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Introduction: Neurodevelopmental disorders with language impairment and behavioral
abnormalities (NEDLIB) are a disease caused by heterozygous variants in the glutamate
ionotropic receptor AMPA type subunit 2 (GRIA2) gene, which manifest as impairedmental
development or developmental delay, behavioral abnormalities including autistic
characteristics, and language disorders. Currently, only a few mutations in the GRIA2
gene have been discovered.

Methods: A GRIA2 variation was detected in a patient by whole-exome sequencing, and
the site was validated by Sanger sequencing from the family.

Results: We report a Chinese case of NEDLIB in a girl with language impairment and
developmental delay through whole-exome sequencing (WES). Genetic analysis showed
that there was a de novo missense mutation, c.1934T > G (p.Leu645Arg), in the GRIA2
gene (NM_001083619.1), which has never been reported before.

Conclusion:Our case shows the potential diagnostic role ofWES in NEDLIB, expands the
GRIA2 gene mutation spectrum, and further deepens the understanding of NEDLIB.
Deepening the study of the genetic and clinical heterogeneity, treatment, and prognosis of
the disease is still our future challenge and focus.
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INTRODUCTION

Neurodevelopmental disorders with language disorders and behavioral abnormalities (NEDLIB,
OMIM#618917) are caused by heterozygous mutations in the glutamate ionotropic receptor
AMPA type subunit 2 (GRIA2) gene on chromosome 4q32. The disease can lead to impaired
mental development or developmental delay, poor or lack of language ability, abnormal gait,
uncoordinated movement, and abnormal behaviors with autism characteristics such as
stereotypes, compulsions, and repetitions. Some patients also show clinical features such as
seizures and brain atrophy. The disease is onset in infancy, the clinical manifestations are highly
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heterogeneous, and most of them are de novo mutations
(Salpietro et al., 2019) (Supplementary Table S1).

The glutamate receptor sensitive to α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) is a ligand-activated
ion channel that mediates the fast component of excitatory
postsynaptic currents in neurons of the central nervous system
(Krupp and Feltz, 1995; Kohda et al., 2000). The ion channel is
composed of four related subunits: GLURA (GRIA1,
OMIM*138248), GLURB (GRIA2, OMIM *138247), GLURC
(GRIA3, OMIM*305915), and GLURD (GRIA4,
OMIM*138246) (Gécz et al., 1999; Armstrong and Gouaux,
2000; Beyer et al., 2008; Allen et al., 2012). The GLURB
subunit makes the channel almost impermeable to calcium
ions (Ca2+) (Schoepfer et al., 1994; Utz and Verdoorn, 1997).

CASE DESCRIPTION

The patient and her parents went to the Medical Genetics Center
of Gansu Provincial Maternity and Child Health Hospital for
genetic testing. Informed consent was given according to the
agreement approved by the Institutional Review Committee. The
proband is a 3-year-old female whose parents were healthy and
unrelated. The patient had difficulty feeding during the newborn
period. Brain MRI suggested brain atrophy in the proband. She
could walk independently but was slow in movement. The patient
had stereotyped behavior (repeated practice of speaking) and

compulsive behavior (bringing her own quilt). She did not speak
continuous sentences and did not communicate with others. Her
concentration was poor. She was stunted. The child had the
ability to paint.

METHODS

Whole-Exome Sequencing
DNA was obtained from peripheral blood from the patient and
her parents. DNA was submitted for trio whole-exome
sequencing (trioWES) to Chigene Co., Ltd. Protein-coding
exome enrichment was performed using xGen Exome
Research Panel v2.0 (IDT, Iowa, United States) that consists of
429,826 individually synthesized and quality-controlled probes,
which targets the 39 Mb protein-coding region (19,396 genes) of
the human genome and covers 51 Mb of end-to-end tiled probe
space. High-throughput sequencing was performed using an
MGISEQ-T7 series sequencer, and not less than 99% of the
target sequence was sequenced. The sequencing process was
performed by Chigene (Beijing) Translational Medical
Research Center Co., Ltd.

Bioinformatics Analysis
Raw data were processed using fastp for adapter removal and low-
quality read filtering. The paired-end reads were performed using
a Burrows–Wheeler Aligner (BWA) to the Ensemble GRCh37/

FIGURE 1 | Novel heterozygous de novo GRIA2mutation causes NEDLIB. Pedigree and Sanger sequencing validation for theGRIA2 NM_001083619.1: c.1934T
> G (p.Leu645Arg) variant in an affected individual compared with healthy parents.
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hg19 reference genome. Base quality score recalibration together
with SNP and short indel calling was conducted using GATK.
According to the sequence depth and variant quality, SNPs and
Indels were screened so that high-quality and reliable variants
were obtained. The online system independently developed by
Chigene (www.chigene.org) was used to annotate database-based
minor allele frequencies (MAFs) and ACMG practice

guideline–based pathogenicity of every yielded gene variant.
The system also provided a series of software packages for
conservative analysis and protein product structure prediction.
The databases for MAF annotation include 1,000 genomes,
dbSNP, ESP, ExAC, and the Chigene in-house MAF database.
Provean, Sift, Polypen2_hdiv, Polypen2_hvar, Mutationtaster,
M-Cap, and Revel software packages were used to predict

FIGURE 2 | Pattern diagram of theGRIA2 gene structure, protein domain, protein function, and transmembrane domain and protein sequence conserved analysis.
(A) GRIA2 gene (NM_001083619.1) contains 16 exons, and exons 2–15 are involved in gene coding. (B) Pattern diagram of the GRIA2 protein domain. It shows the
currently reported missense mutation sites that cause NEDLIB and the sites in this study (red font).GRIA2 protein mainly has the following three domains: ANF_recepter
(green), Lig_chan-Glu_bd (red), and Lig_chan (blue). The three transmembrane structure regions (orange diamond) are all concentrated on Lig_chan. (C)
ANF_recepter and LIG_chan-glu_BD are located outside the cell membrane. Lig_chan had three transmembrane regions. L645R mutation site (red arrow) is in the
second transmembrane region. (D)Multiple sequence alignment ofGRIA2 proteins from 7 species shows that the L645Rmutation site is within the conserved sequence.
Human (Homo sapiens, NP_001077088.2), Norway rat (Rattus norvegicus, NP_001077280.1), chimpanzee (Pan troglodytes, NP_001171923.2), house mouse (Mus
musculus, NP_001077275.2), cattle (Bos taurus, NP_001069789.2), chicken (Gallus gallus, NP_001001775.2), and tropical clawed frog (Xenopus tropicalis,
NP_001135539.1).
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protein product structure variation. As a prioritized
pathogenicity annotation to the ACMG guideline (Richards
et al., 2015), OMIM, HGMD, and ClinVar databases were
used as conferences of pathogenicity of every variant. To
predict functional change of variants on the splicing sites,
MaxEntScan, dbscSNV, and GTAG software packages were used.

In silico Analysis
Gene structure and protein domain model diagrams were
performed using Illustrator for Biological Sequences v1.0 (IBS)
(Liu et al., 2015). Pfam was used for protein domain prediction
(Mistry et al., 2021). Protein morphology and sequence
characteristics were drawn using Protter (Omasits et al., 2014).
The protein 3D pictures were performed using chimeraX
(Pettersen et al., 2021).

RESULTS

In this study, a heterozygous missense mutation in the GRIA2
gene c.1934T > G (p.Leu645Arg) was detected in the proband.
The mutation was de novo, and the parents were wild-type
(Figure 1; Supplementary Table S1). According to ACMG
guidelines, this variant was rated as likely to be pathogenic
(PS2+PM1+PM2+PP3). The GRIA2 gene (NM_001083619.1)
contains 16 exons; part of exon 1 and exons 2–15 are involved
in gene coding (Figure 2A). GRIA2 is a transmembrane protein
with three main domains: ANF_recepter (green), Lig_chan-
Glu_bd (red), and Lig_chan (blue). The three transmembrane
(orange diamond) areas are all on Lig_chan. So far, most of the
reported missense mutations have been concentrated in the

Lig_chan domain. The mutation site Leu645Arg in this study
was also in this region (Figure 2B). As shown in the
transmembrane protein pattern diagram, the Lig_chan (blue)
domain of GRIA2 protein (NP_001077088.2) is transmembrane
three times. The Leu645Arg site (arrow) in this case is located in
the second transmembrane region. Both the ANF_recepter
(green) and Lig_chan-Glu_bd (red) domains are located in the
extracellular region (Figure 2C). In the GRIA2 protein sequence
alignment of 7 species (human, Norway rat, chimpanzee, house
mouse, cattle, chicken, and tropical clawed frog), position 645Leu
is located in the conserved sequence (Figure 2D). In the 3D
structure of wild-type GRIA2 protein, 645Leu and 641Leu form a
hydrogen bond (Figures 3A,B). In the 3D structure of the mutant
GRIA2 protein, Leu at position 645 became Arg (645Arg), which
formed two hydrogen bonds with 641Leu (Figures 3C,D).

DISCUSSION AND CONCLUSION

We report a female patient with neurodevelopmental disorders
with language impairment and behavioral abnormalities
(NEDLIB), presenting with delayed language development and
stereotyped and compulsive behaviors. This is caused by a de novo
missense mutation in exon 12 of the GRIA2 gene, which has not
been reported previously.

Ionic glutamate receptors (iGluRs) are ligand-gated ion
channels activated by the glutamate neurotransmitter
(Palmada and Centelles, 1998). iGluRs mediate most of the
excitatory synaptic transmission in the central nervous system
and play a key role in synaptic plasticity, which is especially
important for learning and memory (Murphy-Royal et al., 2017).

FIGURE 3 | 3D image of GRIA2 protein. (A) is the 3D overall picture of wild-type (WT)GRIA2 protein (645Leu is in the red frame). (B) is the 3D partial enlarged view of
wild-typeGRIA2 protein. 645Leu (WT) and 641Leu form a hydrogen bond. (C) is the 3D overall picture of mutant (MUT)GRIA2 protein. (D) is the 3D partial enlarged view
of mutant GRIA2 protein. 645Arg (MUT) and 641Leu form two hydrogen bonds.
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Gene mutations in iGluR subunits can cause developmental delay
(DD), intellectual disability (ID), and autism spectrum
disorders (ASDs) and other related neurodevelopmental
disorders (NDDs) (Olde Loohuis et al., 2015; Moretto
et al., 2018; Edfawy et al., 2019; Wilding and Huettner,
2020). According to ligand binding characteristics and
sequence similarity, iGluRs are divided into 4 subtypes:
AMPA receptor, alginate receptor, NMDA receptor, and
delta receptor. α-Amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid receptors (AMPARs) are assembled from
the four subunits of Glu1-4, and the most common form
in the forebrain is Glu1/Glu2 heterotetramer (Herguedas
et al., 2019).

The GluA2 subunit encoded by GRIA2 plays a major role in
the regulation of AMPAR Ca2+ penetration and voltage
rectification. GluA2 has three main domains. The receptor
family ligand binding region (ANF_receptor) includes the
extracellular ligand binding domain of many receptors. This
family also includes bacterial amino acid binding proteins with
known structures (Kuryatov et al., 1994). The ligated ion channel
L-glutamate- and glycine-binding site (Lig_chan-Glu_bd) is
sometimes called the S1 domain. It is the luminal domain
upstream of M1, the first transmembrane region of a
transmembrane ion channel protein. This region binds
l-glutamate and glycine (Ishii et al., 1993; Yamakura and
Shimoji, 1999). Another time-transmembrane domain, the
ligand-gated ion channel (Lig_chan) includes four
transmembrane regions of ionotropic glutamate receptors and
NMDA receptors (Tong et al., 1995).

Recent studies have shown that new heterozygous mutations
in the GRIA2 gene were found in 28 nonrelated
neurodevelopmental abnormalities with language disorders
and behavioral abnormalities, including 15 missense variants,
2 splice site variants, 1 nonsense variant, 1 in-frame deletion, and
2 frameshift mutations. These mutations occur in the entire gene.
In this case, we discovered a de novo missense variant in the
GRIA2 gene, which can lead to NEDLIB (OMIM: #138247). It is
also reported that the nonsense mutation of p. Glu508Ter in the
GRIA2 gene leads to the occurrence of childhood onset
schizophrenia (COS) (Alkelai et al., 2021) (Supplementary
Table S1). So far, 16 missense variants of the GRIA2 gene
have been reported in 20 patients, including the p. Leu645Arg
discovered this time. The phenotypes of patients with missense
variants of the GRIA2 gene are shown in Table 1. All patients
have developmental delay and language impairment. A
considerable number of patients have ASD and abnormal
behaviors. Some patients have seizures. Conservation analysis
of the amino acid sequence shows that p. Leu645Arg is in a
conservative sequence. Including the p.Leu645Arg variant, 12
missense variants are concentrated in the Lig_chan domain. This
domain is the transmembrane region of the GRIA2 gene-
encoding protein, which forms three transmembranes, and the
p.Leu645Arg site is located in the second transmembrane region.
It could be seen that the Lig_chan domain may be the hotspot
mutation region of the GRIA2 gene.

Taken together, our research has expanded the GRIA2 gene
mutation spectrum, indicating that the detection and diagnosis of
NEDLIB through WES is feasible and effective.

TABLE 1 | Clinical phenotypes of patients with missense variation of the GRIA2 gene reported to date.

Patient Variant Age Gender DD ID ASD Speech
impairment

Abnormal
behavior

Seizures Brain
imaging

Study

1 c.140G > A; p.Gly47Glu 13 years F Yes Yes Yes Yes Yes No N/A Salpietro et al. (2019)
2 c.345C > G; p.Ser115Arg N/A N/A N/

A
N/
A

Yes N/A N/A N/A N/A Satterstrom et al. (2020)

3 c.905A > G; p.Asp302Gly 10 years M Yes Yes Yes Yes No No Normal Salpietro et al. (2019)
4 c.1582C > A; p.Pro528Thr 9 years M Yes Yes Yes Yes Yes No Normal Salpietro et al. (2019)
5 c.1819C > G; p.Arg607Gly 11 years F Yes Yes Yes Yes Yes Yes Abnormal Salpietro et al. (2019)
6 c.1825G > A; p.Gly609Arg 19 years F Yes Yes No Yes Yes No Yes Salpietro et al. (2019)
7 c.1831G > A; p.Asp611Asn 19 years M Yes Yes Yes Yes Yes No Normal Salpietro et al. (2019)
8 c.1915G > T; p.Ala639Ser 3 ms M Yes N/

A
N/A N/A N/A Yes Abnormal Salpietro et al. (2019)

9 c.1915G > T; p.Ala639Ser 5 ms F Yes N/
A

N/A N/A N/A Yes Abnormal Salpietro et al. (2019)

10 c.1932C > A; p.Phe644Leu 8 years F Yes Yes Yes Yes Yes No Normal Salpietro et al. (2019)
11 c.1934T > G; p.Lys645Arg 3 years F Yes N/

A
No Yes Yes No Abnormal Current study

12 c.1937C > A; p.Thr646Asn 3 years F Yes N/
A

No Yes No Yes Abnormal Salpietro et al. (2019)

13 c.1939G > C; p.Val647Leu 9 years M Yes Yes N/A Yes No Yes Abnormal Salpietro et al. (2019)
14 c.1939G > C; p.Val647Leu 5 years M Yes Yes Yes Yes No Yes Abnormal Salpietro et al. (2019)
15 c.1939G > C; p.Val647Leu 3 years M Yes Yes N/A Yes No Yes Normal Salpietro et al. (2019)
16 c.1939G > C; p.Val647Leu 5 years M Yes Yes N/A Yes No Yes Abnormal Salpietro et al. (2019)
17 c.2363G > T; p.Trp788Leu 3.5 years M Yes Yes N/A Yes No Yes Abnormal Salpietro et al. (2019)
18 c.2375G > T; p.Gly792Val 31 years F Yes Yes Yes Yes Yes No N/A Salpietro et al. (2019)
19 c.2420C > T; p.Ala807Val 3.6 years F Yes Yes Yes Yes Yes Yes Normal Salpietro et al. (2019)
20 c.2435A > G; p.Asn812Ser 3 years M Yes Yes Yes Yes Yes No Normal Salpietro et al. (2019)

DD, developmental delay; ID, intellectual disability; ASD, autism spectrum disorder; ys, years; ms, months.
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