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Abstract
While genetic networks and other intrinsic mechanisms regulate much of retinal development, interactions with 
the extracellular environment shape these networks and modify their output. The present review has focused 
on the role of one family of extracellular matrix molecules and their signaling pathways in retinal development. 
In addition to their effects on the developing retina, laminins play a role in maintaining Müller cell polarity 
and compartmentalization, thereby contributing to retinal homeostasis. This article which is intended for the 
clinical audience, reviews the fundamentals of retinal development, extracellular matrix organization and the 
role of laminins in retinal development. The role of laminin in cortical development is also briefly discussed.
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order neurons. The retinal network, with complex 
connectivity among the retinal interneurons, leads to 
multiple paths of temporally and spatially encoded 
information about the visual world, including color, 
motion, size and orientation. This information is 
transmitted out of the retina by retinal ganglion cells to 
numerous sites in the brain.

The encoding of light energy into neuronal signaling 
is produced in the meticulously polarized retina with a 
defined laminar architecture which underlies its function 
[Figure 1]. The polarized organization of retinal structure 
is dependent on appropriate positioning and spacing 
of cells, as well as proper development of neuronal 
connections which are required for the generation of 
functional circuitry. Moreover, retinal homeostasis is 
dependent on the polarized morphology of Müller cells.[2] 

INTRODUCTION

Mammalian vision begins with transmission of light 
through the cornea and lens to the retina. The highly 
specialized retina converts energy from absorbed 
photons into neural activity such that the brain can 
interpret the pattern of the detected photons.[1]

Light energy is transduced into changes in membrane 
potential in the photoreceptor outer segments, and then 
into changes in synaptic transmitter output to second 
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The unifying theme in all these processes is establishment 
and maintenance of cell and tissue polarity.

The seven different types of retinal cells, of which six 
are neurons and one is a glial cell, the Müller cell (MC), 
are precisely positioned [Figure 1].[3,4] The input neurons 
(rod and cone photoreceptors) have nuclei in the outer 
nuclear layer (ONL); the retinal interneurons (horizontal, 
bipolar and amacrine cells) have nuclei in the inner 
nuclear layer (INL). A single class of projection neurons, 
the retinal ganglion cells, is in the eponymous layer, 
named the retinal ganglion cell layer (GCL). Between 
these three nuclei and cytoplasm‑rich layers, there 
are nuclei‑poor layers in which retinal neurons make 
synapses, called the outer and inner plexiform layers. 
The outer plexiform layer (OPL) separates the ONL from 
the INL and the inner plexiform layer (IPL) separates the 
INL from the GCL [Figure 1]. A specialized basement 
membrane, the inner limiting membrane, separates the 

GCL from the vitreous body and serves as an attachment 
surface for a variety of retinal cells.

THE EXTRACELLULAR MATRIX AND 
RETINAL BASEMENT MEMBRANES

In all metazoans, components of the extracellular matrix 
(ECM) are organized into thin specialized sheets of 
basement membranes.[5] The functions of basement 
membranes are to act as platforms for cell adhesion, to 
provide structural support to a tissue, to divide tissues 
into compartments, and to regulate cell behavior including 
polarity. Polarized cellular functions are regulated by 
the ECM in a variety of cell types including epithelial 
cells,[6] neurons,[6‑8] immune cells[9] and glial cells such as 
astrocytes, oligodendrocytes and Schwann cells.[10]

Interactions of cells with basement membranes are 
mediated by transmembrane cell surface receptors which 
connect the cell’s cytoskeleton with the extracellular 
environment, leading to the formation of site‑specific 
focal adhesions.[11,12] The extracellular cues established 
by binding of cells to the ECM are propagated to the 
nucleus from the cell surface by cytoskeletal molecules 
such as actin and tubulin, resulting in outside‑to‑inside 
signaling.[13,14] Disruptions along this pathway have 
been reported in both developmental deformities and 
pathologies in kidney, muscle, skin, central nervous 
system (CNS), brain and retina.[13,15‑18]

The mature, polarized retina is structurally and 
functionally supported by two basement membranes 
i.e., Bruch’s membrane, at the interface of the retinal 
pigmented epithelium with the choroid, and the inner 
limiting membrane (ILM) at the interface of the neural 
retina with the vitreous body [Figure 1]. Several retinal 
pathologies result from changes in the organization 
or composition of these basement membranes. These 
pathologies include diabetic retinopathy, retinopathy 
of prematurity, age related macular degeneration and 
proliferative vitreoretinopathy.[19,20]

In the present article, retinal basement membranes will 
be discussed, including one important class of basement 
membrane components, the laminins; the interaction 
of retinal basement membranes with neighboring cells 
will also be addressed. We will then focus on the role 
of retinal basement membranes, especially the ILM, in 
establishing and maintaining cellular polarity within 
the retina. This polarity is required for the development 
and function of various retinal cells including retinal 
progenitor cells, retinal ganglion cells and Müller glial 
cells. First, the general process of retinal development 
will be reviewed in this context.

RETINAL DEVELOPMENT FROM A 
COMMON PROGENITOR CELL

The retina arises from an out‑pocketing of the 

Figure 1. Cross sectional diagrams of the mammalian retina. 
All vertebrate retinas are composed of three layers of nerve 
cell bodies and two layers of synapses. The light transducers, 
photoreceptors (rods and cones), are positioned outermost 
in the retina, against the retinal pigment epithelium (rpe) 
and choroid (not shown). Light is transduced in the outer 
segments (OS) of rods and cones. The outer nuclear layer (ONL) 
contains cell bodies of the rods and cones; the inner nuclear 
layer (INL) contains cell bodies of the bipolar, horizontal and 
amacrine cells. The output neurons of the retina, ganglion 
cells, lie in the ganglion cell layer (GCL). Ganglion cell axons 
course through the nerve fiber layer (NFL) abutting the inner 
limiting membrane (ILM). In between these cell layers are two 
synaptic, or plexiform, layers. Synaptic connections between 
photoreceptors, and bipolar cells and horizontal cells are 
contained in the outer plexiform layer (OPL) while synapses 
among bipolar cells, amacrine cells and ganglion cells are 
found in the inner plexiform layer (IPL). The resident glial cell 
of the retina, the Müller cell spans nearly the entire thickness 
of the neural retina. Its end feet adhere to the ILM at the basal 
surface and it forms adherens junctions with photoreceptors 
at the apical surface, forming the outer limiting membrane 
(OLM). Modified with additions from original drawings of 
Schultze;[103] Ramon y Cajal[104].
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diencephalon that projects toward and contacts the 
surface ectoderm. As the result of interactions between 
the eye vesicle and the overlying ectoderm (lens placode), 
the optic vesicle involutes, forming a double‑walled 
eyecup. Each layer of this dual layered eyecup undergoes 
its own morphological change: The inner layer becomes 
the neural retina and expands dramatically into a 
multi‑layered structure, while the outer layer, the 
retinal pigmented epithelium, remains a single cell layer 
[Figure 2].

The early embryonic retina is a single sheet of 
pseudostratified neuroepithelial cells and its single class 
of progenitor cells gives rise to all of the retinal neurons 
and Müller glial cells.[21] In contrast, the mature neural 
retina is comprised of six major classes of neuronal cell 
[Figure 3], each of which has stereotyped organization 
and connectivity.

The cells of the mature neural retina arise in a 
temporal sequence which is ordered in two overlapping 
waves, largely conserved among vertebrates [Figure 3]. 
The first wave generates ganglion cells, amacrine cells 
and horizontal cells, along with cone photoreceptor cells. 
The second wave produces rod photoreceptor cells and 
bipolar cells, along with Müller glial cells.[22,23] Although 
this sequence of events is largely conserved among 
vertebrates, the precise timing of neurogenesis and its 
component waves varies from species to species; in mice, 
the first wave begins at approximately embryonic day 11 
and the second wave is complete by postnatal day 10.[24]

The orderly exit from mitosis and subsequent 
differentiation in the retina is crucial for the production 
of properly layered retina. The regulation of cell cycle 
length and the mode of cytokinesis both determine 
whether any given cell division is symmetric or 
asymmetric and thereby contributes to the regulation 
of cell neurogenesis.

Symmetric divisions generate two daughters of the 
same fate: Both remain progenitors, or both become 
neurons. In contrast, asymmetric divisions produce 
daughters taking on different fates: One remains a 
progenitor and the other takes a neuronal fate.[25,26] 
The plane of cytokinesis is critical in determining if 
the division is symmetric or asymmetric: Those cell 
divisions whose plane of cytokinesis is perpendicular to 
the surface are symmetric, whereas those being parallel 
to the neuroepithelial surface are asymmetric.[21]

During early retinal development, the typical 
cell division is symmetric, resulting in two identical 
progenitor cells and leading to an increase in the pool 
of proliferating cells. The duration and number of these 
symmetric divisions is critical for regulating retinal size 
and sustaining genesis of later cell types. As development 
proceeds, the number of asymmetric divisions increases, 
leading to the generation of one progenitor cell and 
one neuron. Finally, during late retinal development, a 
fundamental change takes place: At this stage, symmetric 
divisions result in the generation of two neurons of the 
same type, whereas asymmetric divisions lead to the 
genesis of two neurons of different types.

Tight control between the number of retinal progenitor 
cells (RPCs) remaining proliferative and those exiting 
the cell cycle to take on a neuronal fate is critical in 
assuring a steady supply of progenitors for subsequent 
divisions and for regulating the size of any given pool 
of neurons.[27] During the early phase of neurogenesis 
(during the embryonic period in mice), excessive 
divisions which result in neurons will deplete the pool of 
progenitors at the expense of late born cell types, whereas 
a paucity of divisions that result in neurons will increase 
the progenitor pool present for later‑generated neurons, 
thereby shifting the proportion of neurons in the mature 
retina to normally later born types. Among the factors 

Figure 2. Illustration of eye development from the neural plate. The neural plate folds and bulges to give rise to two optic 
vesicles, each of which will become an eye. The development of one eye from one of the optic vesicles is depicted here. (a) The 
neuroepithelium of the optic vesicle merges with the invaginating surface ectoderm, leading to induction of the lens placode. 
(b) The optic vesicle invaginates and the inner layer becomes the bilayered optic cup. The lens placode begins to form the lens 
vesicle. (c) The optic cup gives rise to the neural retina and the outer layer gives rise to the retinal pigmented epithelium (RPE). 
The mature eye structure with photoreceptors, interneurons, and ganglion cells is depicted. From Ali and Sowden;[105] copyright 
license obtained.
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controlling these processes there are components of 
basement membranes.

BASEMENT MEMBRANES: AN 
OVERVIEW

Basement membranes are cell surface associated 
extracellular matrices (ECMs) containing a fundamental 
basic “tool kit”[5] which includes laminins, type IV 
collagens, nidogens and members of the heparan sulfate 
proteoglycan family (perlecan and agrin). Beyond 
providing support to cells, basement membranes 
establish and maintain cell polarity and associated 
tissues required for proper development, maturation 
and function of tissues.

The central scaffold of the basement membrane 
[Figure 4] is composed of independently assembled 
polymers of laminins and type IV collagen that are 
cross‑coupled to form a network for cell attachment.[28‑30] 
Nidogen (also known as entactin) acts as a connecting 
link between two polymers of laminins and type IV 
collagen.[31,32] The first step of assembly of basement 
membranes is the stabilization of laminins by sulfated 
glycolipids at the cell surface, leading to the nucleation 
of the polymerization of laminins, followed by further 
stabilization of laminin polymers by their binding to 
transmembrane receptors. Recruitment and binding of 

other secreted proteoglycans to the growing basement 
membrane results in increased stability and complexity 
of the basement membrane.[12,33]

Basement membranes are heterogeneous, not only 
among different tissues, but also within a given tissue and 
during development. The spatial and temporal regulation 
of deposition of basement membrane components 
results from complex developmental mechanisms. 
Diversification in the architecture of basement membrane 
in different tissues and during development is due in 
part to variations in the composition of the basic tool 
kit. For example, in humans, there are 16 different 
isoforms of laminin and six different isoforms of 
collagen type IV, in addition to complex modifications 
of glycoproteins such as heparan sulfate and chondroitin 
sulfate proteoglycans.[34] Additionally, even greater 
heterogeneity is brought about by growth factors that are 
differentially sequestered in basement membranes.[29‑31,35]

Animal models with deletion or mutations in the 
genes encoding basement membrane molecules provide 
strong evidence supporting the role of basement 
membrane‑mediated regulation in myriad cellular 
processes including adhesion, survival, proliferation, 
differentiation and migration.[36,37] Basement membranes 
regulate essential processes in cellular behavior, in 
part, due to their ability to sequester growth factors 
and connect to the cell via cell surface receptors that 
modulate intracellular pathways. One family of 
basement membrane molecules consistently shown to be 
involved in providing cues for cell proliferation, polarity 
and survival is the laminins.

Figure 4. Laminin assembly in basement membranes. 
Laminins self‑polymerize in the extracellular space through 
their LN domains and create a “nascent” scaffold. A self‑
assembled collagen polymer joins this scaffold, which is 
further linked by nidogen (Nd), perlecan (Perl) and agrin 
(not shown), resulting in increased stability and complexity 
of the basement membrane (grey surface). Laminins in the 
basement membrane (e.g., here, Lm‑111) interact via their G 
domain with cell receptors including integrins (here, integrin 
β1 subunit shown) and dystroglycan (DG) for anchorage. Col 
IV, Type IV Collagen; Nd, nidogen; Perl, perlecan; Modified 
from Li et al,[32] noncommercial reuse permitted by Rockefeller 
University Press.

Figure 3. Chronological order of retinal cell genesis. Retinal 
neurogenesis (multiplication and differentiation) begins before 
embryonic day 10 and persists until postnatal day 11 in the 
mouse. Retinal cells differentiate largely in two overlapping 
waves: In the first wave, cone photoreceptors (cones), horizontal 
cells (H.C.), retinal ganglion cells (G.C.), and amacrine cells are 
produced; in the second wave, bipolar cells and Müller (glial) 
cells are produced. Rod photoreceptors (rods) are produced 
throughout these waves. Note there is considerable overlap 
during the production of various retinal cell types. The size 
of each wave represents the approximate proportion of each 
cell type in the mature retina. Modified from Young[28] and 
Marquardt and Gruss,[106] copyright licenses obtained.
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ROLES OF LAMININS AND THEIR 
RECEPTORS IN THE CNS

The ectodermal lineage of the retina (and the entire 
CNS) implies that the basement membrane organization 
provides crucial guidance during retinal development. 
Ectodermal formation and epithelial development 
is critically dependent on the laminin‑rich basement 
membrane, which confers polarity cues, regulates 
proliferation and provides a substrate for migration.

The central nervous system (CNS) including the brain, 
spinal cord and retina arises from an invagination of 
the primitive ectoderm, ultimately forming from a tube 
composed of pseudostratified neuroepithelial cells. In 
primates, the cranial end of this tube is massively expanded 
into the neocortex, a complex structure that is divided into 
over 50 cytoarchitectonic regions. Although the processes 
of CNS development have been the subjects of study for 
well over a hundred years, only recently have the molecular 
mechanisms underlying these processes become coherent.

Despite the broad array of behavior among species, 
the fundamentals of CNS development and connectivity 
are shared across many species. In general, the process of 
CNS development proceeds through several stereotyped 
phases: (1) Proliferation i.e., neurogenesis and gliogenesis 
during which cell populations expand from progenitors 
to the full complement of cells in the adult CNS and 
after which cells, in general, become post‑mitotic; (2) 
neuronal migration and maturation, after terminal 
mitosis, during which neurons migrate from the site 
of genesis to their adult position and begin to take on 
their adult characteristics and shape; (3) neuronal axon 
outgrowth and target selection, through which neurons 
send processes varying in length from microns to meters 
to reach out and contact another neurons; (4) neuronal 
synaptogenesis, during which neurons make functional 
connections with each other.

All four of these developmental processes are regulated, 
to varying degrees, by laminins. A dramatic example is 
that for laminins in the cortex. Laminins are expressed 
in the ventricular zone of the developing neocortex,[38,39] 
and defects in laminins or their downstream signaling 
partners lead to lamination defects in the neocortex.[40‑42]

In order to understand the role of laminins in 
developmental processes in the CNS, simplified model 
systems are advantageous. Historically, one portion 
of the CNS, the vertebrate retina, has proven to be an 
excellent and very approachable model for general CNS 
development. The retina is easily removable; it has a 
relatively small number of cell types and a characteristic 
architecture which is generally preserved across most 
vertebrates. Comparable with the rest of the CNS, retinal 
development is a highly coordinated process that is tightly 
regulated by both intrinsic (genetic, cell autonomous) as 
well as extrinsic (epigenetic, cell non‑autonomous) factors. 
Thus, retinal development encapsulates development of 

the CNS, but in a simpler manner than in other regions 
of the nervous system including the cortex. In order to 
assess the roles of laminins in development, it is necessary 
to analyze their expression and function.

LAMININS: DIVERSE EXPRESSION 
AND FUNCTION

Laminins are large heterotrimeric glycoproteins that 
contain an alpha chain, a beta chain and a gamma chain 
joined together in a coiled‑coiled structure [Figure 5]. 
The α, β and γ chains are found in five, three and three 
genetic variants, respectively. Although most trimeric 
combinations are possible, the γ2 chain and β3 chains have 
been isolated only in association with each other and with 
the α3 chain, thereby restricting the feasible combination 
of the in vivo laminin heterotrimers to twenty‑one of these 
possible trimers. Sixteen trimers have been identified in 
vivo, and are differentially expressed both temporally and 
spatially in various tissues.[35,43‑46]

The highly regulated developmental expression of 
laminins leads to distinctive biological defects upon 
disruption or deletion of different laminin chains. 
Generally, deletion of those laminin subunits which are 
expressed early during embryogenesis leads to lethality, 
whereas deletions of laminin chains expressed later in 
development leads to tissue‑specific defects.

Figure 5. Simplified illustration of a laminin heterotrimer. 
Schematic of a prototypical laminin heterotrimer. Each chain 
is comprised of six domains (I‑VI). The α‑helical coiled‑coil 
regions in domains I and II of the “long arm” regions of all 
three chains are covalently linked to one another by disulfide 
bonds.[107,108] The self‑assembly domain of each chain is 
responsible for self‑polymerization required for basement 
membrane assembly. The terminal globular domain of the α 
chain interacts with cell surface receptors, and is responsible 
for communication between cells and the basement membrane. 
The sites for interaction of laminins with other basement 
membrane molecules such as nidogens (in domain III of the 
γ1 chain)[109] and agrin (in the laminin “long arm” consisting 
of α, β and γ chains)[110] are shown.
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For example, the laminin γ1 subunit is the most 
ubiquitously expressed laminin chain, found in most of the 
known heterotrimers and expressed both embryonically 
and extra‑embryonically.[47,48] Consequently, targeted 
deletion of the laminin γ1 chain in mice results in embryonic 
lethality due to an arrest in blastocyst differentiation.[47,48] 
On the other hand, deletion or mutation of the laminin α2 
chain, which is expressed in skeletal and cardiac muscle, 
peripheral nerve, capillaries, placenta and the brain, results 
in postnatal lethal muscular dystrophy and peripheral 
nerve defects in mice and humans. Additionally, CNS 
defects are present in humans with mutations in the α2 
chain.[30,49,50] Similarly, genetic disruptions of the laminin 
α5 chain lead only to disruptions in the muscle, kidney 
and various epithelial glands.[51‑53] These data indicate 
that laminins may share many functional properties, 
however, the contribution of individual chains is specific 
and frequently non‑redundant.

LAMININ RECEPTORS: LINKING THE 
EXTRACELLULAR MATRIX TO THE 
CELL

The interaction of receptors for ECM molecules with 
the ECM is crucial for the maintenance of cellular 
phenotype and tissue integrity. Perturbations of the 
interaction between receptors for ECM and the ECM in 
mice and humans lead to pathologies such as muscular 
dystrophies, brain and ocular dystrophies, and blistering 
diseases of the skin such as epidermolysis bullosa.[54‑57]

The major receptors for laminins can be broadly 
classified as integrins and non‑integrins. Integrins 
[Figure 6] are a large family of αβ heterodimers that 
combine to form 24 different αβ heterodimeric receptors, 

each with their own ligand. The αβ heterodimer which is 
engaged by the cell to interact with the matrix depends 
both on the composition of the ECM and the cell type 
itself. For instance, integrin α7β1 binds to laminins‑211 
and 221 (via the laminin α2 chain); integrins α3β1, α6β1 
and α6β4 bind to laminin‑332 (via the laminin α3 chain) 
and integrin α6β4 binds to laminins‑511, 521 (via the 
laminin α5 chain).[58,59] Furthermore, the specific integrin 
αβ heterodimers bridging the ECM and the cell are also 
tasked with specification of the downstream signaling 
effectors.[59]

The second class of laminin receptors, non‑integrin 
receptors such as dystroglycan, plays a critical function in 
muscle, the central and peripheral nervous systems, the 
blood‑brain barrier and kidney.[60‑62] Dystroglycan forms 
a part of the dystrophin‑glycoprotein complex which 
interacts with other cytoskeleton molecules [Figure 6].

After translation, the dystroglycan gene product is 
cleaved, resulting in the production of α‑dystroglycan 
(a peripheral membrane protein at the external surface 
of the membrane) and β‑dystroglycan (a transmembrane 
protein) [Figure 6]. α‑dystroglycan interacts with the 
ECM via high affinity interactions with the laminin α1 
and α2 LG 4‑5 domains. β‑dystroglycan interacts with 
the cytoskeleton via molecules including dystrophin 
[Figure 6]. Although these interactions have been 
most extensively studied in skeletal muscle, the 
dystroglycan‑laminin interaction is of high significance 
for maintenance of adhesion in multiple tissues.

There are additional non‑integrin laminin receptors. 
These include collagen XVII (formerly known as BP180 
or BPAG2), a transmembrane protein and a critical 
component of hemi‑desmosomes associated with 
keratinocyte adhesion.[63] Collagen XVII is also expressed 
in the CNS and the retina, where it may be important in 
synapse formation.[64] A fragment of another collagen, 
collagen XXV, is associated with amyloid plaques in 
Alzheimer’s disease.[65] Other receptors associated with 
laminins include four types of cell‑surface syndecans[66,67] 
and the Lutheran blood group glycoprotein, BCAM 
(a transmembrane protein found on erythrocyte, muscle 
and epithelial cells), which in addition to other functions, 
acts as a receptor for the α5 subunit of laminin.[68,69]

The multidomain structure of laminins, as well as the 
presence of different isoforms of laminin in each tissue, 
leads to variability in the affinity of expressed laminins 
towards different receptors, thereby contributing to the 
diverse array of laminin‑mediated regulation which affects 
cellular functions [Figure 6]. Two retinal cell types regulated 
by laminins are retinal ganglion cells and Müller glial cells.

RETINAL GANGLION CELLS: THE 
OUTPUT NEURONS OF THE RETINA

As the final common pathway from the retina to the 
brain, retinal ganglion cells (RGCs) are critical conduits 

Figure 6. Integrins influence multiple functions by anchoring 
cells to the extracellular matrix (ECM). Integrins and 
dystroglycan in the extracellular space act as a bridge between 
the laminin‑containing ECM and the cytoskeleton of the cell in 
the cytosol including dystrophin, resulting in changes in cell 
polarity, shape and migration. Integrins, after binding to the 
ECM, also act as signaling platforms by recruiting adaptors 
and signaling enzymes that control differentiation, shape and 
migration.
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for normal vision. Two aspects of RGC organization 
are of particular importance: First is the spatial 
distribution of RGCs over the surface of the retina; 
second is the lamination pattern of RGC dendrites 
in the inner plexiform layer. Various RGC subtypes 
exist, each with precise non‑random distributions 
over the surface of the retina and unique connectivity 
in the brain. This arrangement assures that the entire 
visual world is sampled by diverse yet overlapping 
subclasses of RGC.

The physiological output of RGCs is produced upon 
synapsing with a particular array of retinal interneurons. 
This is accomplished by the production of a stereotyped 
pattern of dendritic development and synaptic refinement 
in the IPL. For example, different types of RGCs have 
defined patterns of dendritic arborization in the IPL in 
three dimensions. The first is relative to the branching 
from the cell body; the second is relative to the surface 
topography of the retina (dendritic area) and the third 
is relative to the depth of the IPL (dendritic lamination). 
Together, these spatial properties of the dendritic arbors 
of RGCs define the physiologic properties of the RGC 
that contribute to visual processing.

Thus, a thorough understanding of retinal 
development requires understanding how RGCs are 
generated; how RGC numbers are regulated; and the 
mechanisms of RGC dendritic development. Both 
intrinsic and extrinsic factors regulate this process. 
The number of RGCs is governed by intrinsic factors 
including transcriptional factors,[70,71] as well as extrinsic 
factors including molecules that regulate cell death[72] 
and neurotrophic molecules.[73] In addition, adhesion[74] 
and ECM molecules[75,76] contribute to the development 
of GCs by acting as survival factors and promoting 
dendritic development.

MÜLLER CELLS: THE PRINCIPAL 
GLIAL CELLS OF THE RETINA

Two glial cells are present in the retina: Müller cells 
(MCs) and astrocytes. MCs are intrinsic to the retina 
and share a common progenitor with neural cells of 
the retina, whereas astrocytes are extrinsic to the retina 
and migrate into the retina via the optic nerve. During 
their final differentiation, retinal progenitor cells express 
specialized glial genes and take on glial homeostatic 
functions.[77] This has led to the hypothesis that, MCs are 
late progenitor cells. Indeed, in non‑mammalian retina 
MCs can be induced to regenerate neurons of the retina 
under experimental conditions.[78]

MCs span the entire thickness of the neural retina 
and contact and ensheathe all neuronal cell bodies and 
processes [Figure 7]. Their structure not only provides 
stability to the retina, but their morphological proximity 
to neurons also promotes neuronal survival. In addition, 

this proximity to neurons may contribute to retinal 
information processing.[79‑82]

MCs are capable of performing multiple functions 
in part due to their highly polarized morphology. 
Among their homeostatic functions, MCs contribute to 
extracellular ion homeostasis[83] and neurotransmitter 
recycling.[84] In addition, MCs promote neuronal survival 
by the release of neurotrophic substances.[2] In addition, 
at their basal end‑foot MCs make contact with the ILM 
using a variety of cell‑matrix receptors[85] and at their 
apical surface, MCs make adhesion complexes with 
each other and photoreceptors forming a band of tight 
junctions at the outer limiting membrane.[86] Despite its 
name, the outer limiting membrane is not a membrane, 
but rather contains components of both adherens and 
tight junctions.[87]

In retinal injuries and diseases such as retinal 
detachment, MCs undergo reactive gliosis and 
manifest changes in morphology, cytoskeletal 
structure and the subcellular compartmentalization 
of ion or water channels.[88,89] Reactive gliosis is 
characterized by alterations in biochemical and 
physiological functions, in addition to hypertrophy 
and proliferation of MCs. These changes are similar 

Figure 7. Müller cells are closely associated with, and interact 
with, all retinal neurons. The interactions among Müller cells 
and retinal neurons are vital to retinal homeostasis. Müller 
cells span nearly the entire thickness of the retina, from ILM 
at NFL to OLM at the junction of the inner and outer segments 
of PR. Neuronal somata and processes are ensheathed by the 
processes of Müller cells (one Müller cell is shaded pink at 
right). Chor, choroid; BrM, Bruch’s membrane; RPE, retinal 
pigmented epithelium; PR, photoreceptor outer segments; 
OLM, outer limiting membrane; ONL, outer nuclear layer; 
OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner 
plexiform layer; GCL, ganglion cell layer; NFL, nerve fiber 
layer; ILM, inner limiting membrane; BV, blood vessel; r, R, 
rod photoreceptor cell; c, cone photoreceptor cell; H, horizontal 
cell; bc, B, bipolar cell; ac, A, amacrine cell; rgc, G, retinal 
ganglion cell; M, Müller cell; as, astrocyte. Left: Modified from 
Bringmann et al.[111] Subject to creative commons attribution 
license. Right: Modified from Reichenbach et al;[79] Reichenbach 
et al[80] copyright license obtained.
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to those seen in proliferative vitreoretinopathy[90] and 
transient ischemia.[91]

ATTACHMENT TO RETINAL 
BASEMENT MEMBRANES IS 
IMPORTANT FOR RETINAL 
ARCHITECTURE AND 
HOMEOSTASIS

The retina is delimited by two basement membranes: 
Bruch’s membrane at the sclerad (outer, distal) side, and 
the inner limiting membrane (ILM) at the vitread (inner, 
proximal) side. These two membranes act as boundaries 
for the neural retina.

Bruch’s membrane is a five‑layered extracellular matrix 
structure located at the interface of the metabolically 
active retinal pigmented epithelium (RPE) and the source 
of nutrition for the RPE, the choriocapillaris. Bruch’s 
membrane not only provides physical support for the 
RPE, it also regulates RPE differentiation and acts as 
a barrier that prevents choroidal neovascularization, a 
process in which choroidal vascular cells inappropriately 
invade the retina.[92,93] Alterations in the composition or 
organization of Bruch’s membrane severely compromises 
the normal function of RPE cells, and this disruption 
results in retinal pathologies including age‑related 
macular degeneration, pseudoxanthoma elasticum and 
Sorsby’s fundus dystrophy.[94]

The inner limiting membrane (ILM) lies on the 
vitread side of the retina which is the opposite side of 
the retina from Bruch’s membrane [Figure 7]. The ILM 
is not only the structural interface between the retina 
and the vitreous, it also provides support for the neural 
retina, and is responsible for organizing and maintaining 
the laminated structure of the retina and guiding 
astrocyte migration during vascular development.[95] 
Disruptions or changes in the ILM are associated with 
retinal dysplasia as well as retinal pathologies such as 
diabetic retinopathy, proliferative vitreoretinopathy and 
retinopathy of prematurity.[19,20]

In the developing retina, RPCs adhere to the ILM via 
interactions between RPC basal end‑feet and the ILM. 
Laminins are important constituents of the ILM that are 
likely involved in this adhesion: Major laminin subunit 
constituents of the ILM are α1, α5, β2, and γ1, whereas 
minor laminin subunit constituents of the ILM are α3, 
β1, γ2, and γ3.[96]

In addition to adhesion, laminins and laminin‑mediated 
signaling contribute to dendrite‑axonal specification 
and neuronal development in vitro and in vivo,[97‑99] 
suggesting that laminins play an important role 
in retinal development and organization. During 
retinal development, RPCs undergo tightly regulated 
proliferation and differentiation; these processes are 

regulated by, inter alia, symmetrical versus asymmetrical 
division. Further, organization of the complex retinal 
structure depends on both appropriate positioning 
and spacing of the cells in the retina, and proper 
dendritic‑axonal development required for the generation 
of functional circuitry in the retina. All of these 
developmental processes are influenced by laminins.

Loss of laminin‑mediated signaling in the retina 
results in retinal dysplasia and may lead to visual 
impairment.[100‑102] Upon the loss of laminins, these 
pathologies result from disturbing the apical‑basal polarity 
of MCs as well as the subcellular compartmentalization 
in MC.[91,102] In addition to the contribution of laminins 
to MC polarity, we hypothesize that β2 and γ3 laminin 
chains establish apical‑basal polarity in RPCs much as 
they do in MCs.

Adhesion to the ILM is likely important for 
establishing apical‑basal polarity in the RPCs and 
required for maintaining correct timing between 
proliferation and neurogenesis. The ILM is also critical 
for MCs, the terminal progeny of RPCs, for subcellular 
compartmentalization of transporters, ion channels, and 
perhaps signaling cascade mechanisms. Finally, laminins 
likely provide cues to regulate RGC spacing, dendritic 
arborization and axonal guidance.

SUMMARY

Adhesion to the ILM is critical in establishing the 
apical‑basal polarity of RPCs (required for maintaining 
the correct timing between proliferation and neurogenesis 
in the retina), proper differentiation of MCs (required for 
compartmentalization of signaling domains to different 
regions of the cell) and providing cues that regulate 
RGC development (spacing, dendritic arborization 
and axonal guidance). Continued elucidation of these 
interactions will further advance our knowledge 
of retinal development and the organization of the 
retina’s complex laminar architecture. Furthermore, this 
knowledge will likely have applications for regenerative 
studies on retinal tissue.
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