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Introduction

Major  h is tocompat ib i l i t y  complex  c lass   I 
molecules  (MHC‑I) are cell surface glycoproteins 
expressed on most of the cells. On antigen presenting 
cells, they are involved in the presentation of endogenous 

peptide to CD8+ T‑cells through T‑cell receptors (TCR) 
for the antigens that are originated from the cytosolic 
protein by proteasomal degradation. Nevertheless, 
MHC-I molecules also present peptides, which are 
generated from exogenous proteins by a process 
called cross‑presentation.[1] In humans, MHC‑I proteins 
are encoded by  (a) highly polymorphic classical MHC 
class  Ia and  (b) less‑polymorphic nonclassical MHC 
class Ib genes. Classical MHC‑Is are human leukocyte 
antigen (HLA)‑A, ‑B and ‑C. On the other hand, human 
nonclassical MHC‑Is are HLA‑E, ‑ F, ‑ G, and ‑ H  (also 
called “High Fe” or HFE), which are homologous to 
Qa‑1, Qa‑2, HFE and RT1 haplotypes in mouse and rat, 
respectively.[2‑7] In this review, we briefly describe the gene 
organization, a phylogenetic analysis of nonclassical MHC 
molecules and updates on their immunological interaction 
with receptors like TCR and CD94/NKG2 on T, NK and 
natural killer T (NKT) cells. We also discuss their role in 
the pathological state of some important diseases that 
are associated with altered host cell immunity, which 
has implication in the basic and translational research 
of mammalian immune responses and their regulation.

Gene Organization and Evolutionary Perspective 
of Nonclassical Major Histocompatibility Complex 
Class I Molecules

Genes of nonclassical MHC‑I are located in chromosome 
6 (locus p21.1-21.3) in humans.[8] However, in mice and 

The evolutionary conserved, less‑polymorphic, nonclassical 
major histocompatibility complex (MHC) class I molecules: 
Qa‑1 and its human homologue human leukocyte 
antigen‑E (HLA‑E) along with HLA‑F, G and H cross‑talk 
with the T‑cell receptors and also interact with natural 
killer T‑cells and other lymphocytes. Moreover, these 
nonclassical MHC molecules are known to interact with 
CD94/NKG2 heterodimeric receptors to induce immune 
responses and immune regulations. This dual role of Qa‑1/
HLA‑E in terms of innate and adaptive immunity makes 
them more interesting. This review highlights the new 
updates of the mammalian nonclassical MHC‑I molecules 
in terms of their gene organization, evolutionary perspective 
and their role in immunity.
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rats they are found in chromosome 17 (locus B1) and 
20  (locus p12), respectively  [Figure  1].[9,10] Classical 
MHC‑I molecules and nonclassical MHC‑I are expressed 
in most of the tissues in modest levels, but these are 
expressed in high quantities in some neoplastic cells.[11‑14] 
Nonclassical MHC‑Is are known to be evolutionary 
conserved.

It has been suggested from numerous studies that two 
alleles of HLA‑E (HLA‑E*0101 and HLA‑E*0103) have 
minimum polymorphism among all HLAs and are found 
in high frequencies in Caucasians.[15,16] Among these 
two alleles, HLA‑E*0101  (also known as HLA‑E107R) 
is expressed strongly in normal cells and in higher 
frequency than HLA‑E*0103 (HLA‑E107G). HLA‑E*0101 
differs from HLA‑E*0103 at amino acid position 107 
where arginine is replaced by glycine.[16]

Mouse MHC complex is known as H‑2 complex located 
on chromosome 17.[6,10] In mice several MHC-Ibs are 
found in the H‑2Q, H‑2T, and H‑2M regions of MHC, 
whereas Qa‑1b is a mouse MHC-Ib molecule encoded 
by the T23 gene.[17] It was first identified in peripheral 
T‑cells as a serological determinant and later identified 
as the previously isolated gene 37.[17] Sequence analysis 
suggests that there are only four known alleles of Qa‑1. 
Qa‑1b is expressed in the majority of inbred laboratory 

strains, whereas Qa‑1a is expressed in most of other 
strains. On the other hand, Qa‑1c and Qa‑1d frequencies 
are very rare.[18]

The ability to induce an allogeneic immune response 
by Qa‑1 defines the function of Qa‑1 as an MHC ligand 
for T‑cells, which is not restricted by H‑2D or H‑2K 
haplotype.[19] An investigation by Aldrich et al.[20] decipher 
the cell surface expression of the Qa‑1 alloantigens 
with the help of monoclonal anti‑Qa‑1 cytotoxic T 
lymphocyte  (CTL) cell lines. It has been found that 
the expression of Qa‑1 is high, similar to class  I 
H‑2K/D molecules. Moreover, the Qa‑1 determinant 
modifier (Qdm) has been found to be linked with H‑2D 
gene. It is also observed that Qdm may control over 
expression of certain CTLs‑defined Qa‑1 antigenic 
determinants.[20] Another report also suggests that 
a majority of alloreactive Qa‑1‑specific CTL clones 
recognize a specific Qa‑1 bound peptide, which is a 
derivative leader sequence of H‑2D.[21] Several studies 
in the recent past suggest a key role of Qa‑1 in innate 
immunity. Qa‑1 is also reported as a ligand for CD94/
NKG2 receptors in mouse NK cells, NKT cells and some 
subset of T‑cells.[22‑26] Accordingly, it appears that other 
than interaction with TCR; the nonclassical MHCs are 
important for signaling through CD94/NKG2 receptors 
to modulate host cell immunity. The role of CD94/
NKG2 receptors in Qa‑1 and HLA‑E mediated immune 
responses is discussed in a subsequent section.

In several nonhuman primates, existence of MHC‑Ib 
has been suggested earlier. MHC‑G has been described 
in some nonhuman primates.[27‑31] It has been mentioned 
that in chimpanzee (Pan troglodytes) MHC‑Ib is known 
to be organized in similar way as human MHC‑Ib.
[32] It has also been described in case of many other 
nonhuman primate species.[27,32‑37] MHC‑I genes of New 
World primates appear to be homologous to HLA‑G 
genes than classical HLA-I genes.[27,28] Mamu‑G is 
ortholog of HLA‑G in the rhesus monkey  (Macaca 
mulatta) and it is appeared to be a pseudogene. Another 
nonclassical MHC‑I locus called Mamu‑AG is also found 
to be expressed in the placenta of rhesus monkeys. 
Mamu‑AG encodes MHC-IA locus‑related molecules 
with all the features of human HLA‑G, apart from 
features like a truncated cytoplasmic domain and limited 
polymorphism.[31] Phylogenetic study comprising exon 2, 

Figure 1: Schematic representation of nonclassical 
major histocompatibility complex (MHC) class I genes 
of human, mouse and rat: Nonclassical MHC class I 

genes found in human, mouse, rat in chromosome 6, 17 
and 20 respectively. The nonclassical MHC-I genes of 

human leukocyte antigen (HLA-E,-F,-G,-H.) are found in 
locus p21.1, mouse (Qa-1, Qa-2) are found in B1 region, 
rat (RT1-M4,-M5,-M6,-S3) are found in region 20p12 of 

chromosome 20
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exon 3, and intron 2 sequences of MHC‑G of 7 nonhuman 
primates along with HLA‑G have shown that cotton top 
tamarin (Saguinus oedipus) MHC‑G sequences are more 
closer to human and great apes (Pongids).[30]

HLA‑E and‑F homologues have been described in 
orangutans and macaques.[36‑39] The orthologs of MHC‑E 
have also been identified in nonhuman primates such 
as gorillas, chimpanzees, bonobos, and vervet (green) 
monkeys.[38,40] Phylogenetic analysis of MHC‑E locus of 
six New World monkey species and full‑length MHC‑E 
cDNAs of four unrelated cotton‑top tamarins (S. oedipus) 
along with HLA‑E have shown that Saoe*01 (S. oedipus) 
is orthologous to HLA‑E.[35] Moreover, multiple sequence 
alignment of MHC‑F cDNA sequences of human, 
chimpanzee, macaque and cotton‑top tamarin have 
shown that in cotton‑top tamarin, accumulation of 

nonsynonymous differences are more than synonymous 
differences in the peptide binding region of this gene.[37] 
Analysis of the nucleotide sequences of MHC‑H in gorillas 
and chimpanzees revealed that they have a high degree 
of homology among their alleles.[41] Phylogenetic analysis 
of some MHC‑I genes of gorilla and chimpanzee 
along with human, shows the close clustering of 
Gogo‑H*01  (gorilla) and Patr‑H*01  (chimpanzee) with 
HLA‑H alleles, indicating close evolutionary relationship 
between them.[41]

The gene and protein sequences  [Figure  2 and 
Tables  1 and 2] of nonclassical MHC‑I molecules of 
rat, mouse, nonhuman primates  (Gorilla gorilla, P. 
troglodytes, M. mulatta) and human have been analyzed 
by web based Clustal W 2.1 tool from DNA Data bank 
of Japan (DDBJ) with Unweighted Pair Group Method 

Figure 2: Phylogenetic analysis of some of the sequences of genes and proteins of nonclassical major 
histocompatibility complex -I(MHC-I) of the human leukocyte antigen-I (HLA-I), nonhuman primates, rat (RT1) and 
mouse (Qa) with respective mouse and rat strains. Nonclassical MHC-I molecules showed that these are clustered 
according to types of non-classical MHC-I molecules. Phylogentic tree is constructed by Unweighted Pair Group 
Method with Arithmetic Mean method as implemented by Clustal w (DDBJ), Bootstra P value (1000 replicates) are 

indicated. (a) Nucleotide sequences of the genes included are: HLA-E (Gene ID: 3133):, HLA-G (GENE ID:3135), 
HLA-F (GENE ID:3134):, HLA-H (GENE ID:3136), H-Q9 (C57BL/6, GENE ID: 110558), H2-Q8 (C57BL/10, GENE ID: 
15019), H2-T23 (C57BL/6,GENE ID: 15040), MR2-HFE (C57BL/6, GENE ID: 15216), RT1-M5 (BN, GENE ID:499400), 
RT1-M4 (BN, GENE ID: 309584), HFE (BN, GENE ID: 29199), Mamu-E (Macaca mulatta, GENE ID: 711532), Mamu-F 
(M. mulatta, GENE ID: 709076), Mamu-G (M. mulatta, GENE ID: 697260), HFE (M. mulatta, GENE ID: 696129), Patr-F 
(Pan troglodytes, GENE ID: 100169977), Patr-E (P. troglodytes, GENE ID: 462540), Patr-G (P. troglodytes, GENE ID: 
494187), Patr-H(P. troglodytes, GENE ID: 741554) MHC-G-like (Gorilla gorilla GENE ID: 101143843), MHC-E-like (G. 
gorilla GENE ID: 101153360), HFE (G. gorilla GENE ID: 101126285). (b) Protein sequence from Genbank included in 
the analyses have the following accession numbers: HLA-E: BAB63328, HLA-G: BAB63336.1, HLA-F: ABD38924, 

HLA-H: P01893, Qa-2 (C57BL/6): AAX98170, Qa-2 (C57BL/10): AAB41657, Qa-1b (C57BL/6): NP_034528, Qa-1 (NOD/
Lt mice): AAD53968, Qa-1c (B10.RIII): AAD12244.1, Qa-1d (B10.M): AAD31381, HFE (C57BL/6): NP_034554, RT1-

M6(BN): NP_001008852, RT1-M4(BN): NP_001161815, RT1-M5(BN): NP_001161825, HFE(BN): NP_445753, MHC-G-
partial (G. gorilla): AAL40082, MHC-F (G. gorilla): AAQ13398, Patr-E (P. troglodytes): NP_001038963, MHC-G-partial 

(P. troglodytes): AAK08128, MHC-F (P. troglodytes): AAQ13481, HFE (P. troglodytes): NP_001009101, MHC-E (M. 
mulatta): NP_001108438, MHC-F (M. mulatta): ABD38925, HFE (M. mulatta): NP_001247505

ba
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with Arithmetic Mean, 1000 bootstra   P  value (http://
clustalw.ddbj.nig.ac.jp/). The gene sequence analysis 
of MHC‑F of G. gorilla and protein sequence analysis 
of HLA‑H or HFE and MHC‑E are not included due 
to unavailability of proper sequences. It has been 
observed that nonclassical MHC‑I molecules are 
clustered according to the different types. The protein 
sequences of nonhuman primates and human have 
shown maximum homology in case of MHC‑G and 
MHC‑F  (MHC‑G‑98-99%, MHC‑F‑93–98%) whereas 
they are less conserved in case of MHC‑H or HFE and 
MHC‑E  (MHC‑E‑57–64%, HFE or MHC‑H‑34–35%). 
Mouse and rat protein sequences are showing 
maximum identity only in HFE or MHC‑H  (87%), but 
for other types of nonclassical MHC‑I molecules, they 
are showing around 50% identity  (MHC‑G‑41–51%, 
MHC‑E‑51–53%). Protein sequences of human and 
nonhuman primates have revealed around 55% 
homology with rat and mouse and in case of all 
nonclassical MHC‑I molecules  (MHC‑G‑48–50%, 
MHC‑E‑56–57%, MHC‑F‑56–57%). Similar type of 
observation have been noticed in phylogenetic analyses 
in earlier studies of MHC‑F and MHC‑G of human and 
nonhuman primates.[30,37] In addition, gene sequences 
analysis of nonclassical MHC‑I revealed that there are 
around 34–90% similarity in case of MHC‑G, 53–98% 
similarity for MHC‑E, whereas among MHC‑F and 
MHC‑H or HFE have 48–87% and 54–98% similarity, 
respectively. Similar observation has been reported for 
MHC‑H gene of human and nonhuman primates.[41]

Moreover, it has been observed that human and 
nonhuman primates share maximum homology 
among each other for most of the nonclassical MHC‑I 
genes  (MHC‑E‑86–98%, MHC‑F‑72–87%, MHC‑H or 
HFE‑71–98%) as compared to other species [Figure 2a 
and Table 1].

Involvement of Qa‑1/HLA‑E and CD94/NKG2 System 
in Altered Immunity and Diseases

Cellular and molecular basis of Qa‑1/HLA‑E and CD94/
NKG2 system

HLA‑E is found to be a ligand for CD94/NKG2A, B and 
C receptors on NK cells.[42] Moreover, it has been shown 

that CD94/NKG2A receptor expresses on CD8+ T‑cells 
to induce immune inhibitory effect.[26] NK cells in 
mouse and human express heteromeric C‑type lectin 
receptors comprising CD94 and NKG2. The NKG2A 
isoform is expressed more than other isoforms and has 
immunoreceptor tyrosine‑based inhibitory motifs in its 
cytoplasmic domain, which form heterodimer with CD94 
to inhibit NK cell function.[25,43,44]

CD94/NKG2C, an activating NK cell receptor of the 
C‑type lectin superfamily, has been found to bind to HLA‑E. 
Moreover, it noncovalently associates with DNAX‑activation 
protein 12 (DAP12), a membrane receptor containing an 
immunoreceptor tyrosine‑based activating motif (ITAM).[45] 
NK cells are found to recognize and destroy infected cells 
through Qa‑1/HLA‑E and CD94/NKG2 receptors. This 
“missing‑self” phenomenon of NK cells plays a key role in 
recognizing and destroying abnormal cells. These attributes 
may facilitate viruses to acquire an important immune 
escape mechanism deviating host protective immunity.[46,47]

Receptor profile of Qa‑1/HLA‑E and CD94/NKG2 system

Evidences in the recent past suggest that HLA‑E 
has a role in restricting the αβ TCR bearing subsets of 
T‑cells.[48,49] Qa‑1 and HLA‑E are functional homologues, 
which are known to have an exclusive role in the 
regulation of NK cells. Moreover, it has been found that 
NKT cells co‑express TCR and NK1.1 receptors.[50‑53]

Mouse invariant NKT (iNKT) cells that express NK cell 
receptors and TCR α chain of Vα14Jα18 (Vα24Jα15 in 
humans) and a semi variant TCR‑β, which are found to 
be associated with Vβ8 (Vβ11 in humans), Vβ2 and Vβ7 
receptors.[50‑52] Vα14 TCR recognizes glycolipid antigens, 
such as α‑galactosylceramide and its analogues 
presented on MHC‑I like molecule CD1d.[51,52,54‑58] iNKT 
cells are also known to be associated with CD94/
NKG2 receptor subsets for their immunoregulatory 
role in mammalian immunity.[59] It has been shown that 
differential co‑stimulatory signals can be mediated 
through CD80/86 and CD40 in antigen‑presenting cells 
interacting with NKT cells expressing CD28 and CD154 
respectively.[60] Moreover, these results suggest that 
CD28‑CD80/CD86 and CD40‑CD154 co‑stimulatory 
pathways may differentially contribute to regulate Th1 
and Th2 associated responses of NKT cells in  vivo. 
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However, the specific role of NKT cells in association to 
CD94/NKG2 and co‑stimulatory responses needs further 
investigation.

Involvement of Qa‑1/HLA‑E and CD94/NKG2 system in 
autoimmune diseases

I t  has  been sugges ted  tha t  induc t ion  o f 
immunosuppressive CD8+  T‑cells may be restricted 
by MH-Ib/Qa‑1 to regulate CD4+  T‑cell response.[61,62] 
Moreover, most of the MHC class  Ib molecules along 
with β2 microglobulin  (β2m) molecules are known 
to have interaction with CD8 co‑receptors. TCR 
mediated suppression of CD4+ T‑cell response by Qa‑1 
restricted CD8+ Treg cells has been demonstrated in an 
autoimmunity mice model of experimental autoimmune 
encephalomyelitis (EAE).[63] Moreover, it has been shown 
that the Qa‑1‑CD94/NKG2A mediated CD8+ Treg cell 
activity or activation may lead to complete restriction of 
EAE development. It has been shown that Qa‑1 restricted 
a specific population of CD8αα+ Tregs can regulate EAE 
antigen‑specific Vb8.2+ CD4+ T‑cell response.[64]

High CD94/NKG2A expression by T‑cells has been 
demonstrated in remission patients following tumor 
necrosis factor  (TNF) based TNF inhibitor therapy 
compared to active rheumatoid arthritis. Low CD94/
NKG2A expression has been associated with disease 
severity following withdrawal of therapy.[65] In systemic 
lupus erythematosus patients, negative correlation of 
CD69 with CD94/NKG2A inactivated γδ TCR bearing 
T‑cell (γδ+ T‑cell) reveals that down‑regulation of CD94/
NKG2A may be due to over‑activation of such γδ+ T‑cell.[66]

Involvement of Qa‑1/HLA‑E and CD94/NKG2 system in 
infectious diseases

It has been proposed that CD94/NKG2 heterodimers 
may co‑stimulate effector functions of differentiated 
Th1  cells.[67] There are several reports which show 
CD94/NKG2 expression is markedly up‑regulated on 
CD8+ T‑cells during viral and bacterial infections.[68,69] It 
has been shown that CD94/NKG2 is capable of hindering 
the CTL activity against Qa‑1 and HLA‑E positive cells[43] 
and recently it has been proposed that it may be involved 
in attenuation of activation induced cell death, which 
may possibly help in CD8+ T‑cell survival during Listeria 
monocytogenes infection.[70]

Several reports on the role of MHC-Ib for viral diseases 
are available.[71‑73] MHC-Ib like HLA‑G is found to be 
over‑expressed or up‑regulated in immune cells, which 
is found to be immune suppressive in nature during viral 
infections. In some viruses like human cytomegalovirus 
infection, HLA‑G is found to be down‑regulated by 
viral US10 protein, unlike classical HLAs.[74] However, 
nonclassical MHC‑I, such as HLA‑G is found to be 
resistant to HIV Nef protein mediated cell surface 
down‑regulation.[75]

Involvement of Qa‑1/HLA‑E and CD94/NKG2 system in 
cancer, immune privilege and altered immunity

Association of CD94/NKG2 receptors is found in 
several cancers, where CD94/NKG2A receptors are 
found to be widely expressed in tumor infiltrating T‑cells. 
They are found to be involved in blocking tumor lytic 
activity.[76] In cervical cancer, it has been reported that 
CD94/NKG2A receptors are up‑regulated in tumor 
infiltrating T‑cells compared to normal cervix. This is 
also found to be correlated with secretion of cytokines 
like transforming growth factor‑beta and interlukin‑15 by 
cervical cancer, which may elevate the CD94/NKG2A 
receptors.[77] Moreover, it has been shown that Interferon 
gamma treatment may protect ovarian carcinoma cell 
lines from CTL lysis through human nonclassical MHC‑Is 
and CD94/NKG2A‑dependent mechanism.[78]

In a study with ocular anterior chamber associated 
immune deviation model in mice, CD94/NKG2 deficient 
DBA/2J strain of mice have been compared to other 
mouse strains, where the functional significance of 
Qa‑1‑CD94/NKG2A system has been demonstrated 
in peripheral immune suppression as evident 
by suppression of antigen‑specific delayed‑type 
hypersensitivity  (DTH)  [Table  3 and Figure  3].[79] 
Moreover, it has been shown that compatibility of Qa‑1 
haplotype between CD8+ Tregs cells and the immunized 
recipients is a prerequisite for CD8+ Tregs to suppress 
the expression of antigen‑specific DTH in the recipient 
mice.[80] The expression of Qa‑2, a nonclassical MHC‑Ib, 
has been reported in the corneal endothelium and other 
substructure lining of the ocular anterior chamber, which 
suggests that Qa‑2 protein may also contribute to the 
immune‑privileged status of the mammalian eye.[81]
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Several groups have demonstrated the involvement 
of CD94/NKG2 receptors in modulation and regulation of 
NK cells.[82] However, a study conducted by Vance et al. 
showed that DBA/2J strain of mice is naturally deficient in 
CD94/NKG2A receptor expression in adult and neonatal 
NK cells without disturbing neonatal development. This 
work suggests that immunological self‑tolerance of 
neonatal NK cells may not be attributed to CD94/NKG2A 
expression.[83]

Among MHC‑Ib molecules, membrane‑bound 
HLA‑G and HLA‑E have been reported in invasive 
extravillous trophoblast  (EVT) cells and trophoblast 
cells of decidual tissues, respectively.[84,85] HLA‑G 
interacts with membrane‑bound inhibitory receptors, 
immunoglobulin‑like transcript‑2 and ‑ 4  (ILT‑2 and 

ILT‑4) of monocytes, macrophages, and dendritic cells, 
respectively.[86,87] It has also been demonstrated that 
HLA‑G may up‑regulate ILT‑2, ILT‑4 and killer‑cell 
immunoglobulin‑like receptor‑2DL4 on the membrane 
of antigen presenting cells, NK cells and CD4+ T‑cells 
without preceding for antigenic co‑stimulation.[88] Soluble 
and membrane‑bound HLA‑G proteins are found to 
induce inhibition of T‑cell alloproliferation through both 
ILT‑2 and ILT‑4.[89] Leukocyte immunoglobulin‑like 
receptor‑1  (LIR‑1) has been reported to express on 
surface of a large subpopulation of NK cells, particularly 
in deciduas and appears to be HLA‑G specific, which 
has immunoregulatory importance during pregnancy.[90] 
Numerous studies indicate that G*0105N allele frequency 
increases in recurrent miscarriages and that may 
function as a risk factor for such loss of pregnancy.[91,92] 
However, some reports contradict the role of HLA‑G 
in fetal survival by the detection of G*0105N allele in 
homozygous adults.[93,94] Another study suggests that 
soluble HLA‑G (sHLA‑G) is present in seminal plasma, 
and HLA‑G is expressed in normal testis and epididymal 
tissue of male reproductive system. It gives an indication 
of possible immunoregulatory role of HLA‑G in the male 
reproductive system.[95]

HLA‑E is  found to  regu la te  CD94/NKG2A 
receptor‑mediated cytolytic activity of NK cells 
during pregnancy.[ 85] In another report it has been 
suggested that HLA‑E has a high affinity for NKG2A 
receptor, which has an inhibitory role than activating 
NKG2C receptor.[96] Kusumi et al. showed that NKG2A 
receptors are expressed in most of the decidual 
CD56bright NK cells rather than peripheral CD56dim 
NK cells. NKG2C expression in CD56dim is reciprocal 
to inhibitory NKG2A. In decidual CD56bright NK cells 
NKG2A and NKG2C receptors are known to be 
expressed simultaneously.[97]

In 2003, Ishitani et  al. has reported the surface 
expression of HLA‑F in placenta and low expression in 
syncytiotrophoblast (ST) cells, villous trophoblast (VT) 
cells and invasive EVT cells.[98] It is contradicting to 
a study by Nagamatsu et  al. where they have found 
the intracellular expression of HLA‑F only in EVT, 
ST and VT. This variation is probably because they 
have investigated the placenta from the first stage of 

Table 3: Examples of mouse strains responsive to CD94/
NKG2A‑Qa‑1 associated suppression of antigen specific 
DTH
Mice strain Suppression of 

DTH by ACAID
Haplotype Expression of 

CD94/NKG2A
BALB/C + H‑2d +
C57BL/6 + H‑2b +
DBA/2NCr + H‑2d +
DBA/2NHsd + H‑2d +
DBA/2J − H‑2d −
Except DBA/2J mouse strain, which are naturally deficient in CD94/NKG2A 
gene expression, most of the mice strains having either H‑2d or H‑2b haplotypes 
are responsive to ACAID mediated peripheral immune suppression, as evident 
by suppression antigen specific DTH.[79] DTH: Delayed type hypersensitivity; 
ACAID: Anterior chamber associated immune deviation

Figure 3: Qa-1-CD94/NKG2A dependent suppression of 
delayed type hypersensitivity (DTH) response in anterior 

chamber associated immune deviation (ACAID) model 
in mice. ACAID associated suppression of antigen 

specific DTH is observed in CD94/NKG2A expressing 
mouse strain, but not in CD94/NKG2A deficient DBA/2J 
mice.[79] (a) Schematic representation of ACAID model, 

which illustrate ACAID mediated suppression of antigen 
mediated DTH in mice. (b) Suggested role of CD94/

NKG2A-Qa-1 system for CD8+ immunosuppressive Tregs 
in ACAID[79], where transforming growth factor beta may 

influence the generation of CD8+ Tregs[104-107]

ba
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gestation, but not of later stages.[99] HLA‑F is found to 

interact with ILT‑2 and ILT‑4, which expressed on the 

surface of monocytes and CD19+  B cells, but not on 

CD56+ NK cells or CD3+ T‑cells.[100]

In tumors such as malignant larynx lesions, HLA‑G 

expression is elevated in benign and premalignant 

lesions and is reduced in invasive carcinomas and in 

associated draining cervical lymph nodes. However, 

HLA‑E expression was found to be elevated with 

increased lesion grade, suggesting the expression of 

HLA‑G as an indicator of tumor invasiveness in malignant 

laryngeal lesions.[101] In ovarian cancer, it is found that 

the expression of HLA‑E plays an important role in 

neutralizing CTL infiltration. Low expression of HLA‑E is 

found to be associated with enhanced survival rate.[102] 

Recently, in the mouse B16 melanoma tumor model, it 

has been showed that activation of CD4+ Foxp3 − T‑cells 

enable melanoma metastasis, which is mediated by Qa‑1 

dependent suppression of NK‑cell cytotoxicity.[103]

Summary and Future Perspective

Here, we have reviewed the gene organization of 

nonclassical MHC, their phylogenetic analysis and important 

updates on their interaction with receptors such as TCR, 

CD94/NKG2 in T, NK, and NKT cells. Moreover, the 

association of Qa-1/HLA-E to CD94/NKG2 receptor systems 

with the pathological state of some important diseases and its 

relation to altered host cell immunity has also been discussed. 

In brief, the nonclassical MHCs and its receptors CD94/NKG2 

are found to be involved in maintaining immune privilege, 

immune surveillance as a mammalian host protective and 

beneficial response. However, their effect can be detrimental 

through an immunosuppressive response during viral 

infection and cancer/tumor progression. There are many more 

questions which remain to be explored in future regarding 

the biology of non-classical MHC-I molecules. Accordingly, 

specificity of these evolutionary conserved, less-polymorphic, 

nonclassical MHCs and their receptors towards modulating 

adaptive immunity is still under investigation. Further studies 

are warranted to open up new avenues in understanding the 

nonclassical MHC responses in the perspective of genetic, 

evolutionary and immunological studies.
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