methane fluxes over existing estimates4. Below the 
UV penetration depth, cosmic ray irradiation (including solar energetic protons and galactic cosmic rays) will 
typically dominate the alteration of organic molecules in the upper few metres40. While studies have examined the 
effects of cosmic ray irradiation on the alteration of amino acids33, there have been no studies reporting the spe-
cific effect on methane gas concentrations in representative rocks. However, it has been suggested via analogous 
studies on the irradiation of organic molecules in the terrestrial crust that, at least over geological periods of time, 
gamma irradiation could result in the polymerization of methane gas to higher molecular weight and higher C:H 
ratio compounds, such as polyaromatic hydrocarbons (PAHs)31. If by analogy similar polymerization reactions 
are induced by cosmic ray irradiation of the upper metres of the Martian surface, then the survival of any initial 
methane gas trapped within fluid inclusions or fractures in rocks might be restricted to regions which have been 
relatively recently exhumed through e.g. meteorite excavation or scarp retreat12. We recommend further exper-
imental studies quantifying the effects of cosmic ray irradiation on methane production and destruction within 
relevant analogue rock types.

From the data put forward in this paper, we conclude that aeolian abrasion of basaltic or sedimentary rocks 
on the Martian surface is an unlikely mechanism to produce methane concentrations detected by in situ obser-
vations from the MSL Curiosity rover and remote ground-based sensing observations. Hence, we suggest that 
other sources of methane gas must be inferred to explain both the seasonal variations in background atmospheric 
methane and higher concentration plumes detected on Mars.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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