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Abstract

Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas.
However, the efficacy of TMZ is often limited by the development of resistance. Recently, studies have found that
TMZ treatment could induce autophagy, which contributes to therapy resistance in glioma. To enhance the benefit
of TMZ in the treatment of glioblastomas, effective combination strategies are needed to sensitize glioblastoma
cells to TMZ. In this regard, as autophagy could promote cell survival or autophagic cell death, modulating
autophagy using a pharmacological inhibitor, such as chloroquine, or an inducer, such as rapamycin, has received
considerably more attention. To understand the effectiveness of regulating autophagy in glioblastoma treatment,
this review summarizes reports on glioblastoma treatments with TMZ and autophagic modulators from in vitro and
in vivo studies, as well as clinical trials. Additionally, we discuss the possibility of using autophagy regulatory
compounds that can sensitive TMZ treatment as a chemotherapy for glioma treatment.
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Background
Glioblastoma or glioblastoma multiform (GBM) is an ag-
gressive astrocytic cell neoplasm and one of the leading
causes of cancer-related deaths in both pediatric and adult
populations. The median survival of patients with GBM is
approximately 12–15 months after the initial diagnosis.
Conventional therapies for patients with newly diagnosed
GBM include surgical tumor resection followed by radi-
ation therapy and chemotherapy. Though these therapeutic
methods have increased the survival rate to 14.6 months,
the survival advantages are only palliative [1, 2]. In March
2005, the U.S. Food and Drug Administration approved
temozolomide (TMZ) concomitantly with radiotherapy for
the treatment of adults with newly diagnosed glioblastoma
as well as using TMZ alone as a maintenance treatment
[3]. To date, TMZ is the most widely used and effective
first-line chemotherapeutic drug for glioblastoma patients
[4, 5], although several chemotherapeutic agents can be
found on the current pharmaceutical market [3].

Autophagy is activated in tumor cells by chemothera-
peutic agents and radiation [6, 7], and the process con-
stitutes a potential target for cancer therapy. Since
autophagy was discovered, it has been thought to act as
a pro-survival or pro-death response to several stresses,
especially chemotherapy and radiotherapy, at the cellular
and organic levels [8]. The mechanism by which autoph-
agy could perform these seemingly opposite roles
remained elusive until recently. Under moderate stimu-
lus conditions, the autophagic pathway operates to sup-
ply cells with metabolic substrate, contributing to the
maintenance of cell survive [9]. However, a considerable
body of literature reports that uncontrolled autophagy is
also a cell death mechanism that can occur either in the
absence of detectable signs of apoptosis or concomi-
tantly with apoptosis [10]. Similarly, using C. elegans as
a model system, Kang C et al. found that physiological
levels of autophagy promote optimal survival of C. ele-
gans upon stresses, whereas either insufficient or exces-
sive levels of autophagy are pro-death [11]. In addition,
for a multicellular organism, autophagic cell death might
well represent another pro-survival mechanism, which
provides metabolic supplies during whole-body nutrient
deprivation via the heterophagy [9].
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As the dual roles of autophagy in the response to che-
moradiotherapy, the modulation of autophagy in re-
sponse to therapeutics could have anti-cancer efficacy as
well as help with therapy resistance [6]. In some cases,
autophagy-delayed apoptotic death (type I programmed
cell-death) in cancer cells undergoing therapeutic treat-
ment; the treatment of these cells with autophagy inhibi-
tors, such as chloroquine (CQ); or the knockdown of
autophagy genes, including Beclin1 and other ATG
genes, enhanced therapy-induced apoptosis [12]. Au-
tophagy also contributes to promote cell survival [13],
and blocking the autophagic process increases the effi-
cacy of a variety of anti-cancer agents [14]. However, ac-
cording to other studies, various therapeutic methods
could enhance autophagic cell death (type II pro-
grammed cell-death) in glioblastomas [15], hepatocellu-
lar carcinoma [16], etc. Thus, the potential clinical
applications for the monitoring of autophagy in gliomas
and other cancers require the detection of current thera-
peutic effects and the development of novel anticancer
strategies. These treatment strategies include the induc-
tion of autophagy to enhance its antitumor effects and
the inhibition of autophagy to induce apoptosis [17].
In GBM, TMZ-induced autophagy is putative mechan-

ism of TMZ action in cancer cells and patients [6, 18]. It
has been proposed that autophagy could lead to either
cancer cell survival or cell death, depending on the cel-
lular context [19, 20]. On one hand, TMZ-induced au-
tophagy seems to have a cytoprotective role. Lenz G’s
group demonstrated that acute treatment with TMZ in-
duces the sustained inhibition of Akt-mTOR (the mech-
anistic target of rapamycin (serine/threonine kinase)),
which produced a transient induction of autophagy,
leading to cell resistance of the therapy [21]. On the
other hand, Gao S et al. found that the cytotoxicity of
TMZ to glioma cells was enhanced by autophagy when
combined with thalidomide, a drug proposed to affect
the PI3K (phosphatidyl inositol 3 kinase) /Akt/mTOR
pathway, which plays a role in autophagy regulation
[22]. Accordingly, autophagic cell death was found to be
necessary for the antitumor effects of the combination
of TMZ and radiotherapy [23]. These data are compat-
ible with the theory that autophagy is mostly a survival
process, whereas mortal autophagic flux most easily
achieved by a combination treatment can be exploited in
anticancer therapy. To understand the effectiveness of
regulating autophagy in glioblastoma treatment, this re-
view focuses on reports on glioblastomas treated with
TMZ and autophagic modulators from in vitro and in
vivo studies, as well as clinical trials.

Known resistance mechanisms of TMZ
TMZ is a small lipophilic molecule (194 Da) and an or-
ally available imidazotetrazine-class alkylating agent [24].

The cytotoxicity of TMZ is thought to result from the
formation of O6-methylguanine (O6MeG) in DNA,
which mispairs with thymine during DNA replication,
triggering futile cycles of the mismatch repair system
and resulting in subsequent DNA damage [25]. Due to
its ease of administration, tolerability, and known cap-
acity to cross the blood–brain barrier, TMZ provides
modest antitumor activity and is currently used to treat
glioblastomas. In addition, fibrin glue (FG), a drug deliv-
ery system, can effectively administer TMZ directly to
the target tumor and exert antitumor effects, with no se-
vere damage to the normal brain tissue [26]. TMZ is
considered the most effective drug for the treatment of
GBM. However, overtime, GBM cells become resistant
to the cytotoxicity caused by TMZ. This resistance is re-
lated to the implementation of several mechanisms, dis-
cussed below (Fig 1).
One of the well-documented mechanisms in GBM re-

sistance involves O6MeG DNA methyltransferase
(MGMT). MGMT can eliminate the TMZ-induced DNA
damage by removing the methyl group in the O-6 pos-
ition of the substrate guanine, further generating TMZ
resistance [27]. Additionally, as the level of MGMT is in-
versely related to the density of cytosine phosphate
guanine (CpG) methylation in CpG islands, the de-
creased methylation of the MGMT promoter improves
survival after TMZ chemotherapy [28]. To date, thera-
peutic molecules inhibiting MGMT, such as O6-(4-bro-
mothenyl) guanine and O6-benzyl guanine, have been
used in clinical trials preceding treatment with TMZ.
DNA mismatch repair (MMR) [29] and base excision

repair (BER) [30] are the primary DNA repair systems
involved in TMZ resistance mechanisms. The MMR sys-
tem can correct nucleotide base mismatches generated
during DNA synthesis. When MGMT is reduced or ab-
sent, the existence of O6MeG can be recognized by
MMR protein complexes and paired with thymine to
form O6MeG/T. The futile cycles of the insertion and
excision of thymine mentioned above lead to cell cycle
arrest and apoptosis. Conversely, the impairment of the
MMR pathway causes a failure in the ability to recognize
O6MeG/T, resulting in less effective TMZ treatment.
The BER system participates in the repair of DNA dam-
age caused by alkylating agents. TMZ is thought to form
N3 and N7 methylations in DNA, which is lethal if not
repaired. BER can repair N3 lesions, giving rise to a
TMZ resistant phenotype.
Apart from DNA repair systems, it has been demon-

strated that other factors, including epidermal growth
factor receptor (EGFR) [31], phosphatase and tensin
homolog (PTEN) [32], galectin-1 [33], murine double
minute 2 (Mdm2) [34], p53 [35], PI3K/AKT/mTOR
pathway [36], and sphingosine-1-phosphate/ sphingosine
kinases [37], play important roles in TMZ resistance. In
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addition, another recent study showed TMZ-resistant
glioblastoma stem cells (GSCs) had enriched MGMT
promoter methylation, suggesting intrinsic or rapidly
acquired resistance, in which the details of the spe-
cific mechanism are still unclear [38]. Although the
above mechanisms by which GBM cells become resistant
to anticancer drugs has been elucidated, autophagy, an
important evolutionarily conserved catabolic process, is
now emerging as a crucial player in TMZ resistance. Au-
tophagy can be viewed as having a controversial pro-death
or pro-survival role in response to TMZ treatment (Fig 2).

Effect of autophagy modulation on the TMZ anti-
glioblastoma activity
Autophagy as a cytoprotective role
TMZ is considered the most effective drug in the treat-
ment for GBM. However, its efficacy is often limited by
tumor recurrence and the development of resistance to
TMZ. Autophagy, upon TMZ treatment, mostly func-
tions as a survival mechanism, as its inhibition greatly
ameliorates the level of apoptosis following TMZ treat-
ment at therapeutically relevant doses (≦100 μM), sug-
gesting that the inhibition of autophagy may ameliorate
the therapeutic outcome of TMZ-based cancer therapy
[39, 40] (Tables 1 and 2). Therapeutic molecules inhibit-
ing autophagy, such as CQ and its analogs, have been
used in clinical trials preceding treatment with TMZ
[41]. Furthermore, the autophagy suppressing functions

of Ataxia-telangiectasia mutated (ATM) kinase inhibitors
and plant-derived compounds, such as resveratrol, have
been demonstrated, including the reduction of tumor
volumes and the prolonged survival in mouse xenograft
[42, 43]. Autophagy is the process in which damaged or
unwanted cytoplasmic constituents are segregated into
autophagosomes and designated for lysosomal degrad-
ation. Autophagy has a cytoprotective role mainly
through eliminating intracellular pathogens via the acti-
vation of the innate and adaptive immune responses,
and it is also noted for its role in maintaining endoplas-
mic reticulum (ER) and metabolic homeostasis in tumor
cells undergoing chronic hypoxia and nutrient depletion.

Chloroquine and its analogs
CQ and its close quinoline-based analogues were de-
veloped primarily to treat malaria [44]. However, they
are increasingly recognized for their effectiveness in a
myriad of non-malarial diseases [45].They have been
shown to have antagonistic effects in late autophagy
by controlling acidic lysosomes, and they currently
have established roles in the treatment of different
cancers, including glioblastoma [46]. With the aim of
determining the molecular mechanisms of enhancing
the chemotherapeutic effect of CQ on malignant glio-
blastomas, recent studies have been dedicated to
probing the cytotoxicity of CQ combined with TMZ.
Reactive oxygen species (ROS) are one of the main

Fig. 1 The known resistance mechanisms of TMZ in glioblastoma treatment
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causes of dysfunctional or damaged mitochondria.
Hori YS et al. found that CQ increases cellular ROS
and augments TMZ cytotoxicity in glioma cells by
inhibiting mitochondrial autophagy. The knockdown
of Beclin1 by siRNA mimics the ROS-mediated en-
hancement of cell death induced by CQ [47]. TMZ
treatment results in G2/M phase arrest, although
apoptosis occurs in a few of the treated glioma cells.
CQ could potentiate the chemosensitivity of glioma
cells to TMZ via blocking autophagy, which is
dependent on the status of p53 [35]. TMZ combined
with CQ synergistically inhibits cell growth through
G2/M arrest in glioma cells expressing mutant p53,
while in cells expressing wild type p53, the combin-
ation therapy induces cell death via apoptosis. A pre-
vious study established that CQ enhances TMZ
cytotoxicity in gliomas by blocking the ER chaperone
and cell survival protein GRP78/BiP-dependent au-
tophagy and inducing the expression of CHOP/
GADD-153 (an ER stress proapoptotic protein) and
PARP (an apoptotic maker) [48]. Furthermore, similar
results have been obtained for other quinoline-based
antimalarial (QBA) drugs, such as hydroxychloroquine
(HCQ), quinine (QN), mefloquine (MFQ), and quina-
crine (QNX). The order of the inhibition potency of
QBAs on autophagy is as follows: QNX >MFQ >
HCQ > CQ >QN. In addition, the antitumor activity
of the most potent compound, QNX, could selectively
accumulate in tumor cell vacuoles in vivo [49].

Targeting autophagy by CQ has attracted attention as
an adjuvant therapy for glioblastoma patients (Clinical-
Trials. gov Identifier: NCT00486603, NCT02378532,
NCT01430351. http://clinicaltrials.gov) (Table 3), be-
cause Briceño E et al. reported the efficacy of adding CQ
to conventional treatment in a prospective controlled
randomized trial [50]. As CQ has a strong antimutagenic
effect and a good toxicological profile, the chronic ad-
ministration of CQ greatly enhanced the response of
GBM to antineoplastic treatment [50, 51]. Moreover, the
combination of the CQ-analogue HCQ and TMZ sig-
nificantly increases the number of therapy-associated
autophagic vacuoles in the peripheral blood mono-
nuclear cells of glioblastoma patients but with a dose-
limiting toxicity [18]. Taken together, these reports
suggest that CQ is likely to be beneficial for the treat-
ment of gliomas and holds promise as an effective ad-
juvant therapy in glioma patients. However, with
some limitations, such as differences in pretreatment
characteristics and conventional treatment regimens,
larger trials are warranted to further confirm the
benefit of CQ and CQ-analogs.
As the anti-tumor mechanism of CQ, autophagy in-

hibition has attracted much more attention to potentiate
TMZ cytotoxicity. The combination of TMZ and CQ-
analogs is an efficient alternative strategy in glioma
treatment and could improve with clinical development.
The application of an optimal dose of CQ and TMZ and
the treatment schedule are important for the synergistic

Fig. 2 Effect of autophagy modulation on the TMZ anti-glioblastoma activity
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Table 1 In vitro studies of autophagy inhibiors on the TMZ anti-glioblastoma activity

Cell lines Therapeutic
methods
(concentration
/exprosure time)

Major findings Interpretation Reference

Rat C6 cells TMZ 100–1,000 μM/
24 hours

CQ potentiated TMZ-induced cytotoxicity. CQ increaseed cellular ROS in glioma cells by
inhibiting mitochondrial autophagy.

[35]

Human U87
cells

CQ 10 μM/24 hours

Human LN229,
U251 and U87
cells

TMZ 20–100 μM/48
hours

CQ increased the chemosensitivity of
glioma cells to TMZ.

CQ blocked autophagy and triggered endoplasmic
reticulum stress.

[48]

CQ 10-25 μM/48
hours

Human
GBM8901cells

TMZ 100 μM/24
hours

Chrysin induced apoptosis, suppressed
migration and invasion, and sensitized GBM
cells to TMZ.

Chrysin inhibited TMZ-induced autophagy and
MGMT expression.

[75]

Chrysin 20 μM/24
hours

Human U87,
GBM8401 and
GBM-SKH cells

TMZ 400 μM/72
hours

Resveratrol enhanced the therapeutic effect
of TMZ against malignant glioma.

Coadministration of resveratrol and TMZ reduced
tumor volumes by suppressing ROS/ERK-mediated
autophagy.

[42]

Resveratrol 10 μM/1
hours

Human U87,
U251 and
SHG‑44U87
cells

TMZ 100 μM/72
hours

ATM inhibitor ku-55933 enhanced TMZ
cytotoxicity in inherently TMZ‑sensitive
glioma cells.

Ku-55933 inhibited the phosphorylation of AMPK,
and reduced the levels of TMZ-induced autophagy.

[54]

Ku-55933 10 μM/72
hours

Human U87
and U251 cells

TMZ 100 μM/72
hours

TMZ chemoresistance was overwhelmed by
targeting ATM.

Ku‑55933 inhibited the activation of ULK1 and
interrupted the cytoprotective process of
autophagy.

[55]

Ku-55933 10 μM/72
hours

Human U-118
cells

TMZ 0–500 μM/24-
48 hours

Inhibition of ERK1/2 partially eradicated the
chemoresistance of U-118 GBM cells to
TMZ.

ERK1/2 specific inhibitors U-0126 prevented the
activation of autophagy by TMZ.

[19]

U-0126 15 mM/48
hours

Human U87
cells

TMZ 400 μM/0–72
hours SP600125 10
μM/1 hours

TMZ-induced autophagy is mediated by JNK
activation.

JNK inhibitor suppressed TMZ-induced JNK
phosphorylation, further blocked autophagy and
increased apoptosis.

[61]

Human LN229
and U251 cells

TMZ 100 μM/24
hours

Targeting eEF-2 kinase can enhance the
anti-glioma activity of TMZ.

Inhibition of eEF-2 kinase by SiRNA or NH125
blocked the activation of TMZ-induced autophagy.

[65]

eEF-2 SiRNA N/A

NH125 0.5 μM/24
hours

Human U251
cells

TMZ 200 and 400
μM/72 hours

Inhibition of autophagy potentiated the
cytotoxicity of curcumin or TMZ as well as
TMZ/curcumin combination.

Autophagy inhibition sensitizes TMZ and curcumin
treated cells to apoptosis.

[81]

Curcumin 15 μM/
72 hours

3-MA 4 mM/72
hours

Human U87
cells

TMZ 400 μM/36-72
hours

TMZ induced autophagy through
mitochondrial damage- and ER stress-
dependent mechanisms to protect glioma
cells.

ETC inhibitors rotenone, sodium azide, oligomycin,
or ER stress inhibitor 4-PBA reduced autophagy and
consequently increased TMZ-induced apoptosis.

[61]

rotenone 20 nM/1
hour

sodium azide 150
μM/1 hour

oligomycin 1 nM/1
hour
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effect of the combination of the drugs. However, the de-
tailed mechanistic role of CQ-analogs and their deriva-
tions as an enhancer of TMZ needs to be further
examined.

Kinase inhibitors
A recent study has found through database mining and
mutation analysis, that approximately 34 kinase genes
are mutationally activated at considerable frequencies in
glioblastomas [52], indicating that kinase inhibition stud-
ies could offer new opportunities for the rational devel-
opment of therapeutic approaches for glioblastomas.
ATM kinase forms a central node in the DNA damage

response phosphorylation cascade by contributing to the
initiation, amplification and transmission of the DNA
damage signal to downstream substrates [53]. A study
by Wang W’s group demonstrated that, in glioblastomas,

TMZ treatment induces cytoprotective autophagy
through the ATM-AMPK (adenosine monophosphate-
activated protein kinase) pathways, which occurs in a
MMR protein-MLH1-dependent manner. The ATM in-
hibitor ku-55933 can abrogate the ATM-AMPK signal-
ing pathway, which further enhances TMZ cytotoxity in
glioma cells [54]. Meanwhile, the interruption of the
ATM-AMPK pathways ku-55933 inhibits the cytopro-
tective process of autophagy, which results in the aug-
mentation of the TMZ cytotoxic effect and promotes
glioma cell death under apoptotic stress [55]. In
addition, Nadkarni A et al. found the inhibition of ATM
activation by ku-55933 suppresses the repair of TMZ-
induced DSBs (DNA double-stranded breaks) in inher-
ently TMZ-sensitive tumor lines [56]. The loss of ATM-
mediated BER results in increased alkylating agent-
induced cytotoxicity in vitro and prolonged survival in

Table 1 In vitro studies of autophagy inhibiors on the TMZ anti-glioblastoma activity (Continued)

4-PBA 10mM/1
hour

Human U87
and U251 cells

TMZ 50–200 μM/48
hours

Targeting VAMP8 alleviated TMZ resistance
in glioma cells.

silencing of VAMP8 by SiRNA could impaire the
TMZ-induced autophagic flux.

[69]

VAMP8 SiRNA N/A

Table 2 In vivo studies of autophagy inhibitors and inducers on the TMZ anti-glioblastoma activity

Effect of
autophagy
modulation

Subject Agent regimen Major findings Interpretation Reference

cytoprotective
role

Xenografts of
human U87 MG
GBM cells in male
athymic nu/nu
mice

CQ 10 mg/kg + TMZ 5 mg/kg
given by oral gavage for 48 hours
with water.

CQ enhances the cytotoxic
effects of TMZ by blocking
autophagy.

CQ in combination with TMZ
significantly increased the
amounts of LC3B-II, CHOP/
GADD-153, and cleaved PARP.

[48]

Xenografts of
human U87 GBM
cells in athymic
nude mice

50 mg/kg of QNX for 24 hours; 25
mg/kg QN, CQ, MFQ, or QNX for
48 hours.

QBAs, a novel class of
autophagy inhibitors, are
holding the promise for the
coadministration treatment of
gliomas.

QNX selectively accumulates in
tumor cell vacuoles. QBAs have
the ability to induce ER stress
potentially leading to
apoptosis.

[49]

Xenografts of
human U87 MG
GBM cells in
nude mice

Resveratrol 12.5 mg/kg + TMZ 10
mg/kg injected intraperitoneally for
12 days.

Resveratrol increases the
effect of TMZ in glioma
xenografts by reduceing
tumor volumes.

Coadministration of resveratrol
and TMZ suppressing ROS/ERK-
mediated autophagy and
subsequently inducing
apoptosis

[42]

Xenografts of
SJG2 pediatric
GBM in NOD-
SCID mice

MA 100 mg/kg + TMZ 65 mg/kg
given by oral gavage for two
weeks.

Combination had a significant
increase in survival.

ATM-MPG axis will lead to
improved treatment of
alkylating agent-resistant
tumors.

[43]

Autophagy-
associated cell
death

Xenografts of
human U87 and
T98 GBM cells in
nude mice

THC 15 mg/kg + TMZ 5 mg/kg
injected peritumorally for 14 days
in 100 mL of PBS supplemented
with 5 mg/mL defatted and
dialyzed BSA.

Combined treatment with
THC and TMZ strongly
reduces the growth of glioma
xenografts.

Combined treatment with THC
and TMZ enhances autophagy-
mediated cell death.

[86]

Xenografts of
human U87 MG
GBM cells in
female BALB/c
nu/nu mice

AdWT or CRAd-S-pk7 3×109 vp in 5
μl + TMZ 70 or 10 mg/kg in 100 μl
injected with five consecutive
intraperitoneal.

In which 90% of the mice
with intracranial tumours
were long-term survivors after
treatment with TMZ and
CRAd-S-pk7.

As both LC3 and cleaved
Caspase-3 expressed, both
autophagy and apoptosis are
responsible for cell death.

[90]
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vivo [43]. These results suggest that ku-55933 may be an
effective TMZ-sensitizing agent.
The mitogen-activated protein kinase (MAPK) signal-

ing pathway is usual activated by upstream genomic
events and functions as a tumor suppressor and more
commonly, a pro-oncogenic signal [57]. Therapies tar-
geted toward MAPK/extracellular signal-regulated kin-
ase (ERK) components have various response rates when
used in different solid tumors, such as glioblastomas
[58]. Previous studies have reported that in patient
tumor tissue samples, ERK was phosphorylated, indicat-
ing that this survival pathway was active in glioma cells
[59]. Lin CJ et al. revealed that TMZ induces the gener-
ation of ROS and the activation of ERK, which conse-
quently leads to protective autophagy in glioma cells
[42]. Because ERK signaling pathways sustain key fea-
tures that characterize gliomas, i.e., enhanced prolifera-
tion and invasion, protection from proapoptotic stimuli
and the activation of autophagy, it is likely that they may
contribute to TMZ chemoresistance. The results from
Lopes MC’s group demonstrated that the chemoresis-
tance of U-118 GBM cells to TMZ was partially eradi-
cated when the cells were simultaneously treated with
TMZ and specific inhibitors of the ERK1/2 kinase sig-
naling pathways [19]. In addition, the MAPK/c-Jun
N-terminal kinase (JNK) signaling transduction path-
way functions to induce defence mechanisms that
protect organisms against various stress situations.
And this pathway has also been repeatedly linked to

the molecular events involved in autophagy regulation
[60]. Lin CJ et al. reported that TMZ-induced autoph-
agy was mediated by JNK activation in U87 cell lines,
and the JNK inhibitor, SP600125, inhibited cell au-
tophagy, furtherly increasing the percentage of cells
undergoing apoptosis [61].
Eukaryotic elongation factor-2 kinase (eEF-2 kinase,

also known as calmodulin-dependent protein kinase
III), a critical enzyme controlling protein translation,
is up-regulated in several types of malignancies, in-
cluding gliomas [62]. Studies have reported that the
expression and activity of eEF-2 kinase favor glioma
cell survival and by blunting the autophagic response,
eEF-2 kinase modulates the sensitivity of tumor cells
to therapeutic agents, such as curcumin [63] and
MK-2206 [64]. Liu XY et al. found that inhibiting
eEF-2 kinase with siRNA or the inhibitor 1-
Hexadecyl-2-methyl-3-(phenylmethyl)-1H-imi-dazo-
lium iodide (NH125) could enhance the anti-glioma
activity of TMZ, and this sensitizing effect was associ-
ated with the blockade of autophagy and the augmen-
tation of apoptosis caused by TMZ [65].

Mitochondrial electron transport chain inhibitors
Autophagy is a crucial process for cells to maintain
homeostasis and survival through the degradation of cel-
lular proteins and organelles, including mitochondria
and ER [66]. Studies have indicated that TMZ could in-
duce ROS/ERK-mediated cytoprotective autophagy to

Table 3 Clinical trials of CQ-analogs combined with TMZ in cancer therapy

Studys Type Year of
registration

Sponsor Drugs Tumor type Targeted
enrolment

Status Major findings

NCT00486603[41] Phase
I

2007 Sidney Kimmel
Comprehensive
Cancer Center

200, 400, 800
mg/day HCQ +
150-200 mg/
m2/day TMZ for
5 d [q4wk] + RT

Newly
diagnosed
GBM

16 Complished HCQ 600 mg/day was found to
be the MTD in this
combination.

NCT00486603[41] Phase
II

2007 Sidney Kimmel
Comprehensive
Cancer Center

600 mg/day
HCQ + 150-200
mg/m2/day
TMZ for 5 d
[q4wk] + RT

Newly
diagnosed
GBM

76 Complished Median survival of 15.6 mos
with survival rates at 12, 18, and
24 mo of 70%, 36%, and 25%.
PK analysis indicated dose-
proportional exposure for hCQ.
AV in PBMC: patients with Cmax
above 1785 ng/mL had a in-
creased median AV change of
1.01.

NCT02378532a Phase
I

2015 Maastricht
Radiation
Oncology

200-600 mg/
day HCQ + 150-
200 mg/m2/day
TMZ for 5 d
[q4wk] + RT

Newly
diagnosed
GBM

9 Not yet
open

N/A

NCT01430351a Phase
I

2011 M.D. Anderson
Cancer Center

250 mg/day
MFQ for 3 d/
week+ 150 mg/
m2/day TMZ for
5 d [q4wk]

Post-RT
Glioblastoma

144 Recruiting
participants

N/A

a Further information can be found at http://clinicaltrials.gov
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protect glioma cells from apoptosis [42, 61]. When treat-
ing the glioma cells with a combination of TMZ and
mitochondrial electron transport chain inhibitors, such
as rotenone, sodium azide, oligomycin or the ER stress
inhibitor 4-phenylbutyrate, the TMZ-induced apoptosis
and cell death could be significantly augmented by inhi-
biting autophagy [61].

Vesicle-associated membrane protein 8 siRNA
Soluble N-ethylmaleimide-sensitive factor receptors
(SNAREs) are a super family of small proteins with more
than 35 members in mammals, varying in size and pri-
mary structure. As an essential mechanism for cellular
activities, SNAREs have been observed in the progres-
sion of various tumors [67, 68]. Vesicle-associated mem-
brane protein 8 (VAMP8), first identified as an
endosomal SNARE, is significantly overexpressed in hu-
man glioma specimens and promotes cell proliferation.
Furthermore, VAMP8 contributes to TMZ resistance by
elevating the autophagic level, while silencing of VAMP8
using siRNA could impair the autophagic flux and allevi-
ate TMZ resistance in glioma cells [69].

Isocitrate dehydrogenase 1 mutation
Genetic and epigenetic studies, such as the Cancer
Genome Atlas Project (TCGA), are finding enormous
heterogeneity in the mutations and other genetic ab-
errations among GBM patients [70]. Isocitrate de-
hydrogenase 1 (IDH1) is a potential biomarker and
drug target for GBM. Mutations of IDH1 are one of
the most common and earliest detectable genetic al-
terations in low-grade diffuse gliomas, and evidence
supports this mutation as a driver of gliomagenesis
[71]. Among these mutations, the R132H mutation
seems to be a more powerful prognostic marker in
slow-growing gliomas, and it is associated with a
more favorable outcome and better response to
TMZ [72]. Gilbert MR et al. recently reported that
the autophagy substrate p62/sequestosome-1 protein
accumulates in both U87 cells that overexpress the
R132H mutant protein and patient-derived IDH1-
mutant tumors [73]. These findings suggest that the
IDH1 mutation leads to the inhibition of autophagic
flux, resulting in the promotion of cell death. Thus,
attenuating autophagic activation may contribute to
a better response to TMZ in IDH1 mutant tumors.

Plant-derived compounds
To enhance the benefit of TMZ in the treatment of ag-
gressive glioblastomas, effective combination strategies
that sensitize glioblastoma cells to TMZ are important
to prevent the recurrence of these tumors. In this regard,
natural products, such as flavonoids, have received

considerable attention because of their lower amount of
side effects and effectively inhibition of autophagy-
mediated the pro-survival roles [74]. Chrysin, the most
active ingredient of pine needle extract, markedly inhib-
ited TMZ-induced autophagy and induced apoptosis, in-
dicating that chrysin may serve as a potential anticancer
agent against glioblastomas [75]. Resveratrol (Rsv), a nat-
ural, purified polyphenolic compound, has additive tox-
icity with TMZ in several glioma cell lines in vitro [76]
and in vivo [42]. Lin CJ et al. found that Rsv acts syner-
gistically with TMZ in apoptosis, which is accompanied
by a decrease in TMZ-induced cytoprotective autophagy.
The co-administration of Rsv and TMZ reduced tumor
volumes by suppressing ROS/ERK-mediated autophagy
and subsequently inducing apoptosis in a mouse xeno-
graft study [42]. Autophagy inducer sulforaphane (SFN),
a isothiocyanate derived from cruciferous plants [77],
could remarkably suppress cell growth and enhance cell
death in TMZ-resistant glioblastoma cells and xeno-
grafts [78]. Given autophagy inhibition could enhance
SFN-induced apoptosis in the breast cancer [79], pros-
tate cancer [80], etc., combination autophagy inhibitor
and SFN might be a synergistically promising strategy
for the TMZ treatment on GBM. Additionally, due to
protective autophagy mechanism both in vitro and in
vivo, the synergy between therapeutic agent curcumin
and TMZ was not achieved. Autophagy inhibition could
improve the efficacy of curcumin/TMZ combination
therapy, providing novel opportunities to improve brain
tumor treatment [81].
As the different physicochemical property of plant-

derived extracts and stimulation intensity on cells, other
progresses have shown that some compounds, like the
Cannabis sativa (CS), could enhance the TMZ sensitivity
by inducing the autophagic cell death. Even though most
people are familiar with the palliative effects of the pri-
mary psychoactive constituent of CS, non-psychoactive
cannabinoids can inhibit tumor cell viability, invasion, me-
tastasis, and angiogenesis of cancer cells, such as glioma
cell lines, which are closely related to autophagy and
apoptotic-mediated cancer cell death [82, 83]. Studies have
found that △9-tetrahydrocannabinol (THC), the main ac-
tive component of CS, can induce autophagy-mediated
cell death through the stimulation of endoplasmic
reticulum stress or the midkine/ALK (anaplastic lymph-
oma kinase) axis and can further sensitize therapy-
resistant tumors to antitumor action [84, 85]. Torres S et
al. found that the combined administration of THC and
TMZ exerts a strong anti-tumor action in glioma xeno-
grafts and TMZ-resistant xenografts with MGMT-positive
T98G cells, an effect that relies, at least in part, on the
stimulation of autophagy-associated cell death in tumor
cells. However, the inhibition of the autophagic process
using the class III PI3K inhibitor 3-methyladenine (3-MA)
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could prevent TMZ and THC-induced cell death [86]. Al-
ternative attractive compound to sensitize the cells to
TMZ is a steroidal lactone derived from several genera of
the Solanaceae plant family, Withaferin A (WA). Combin-
ation treatment with WA and TMZ resulted in resensiti-
zation of MGMT mediated TMZ-resistance by Akt/
mTOR pathway inhibitory modulation [87], which prob-
ably enhance the autophagic cell death in PTEN-null U87
glioma cells [88].

Autophagy-associated cell death
In the treatment of glioblastomas, chemotherapeutic
drugs, including arsenic trioxide and TMZ [89], can trig-
ger autophagy-associated cell death and further improve
their therapeutic effects. Autophagy inhibition may pro-
duce controversial cellular outcomes, including cytopro-
tection as alluded above and autophagy-associated cell
death. Autophagy-associated cell death exerts its effect
primary through the overactivity of autophagy, by which
the degradation of cytoplasmic content proceeds to com-
pletion. Using siRNA against the Beclin1 or ATG7 genes
totally prevents the decrease in viability after radiation/
TMZ treatments in T98G and U373 glioblastoma cell lines
[23]. In addition, autophagy-mediated apoptosis stimulating
agents, such as Δ9-tetrahydrocannabinol [86] and oncolytic
adenovirus CRAd-Surivin-pk7 [90], combined with TMZ
strongly reduce the growth of glioma xenografts, suggesting
that the combined administration of TMZ and autophagy
inhibitors could be therapeutically exploited for the man-
agement of GBM. These results enforce the concept that
autophagy-associated cell death might constitute a possible
adjuvant therapeutic strategy to enhance conventional
GBM treatments (Tables 2 and 4).

Kinase inhibitors
Though some kinases inhibitors above mentioned have
been proved to increase the cytotoxicity of TMZ by inhi-
biting the cell autophagy, recent studies have indicated
that other kinase inhibitors, like the tyrosine kinase in-
hibitors (TKI), could cause the remarkable autophagic
cell death [91], and resulted in a significant reduction in
glioma tumor growth [92]. Milano V’s group found that
Dasatinib (BMS-354825), an orally bioavailable tyrosine
kinase inhibitor, could lead to a significant increase in
the sensitivity to TMZ therapy via generating cell cycle
disruption and autophagic cell death [93]. Furthermore,
the cell surface receptor, epidermal growth factor recep-
tor tyrosine kinase (EGFR-TK) is highly amplified, mu-
tated, and overexpressed in human malignant gliomas
[94]. EGFR signaling could induce the phosphorylation
of pro-survival STAT3, ERK1/2 and Akt, which contrib-
utes significantly to GBM cell proliferation [95]. Thus,
therapeutic strategies to inhibit EGFR kinase activity
represent an avenue of profound beneficial effects for

gliomas. The combined treatment of nimotuzumab
(monoclonal antibody against EGFR) and rapamycin ef-
fectively enhances glioma cell death in TMZ-resistant
glioma cells [31]. The over-expression of miR-340 sup-
pressed several oncogenes, including EGFR, and further
dramatically inhibited glioma cell proliferation, induced
cell-cycle arrest and apoptosis, and promoted autophagy
[96]. EGFR interference using siRNA results in an in-
crease of TMZ cytotoxicity in T98G TMZ-resistant cells,
which was through activation of a pro-death autophagy
process [97].
The aberrant PI3K/Akt/mTOR pathway has been

shown to contribute to the resistant phenotype of gli-
omas [36, 98]. Therefore, the PI3K/Akt/mTOR pathway
is regarded as an important amenable pathway for
pharmacological interventions in gliomas. In radioresis-
tant glioma cells, treatment with the mTOR inhibitors
rapamycin and PP242 can enhance radiosensitivity by
potently and persistently activating the autophagic flux
[99]. After combined radiotherapy and TMZ treatments,
rapamycin-mediated autophagy is able to promote ma-
lignant glioma cell death [23]. Another group also found
that PI103, a dual inhibitor of PI3K and mTOR, could
increase autophagy and further increase the cytotoxicity
of radiation and TMZ [100]. However, it was note
worthy that, as opposed to the previous findings, treat-
ment with rapamycin alone did not discernibly potenti-
ate the radiosensitizing effect of TMZ in both U251 and
T98G cells [100]. These results suggest that more careful
studies are needed to determine optimal treatment com-
binations of TMZ and mTOR inhibitors.
Sphingolipids are structural and functional compo-

nents of biological membranes, which benefit the main-
tenance of membrane structure and fluidity. They are
also implicated in bio-effector roles in cancer pathogen-
esis. The roles of bioactive sphingolipids, specifically
sphingosine kinase 1 (SK1) and 2 (SK2) and their pro-
duct—sphingosine 1-phosphate (S1P), have been shown
to regulate the cancer cell proliferation, survival, and
treatment responses. Modulating the metabolism of bio-
active sphingolipids has been shown to be a potentially
important target in treating malignancies [101, 102]. Par-
ticularly, because sphingosine kinases (SK1 and SK2),
serving as the oncogenic enzymes, have been found to
induce transforming phenotype in many tumors, includ-
ing glioblastomas [37, 103], inhibition of SK may be-
come a promising anticancer strategies [104]. Noack J et
al. found that the combination of TMZ and sphingosine
kinases inhibitors (SKIs) resulted in an increase autopha-
gic flux and further induced cell death in GBM cell lines.
This role of autophagy-associated cell death in the com-
bination of SKI and TMZ treatment was demonstrated
by the decrease in cell death after specific and efficient
the siRNA-mediated knockdown of Beclin1 [105].
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Histone deacetylases inhibitors
Histone deacetylases (HDACs) constitute a family of en-
zymes that play important roles in the epigenetic regula-
tion of gene expression and contribute to the growth,
differentiation and apoptosis of cancer cells, including
glioblastomas [106]. Recently, strategies to enhance
tumor cytotoxicity and radiosensitivity have started to
focus on HDACs. Many HDAC inhibitors have been
demonstrated to enhance the cytotoxicity and therapy
sensitivity of human glioma cell lines [107]. Among
these HDAC inhibitors, 2-propylpentanoic acid (VPA) is
one of the most interesting. VPA is a short-chain fatty
acid that belongs to the HDAC inhibitor family. A com-
bination of VPA and TMZ has a significantly enhanced

antitumor effect in TMZ-resistant malignant glioma
cells. This enhanced antitumor effect correlates with en-
hanced apoptotic and autophagic cell death [108]. Chen’s
group also found if combined with VPA for 96 hours,
the sensitivity of glioma cells to TMZ was significant in-
creased. The combination treatment of TMZ and VPA
results in a significant cell cycle block and increased
apoptotic rates as well as autophagy rates in T98G and
SF295 cell lines [109].

Bcl2 family inhibitors
As mentioned earlier, antiapoptotic Bcl-2 family mem-
bers, such as Bcl2L12, suppress both apoptosis and au-
tophagy, and they are of major importance for therapy

Table 4 In vitro studies of autophagy inducers on the TMZ anti-glioblastoma activity

Cell lines Therapeutic methods (concentration
/exprosure time)

Major findings Interpretation Reference

Human U87/
EGFR and
U251 cells

TMZ 5 and 50μM/48-72
hoursdasatinib 200 nM/48-72 hours

Augmentation of Dasatinib-
Induced Autophagy in combin-
ation with Temozolomide.

TKI increased autophagic cell death and
sensitivity of TMZ therapy.

[93]

Human T98G
and U373 cells

TMZ (300 μM) was added to the
culture immediately after IR/ time: N/
Arapamycin 0.1, 0.5, and 1 mM/24
hours

Autophagy-associated cell death
sensiyized glioma cells to
combined radiotherapy/ TMZ
treatments.

Rapamycin-mediated autophagy promoted
malignant glioma cell death induction after
combined radiotherapy/TMZ treatments.

[23]

Human U251,
U87, and T98G
cells

TMZ 25 μM/24 hoursIR 6Gy/6
hoursPI103 0.4 μM/24 hours

A dual inhibitor of class I PI3K/
mTOR, PI103, increased the
cytotoxic effect of radiation
therapy plus TMZ.

Enhanced radiosensitizing effects of TMZ by
PI103 induced the autophagy and
apoptosis, and reversed the EMT.

[100]

Human NCH82
cells

TMZ 500 μM/72 hoursSKI 10 μM/72
hours

SKI could sensitize GBM cells to
TMZ treatment.

Combination of TMZ and SKI resulted in
autophagic flux increased and further
induction of cell death potentiation.

[105]

Human T98G
and SF295
cells

TMZ 25μM/96 hoursVPA 1mM/96
hours

VPA increased the sensitivity of
glioma cells to TMZ.

VPA enhanced the activities of TMZ on
glioma cells through blocking cell cycle and
promoting autophagy.

[109]

Human U87,
U343, LNT-229,
and MZ-54
cells

TMZ100μM/96 hours(−)-Gossypol
15μM/48 hours

Pan-Bcl-2 inhibitors augmented the
action of TMZ on apoptosis-
resistant malignantglioma cells.

Pan-Bcl-2 inhibitors (−)-Gossypol induced
caspase-independent, autophagic cell death
when combined treatment with TMZ.

[112]

Human T98G
and U373 cells

TMZ 100μM/48 hoursEGFR SiRNA
1μM/72 hours

EGFR interfering resulted in an
increase of TMZ cytotoxicity in
TMZ-resistant GBM cells.

EGFR SiRNA inhibited the pro-death au-
tophagy and sensitized GBM cells to subse-
quent TMZ treatments

[97]

Human U251
cells

TMZ 100 μM/72 hoursNrf2 shRNA N/
A

Combination of TMZ and the
knockdown of Nrf2 could enhance
the antitumor effects of TMZ in
GBM.

Knockdown of Nrf2 by shRNA enhanced
autophagy induced by TMZ.

[117]

Human U87,
T98G, and
HG19 cells

TMZ 25-75μM/72 hoursTHC 0.9μM/72
hours

Coadministration of TMZ with THC
exerted a strong antitumoral action
in glioma cells.

Combined administration of THC and TMZ
enhanced autophagy-mediated apoptosis
in tumor cells.

[86]

Human T98G
and U251 cells

TMZ 300-500 μM/24 hoursWA 0.5-
2μM/24 hours

Combination treatment with WA
and TMZ resulted in resensitization
of TMZ-resistance

Withaferin A resensitizes TMZ-resistant GBM
cells to TMZ through MGMT depletion

[87]

Human U87
and U373 cells

TMZ 100 μM/24 hoursoncolytic
adenovirus 100 vp per cell/24 hours

Oncolytic adenovirus led to
improved efficacy of TMZ
treatment against a panel of
glioma cell lines.

Combination of oncolytic adenovirus with
TMZ increased tumor cell autophagy and
apoptosis-mediated cell death.

[90]

Rat RG2 cells TMZ 100 μM/48 hoursPTx 20 ng/ml
/48 hours

PTx has the potential to be useful
as an adjunct to TMZ
chemotherapy on glioma.

Concomitant treatment with TMZ and PTx
elicited autophagic cell death in vitro and
increased the survival in RG2 glioma model.

[122]
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resistance of malignant gliomas [110]. The deregulation
of Bcl2 family proteins mostly contributes to apoptosis
evasion, suggesting that the inhibition of Bcl2 proteins is
one of the most promising new approaches to targeted
cancer therapy [111]. The Bcl2 inhibitor ABT-737 could
counteract the anti-apoptotic role of Bcl2L12 and
sensitize drug response of GBM cells to TMZ [110]. In
addition, the pan-Bcl2 inhibitor (−)-gossypol efficiently
potentiates caspase-independent autophagic cell death in
apoptosis-resistant malignant glioma cells, and it further
augments the action of TMZ. The extent of this cell
death could be strongly diminished by the lentiviral
knockdown of Beclin1 and ATG5 [112].

Nuclear factor E2-related factor 2 inhibition
Nuclear factor E2-related factor 2 (Nrf2), a pivotal
transcriptional factor of cellular responses to oxidative
stress, is observed to function remarkably in glioblast-
oma pathobiology. Nrf2 activation contributes the
tumorigenesis of autophagy-deficient cells [113]. In
addition, a significant negative correlation has been
found between Nrf2 expression and the outcome for
GBM patients [114]. Recent studies have reported
that development of chemoresistance is associated
with the constitutive activation of the Nrf2-mediated
signaling pathway in many types of cancer cells, in-
cluding gliomas [115]. Chrysin, a potent Nrf2 inhibi-
tor, could effectively reverse the resistance of an
anticancer drug by down-regulating the PI3K/Akt and
ERK pathways [116]. The knockdown of Nrf2 by
siRNA enhances autophagy induced by TMZ and de-
creases the viability of U251 cells [117]. These find-
ings suggest that the combination of TMZ and the
inhibition of Nrf2 may point to a novel therapeutic
opportunity for GBM to enhance the antitumor ef-
fects of TMZ.

Oncolytic adenoviruses
The potential use of adenoviruses in therapy against can-
cer has evoked a rapidly moving field of research. Emer-
ging evidence indicates that as a cancer drug, oncolytic
adenoviruses can induce autophagic cell death in glioma
cancer cells [118]. The use of autophagy inducers, such
as rapamycin, can enhance the oncolytic potency of re-
combinant adenoviruses. Furthermore, studies have
demonstrated the capability of adenoviruses to inhibit
the expression of the DNA repair enzyme MGMT and
to chemosensitize glioma cells to TMZ [119]. As oncoly-
tic adenoviruses show promising safety and efficacy, the
combination of oncolytic adenoviruses with TMZ could
increase tumor cell autophagy and elicit antitumor im-
mune responses, resulting in disease control in 67 % of
chemotherapy refractory cancer patients [120]. Ulasov
IV et al. also found that pretreatment with TMZ,

followed by treatment with oncolytic adenovirus CRAd-
Surivin-pk7, exhibits an additive cytotoxicity effect in
vitro and in vivo, which is associated with increased
autophagy-associated cell death and a therapeutic addi-
tive effect in the survival of mice bearing intracranial gli-
oma xenografts [90].

Pertussis toxin
Pertussis toxin (PTx), an exotoxin produced by Borde-
tella pertussis, regulates the activation induced by au-
tophagic process in cancer cells [121]. A recent study
indicated that PTx has the potential to be useful as an
adjunct to TMZ chemotherapy on gliomas. Concomitant
treatment with TMZ and PTx can elicit autophagic cell
death in vitro and increase survival in the RG2 glioma
model [122].

Conclusions
Resistance to TMZ chemotherapy is a major obstacle to
the success of glioma therapy. The roles of autophagy
regulation, which cause multiple impacts on chemosen-
sitivity, are still highly perplexing in glioma treatment.
Clearly, the regulation of autophagy corresponding to
TMZ therapy and the resulting downstream effects are
complex and are very likely to be in a cell type-specific
manner. The competence of a cell to survive or die is
theoretically proportional to the doses and duration of
TMZ treatment, the DNA-damage repair capacity of the
cells, the proliferation level, and the effectiveness of acti-
vating DNA repair proteins including ATM kinases.
How can the autophagy act as the pro-survival or pro-
death roles, and how are the decisions made? Hypothet-
ical models predict that with the low doses and short-
term TMZ treatment, autophagy is a survival mechan-
ism, whereas upon the persistent TMZ treatment, au-
tophagy becomes a process that is out of control and
induce the cell death. With this context, the treatment
thresholds have an import role. These pro-death and
pro-survival pathways, and how they interact, are needed
to be discussed more in the future.
Although the controversy about the prosurvival or an-

ticancer effect of autophagy is still heated, the data in
clinical trials seem to support the cytoprotective role of
autophagy inhibitors, such as CQ and its analogs, pre-
ceding treatment with TMZ. However, whether other
different autophagy inhibitors, such as bafilomycin A1,
monensin, 3-MA, pyrvinium and wortmannin, which
block the autophagic process at different stages, have the
same pharmacological features as CQ are still unknown.
At the present, it is not completely clear how autophagy
influences cells, especially in TMZ resistant tumors.
Moreover, it remains unclear how autophagy participates
in the unique mechanical properties of microenviron-
ments (e.g., hypoxia and acidity) under TMZ exposure.
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Further investigation of these issues may help to identify
more combination strategies to enhance the benefits of
TMZ chemosensitivity and chemoprotection in the
treatment of aggressive glioblastomas.
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