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a b s t r a c t

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). It may cause severe ailments in infected individuals. The more
severe cases may lead to death. Automated methods which can detect COVID-19 in radiological images
can help in the screening of patients. In this work, a two-stage pipeline composed of feature extraction
followed by feature selection (FS) for the detection of COVID-19 from CT scan images is proposed.
For feature extraction, a state-of-the-art Convolutional Neural Network (CNN) model based on the
DenseNet architecture is utilised. To eliminate the non-informative and redundant features, the meta-
heuristic called Harris Hawks optimisation (HHO) algorithm combined with Simulated Annealing (SA)
and Chaotic initialisation is employed. The proposed approach is evaluated on the SARS-COV-2 CT-Scan
dataset which consists of 2482 CT-scans. Without the Chaotic initialisation and the SA, the method
gives an accuracy of around 98.42% which further increases to 98.85% on the inclusion of the two
and thus delivers better performance than many state-of-the-art methods and various meta-heuristic
based FS algorithms. Also, comparison has been drawn with many hybrid variants of meta-heuristic
algorithms. Although HHO falls behind a few of the hybrid variants, when Chaotic initialisation and SA
are incorporated into it, the proposed algorithm performs better than any other algorithm with which
comparison has been drawn. The proposed algorithm decreases the number of features selected by
around 75% , which is better than most of the other algorithms.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

COVID-19 is a contagious respiratory disease caused by SARS-
oV-2. It first emerged in Wuhan, China in December 2019 and
as resulted in an ongoing global pandemic. The usual symptoms
nclude fever, dry cough, fatigue, breathlessness, and, loss of smell
nd taste. Serious complications may lead to death. The standard
ethod for detection is by real-time reverse transcription poly-
erase chain reaction (rRT-PCR). However, the method also has
high sensitivity value and can take a few hours to produce the
esults. Therefore, conventional radiological imaging modalities
X-rays, CT-scans, etc.) have also been widely used as a quick
creening measure.
In the past years, Deep Learning (DL) has been successfully

pplied in several cross-domain tasks to achieve state-of-the-art
esults. This can be explained by the increase in the available
omputing power as well as an increase in the availability of
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large datasets. DL has also been widely adopted for the purpose
of automatic feature extraction from data as opposed to manual
feature engineering. In particular, Convolutional Neural Networks
(CNNs) have been successfully utilised for the classification of
many complex datasets in the domain of image processing and
computer vision among others.

FS is the method of selecting a subset of features or attributes
that contribute most to the variable we are keen on predicting.
FS aims to get rid of redundant attributes while predicting using
a learning model so that it takes lesser time to train the model
and delivers good performance. If there are d dimensions in the
feature vector, then a total of 2d combinations are possible. There-
fore, FS is a NP-hard problem, and solutions to such problems can
only be found in exponential time. Evaluation of FS algorithms
is also not practically feasible due to high cost of computation.
Several methods have been proposed to deal with the FS problem.
These approaches can be broadly classified in to the following
three categories:

1. Filter methods: Here, some statistical process is conducted
to identify the correlation between the features and the
output variable and metrics. Based on this, the suitable
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features are then selected. A few examples of such meth-
ods include Fisher score [1], Mutual Information [2] and
Relief [3].

2. Wrapper methods: Here a model is trained using some
learning algorithm. Some examples include binary particle
swarm optimisation [4] and ant colony optimisation [5].

3. Embedded methods: This is a combination of the above
two methods. Notable examples would be LASSO [6] and
RIDGE [7].

In general, filter methods are much faster than wrapper meth-
ds. This is because wrapper methods use some supervised learn-
ng procedure which is a time-consuming step. On the other
and, wrapper methods generally achieve higher classification
erformance than filter methods.
Meta-heuristic algorithms are computational paradigms ap-

lied to find solutions to optimisation or FS problems. Heuristic
lgorithms carry out a guided search over the entire search space
o discover a reasonably good feature vector which may not
e the best possible solution but is admissible within compu-
ational limitations. Meta-heuristics find their applications in a
ide range of fields [8] for solving FS problems such as hand-
riting recognition, medical diagnosis, gene selection, benchmark
roblems and so on. Meta-heuristic algorithms are generally pre-
erred due to their flexibility, non-derivative nature, ability to
void local optima and ease of implementation.
Meta-heuristic algorithms generally consist of two broad

hases of exploration and exploitation. An efficient algorithm
ust achieve a good trade-off between the two phases to produce
ompetent results. This requires a good deal of tuning of the
nderlying parameters in order to obtain the final results. In
ddition, the above two phases must also be efficient so as to
e able to obtain the solution in an acceptable amount of time.
t is also noted that these algorithms do not guarantee the best
olution since the entire search space is not explored. There may
e a few reasons for this: the search space where the optimum
olution lies is not explored, the area of the search space with the
ptimum solution is found but the algorithm does not converge
roperly, or both of the above may occur. Furthermore, the exis-
ence of the No Free Lunch (NFL) theorem [9] states that no single
lgorithm exists which is able to guarantee good performance on
ll the datasets. The above facts encourage further research into
he creation of new or hybrid meta-heuristic algorithms. Keeping
he above facts in mind, in this paper, we have proposed a hybrid
eta-heuristic FS algorithm for the classification of COVID-19
sing CT-Scans images.
Myriad meta-heuristic algorithms have been proposed for the

urpose of FS. Each algorithm has its own advantages and draw-
acks. The performance is also reliant on the inherent traits of
he dataset on which our model is trained. Often, the dataset is
rained with hybridised algorithms so that the shortcomings of
ne algorithm is overcome by the other algorithm(s) [10]. Sup-
ose if an algorithm with good exploration properties is coupled
ith an algorithm that exhibits good exploitation, it will enhance
he performance of the entire system as a whole and establish
trade-off between the two properties in the system. Here, the

ocal optima problem that HHO suffers from is overcome by
ntegrating the SA algorithm and the population diversity of the
earch space is augmented by applying Chaotic initialisation.
Hybridisation of meta-heuristics is a known approach for FS.

n early work in [11] proposed the hybridisation of GA with
ocal search. In [12], Memetic algorithm and late hill climbing are
ybridised for FS to aid in facial emotion recognition. A similar
ork [13] on hybridisation also obtained good results on UCI
atasets. A very recent work in [14] hybridised Harmony Search
ith Artificial Electric Field Algorithm for the purpose of FS. The
2

work by [15] is another recent work in hybridisation where FS
has been performed for Indic script classification. Here, the Binary
Particle Swarm Optimisation and the Binary Gravitational Search
Algorithm have been combined.

Most of the hybridisation approaches mentioned above also
suffer from the problem of parameter tuning. In addition, the time
required to obtain a solution is also more due to the combination
of two algorithms. Some works have also noted that parallelised
algorithms can be explored in future research which can mitigate
the time consumption issue. Furthermore, the NFL theorem is also
applicable in this case as well. No single hybridised approach can
guarantee performance, and several works in the same direction
continue to be proposed.

In this work, a two-stage pipeline for the detection of COVID-
19 in CT-scan images is proposed. The first stage is feature ex-
traction, which is followed by the second stage of FS and clas-
sification. We use a state-of-the-art CNN model, DenseNet [16],
for the purpose of extracting discriminative features from the
input CT-scans. The models are first pre-trained on the ImageNet
dataset and then evaluated on SARS-COV-2 CT-Scan dataset. This
increases the performance and robustness of the model, despite
the small amount of training data available for the problem under
consideration.

In the second stage, FS is performed on the features extracted
in the previous stage. In general, the features that are extracted
by the CNNs may contain some redundant and highly correlated
features. If such features are removed, then the classification
performance of models using the optimal subset of features is
expected to improve. At the same time, a reduction in the total
number of features helps to reduce the computational time taken
by various classification algorithms using these features.

In this study, Harris Hawks optimisation (HHO) [17] with
Simulated Annealing (SA) [18] and Chaotic initialisation or in
short Chaotic Harris Hawks optimisation Algorithm (CHHO) [19]
has been utilised for the purpose of FS. This leads to a better
performance in terms of accuracy as compared to the CNN model
used for classification. It is also noted that this stage also re-
duces the number of features to a large extent, thereby reducing
training time and memory requirement by the model.

Simulated Annealing (SA) is applied here to improve the ex-
ploitation capability of HHO while dealing with the high di-
mensional feature vector. Previously, SA has been successfully
incorporated into algorithms to enhance the local search prop-
erty of such algorithms. For example, it was used to evaluate
the performance of FS [20], to improve the best solution after
each iteration [21], to enhance the exploitation search capabil-
ity [22], and to evaluate PSO performance as a wrapper-based
method [23]. The enhanced performance that was obtained by
employing the SA in these previous studies inspired us to include
the SA into HHO algorithm to enhance the local search during FS.

For the purpose of training and testing of the present ap-
proach, the SARS-COV-2 CT-Scan dataset [24] is used. It consists
of 2482 CT-scan images in total: 1252 are from COVID-19 positive
patients and 1230 are from COVID-19 negative patients. The
presented method obtains an accuracy of 98.85%.

To sum it up, the highlighting points of this work are as
follows:

1. A two-stage pipeline for the detection of COVID-19 in
CT-scan images is proposed.

2. The first stage is the feature extraction from the CT-scans
using a DenseNet based CNN model.

3. The second stage is the selection of relevant features us-
ing the HHO algorithm combined with SA and Chaotic

initialisation.
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4. Experimental results indicate that the present approach
obtains better results than when only using the DenseNet
model, and also when compared to some state-of-the-art
methods applied on the same dataset considered here.

5. The method is also evaluated on some real-world engineer-
ing problems, and the results are comparable with current
state-of-the-art approaches.

The remaining part of this work is as follows: Section 2 pro-
vides an overview of previous works on the topic. Section 3 dis-
cusses the present method. Section 4 contains the experimental
results and we end with the concluding remarks in Section 5.

2. Related work

Over the last decade, DL techniques have been widely used
in various domains, including medical image processing. This is
mainly due to the increase in computing power as well as due to
the availability of large datasets. Many works have been proposed
in domains such as image classification, image segmentation,
computer aided diagnosis, etc. which utilise these DL based meth-
ods to achieve state-of-the-art results. Recently, several DL based
works have also been proposed to aid in detecting COVID-19 in
medical images.

DL based models generally require a large amount of data
for generalisability. However, it is often difficult to get a large
quantity of data, especially in new domains. Waheed et al. [25],
in their work, have proposed an Auxiliary Classifier Generative
Adversarial Network (ACGAN) based model termed as CovidGAN.
The authors have used the CovidGAN model to generate syn-
thetic chest X-ray images corresponding to COVID-19 positive
and COVID-19 negative classes. They have prepared a dataset by
combining three publicly available datasets: IEEE Covid Chest X-
ray dataset, COVID-19 Radiography Database and COVID-19 Chest
X-ray Dataset Initiative. The final dataset contains 1124 chest X-
rays of which are 403 are COVID-19 positive and 721 are normal.
They demonstrate that the inclusion of the synthetic images in
a VGG16 classifier improves the accuracy and F1 score values to
95% and 0.95 respectively from 85% and 0.85 respectively.

Jaiswal et al. [26] in their work have employed transfer learn-
ing to improve the performance of their DL models. The authors
have first trained the models on the ImageNet dataset. Thereafter,
the pre-trained models are again trained on the SARS-CoV-2 CT-
scan dataset to classify the input images into two classes of
COVID-19 infected and COVID-19 negative. The authors have ob-
served that the DenseNet architecture provides the better result
as compared to other architectures such as VGG, ResNet and
InceptionResNet. An accuracy score of 96.25% is reported on the
test set.

Pruning and ensembling are common approaches for improv-
ing the performance of DL models. The authors in [27] have
utilised such techniques to detect pneumonia and COVID-19 re-
lated artefacts in chest X-rays. They have proposed an end-to-end
pipeline for the same task. The authors have also used modality
specific training where the models are trained on a pneumonia-
related dataset before being trained on the COVID-19 data. The
reported accuracy and AUC values are 99.01% and 0.9972 respec-
tively.

In [24], the authors have put forward a COVID-19 related
dataset named as the SARS-CoV-2 CT-scan dataset for the ben-
efit of the research community. In addition to this, they have
provided a baseline model for the purpose of comparison. An
explainable deep neural network (xDNN) has been employed for
the purpose of detecting COVID-19 in the CT scan images. The
method has obtained accuracy and AUC values of 97.38% and
97.36% respectively.
3

FS is a process in which a subset of features is chosen from a
given feature vector. The idea is to select the relevant features
from the original features. This generally removes redundancy
in the features and provides several benefits such as reduced
training times, better performance, etc. Meta-heuristic algorithms
have been widely used in the literature for the purpose of FS.

Elaziz et al. [28] have proposed a framework to detect COVID-
19 in chest X-rays in which they have used Fractional Multi-
channel Exponent Moments (FrMEMs) for the purpose of fea-
ture extraction. Following the feature extraction stage, FS was
performed using the Manta Ray Foraging optimisation (MRFO)
algorithm based on Differential Evolution (DE). For testing their
approach, the authors have utilised two datasets. The first is a
combination of the Cohen dataset and a pneumonia dataset from
Kaggle. It consists of 216 COVID-19 positive X-rays and 1675
COVID-19 negative X-rays. The second dataset consists of 219
COVID-19 positive images and 1341 COVID-19 negative images. It
was collected by a team of researchers and doctors. The reported
accuracies are 96.09% and 98.09% respectively on the first and
second datasets respectively.

In a similar work, Sahlol et al. [29] have used a CNN as the
feature extractor and a combination of fractional-order calculus
with the Marine Predators Algorithm (FO-MPA) for the purpose
of FS. They have used the same two datasets as the work by Elaziz
et al. and reported the accuracies as 98.7% and 99.6% respectively.

In [30], the authors have used a 2D curvelet transform for
the purpose of getting features from an input grayscale X-ray.
Thereafter, the coefficients of the obtained feature matrix have
been optimised using the Chaotic Salp Swarm Algorithm (CSSA).
Ultimate, a DL model, EfficientNet-B0, has been used for clas-
sification. They have used a dataset consisting of 2905 X-rays
of which 219 are from COVID-19 patients, 1341 are normal,
and 1345 are from viral pneumonia patients. They have further
generated synthetic data so as to produce 7980 images in total
equally split into the three classes. The authors have reported the
accuracy and F-measure values as 99.69% and 99.53% respectively.

Whereas the above works utilised meta-heuristic algorithms
for the purpose of FS, the work by Goel et al. [31] utilised the
same for a different purpose. The authors have proposed an
optimised CNN (OptCoNet) for the purpose of detecting COVID-19
in chest X-rays. The CNN models is a conventional one with the
usual layers such as convolution, pooling, dense, fully-connected,
etc. However, the authors have used the Grey Wolf optimisation
(GWO) algorithm for tuning the hyperparameters of the CNN. The
authors have compared the approach with other state-of-the-art
CNNs and have found that it performs better. A combination of
six publicly available datasets has been used by the authors. The
datasets contain chest X-rays corresponding to normal, pneumo-
nia and COVID-19 categories. There were 2700 X-rays in total,
and 900 of these were from COVID-19 affected patients. The
authors reported the accuracy, sensitivity, specificity, precision,
and F1 score values as 97.78%, 97.75%, 96.25%, 92.88% and 95.25%
respectively.

A similar work by Ezzat et al. [32] used the Gravitational
Search Algorithm (GSA) to optimise the hyperparameters of a
DenseNet121 model. The authors have prepared a dataset which
has been named as the Binary COVID-19 dataset. It is a combi-
nation of the Cohen dataset and the Kaggle chest X-ray dataset.
There are 99 images from COVID-19 positive patients and 207
from COVID-19 negative patients. Among the 207, 104 are from
healthy patients, whereas the remaining are from patients suf-
fering from diseases such as pneumonia, SARS, etc. The authors
reported the accuracy and F1 score of their method as 98.38% and
98% respectively.
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Fig. 1. A pictorial representation of the dense connections in the DenseNet
architecture [16].

3. Proposed work

3.1. Feature extraction

In this work, for the purpose of feature extraction, a CNN based
model is used. In particular, the DenseNet201 model architecture,
proposed in the work by Huang et al. [16], is used. The DenseNet
architecture is similar to conventional CNNs in many respects.
However, the main difference is that the output of a particular
layer is connected to all the subsequent layers. This is highlighted
in Fig. 1. These direct or dense connections provide an increased
parameter efficiency. This is because redundant features are not
learned by the later layers as the earlier layers already contain
the same information. The inclusion of the dense connections
also leads to an improved flow of gradients through the network
which helps in the training stage.

In the training stage, transfer learning is employed where the
model is first trained on the ImageNet dataset before training on
the CT-scan dataset. After training on ImageNet, the last dense
layer is replaced with a custom dense layer of dimension 2 with
softmax activation representing the two output classes of COVID-
19 positive and COVID-19 negative. It is noted that the layer
before the custom dense layer is a global pooling layer which
produces a 1D vector of dimension 1920. This vector represents
the extracted features which are used in the next stage of FS. The
model is trained for 40 epochs at a learning rate of 0.001 using
the Adam [33] optimisation algorithm. The training-testing ratio
is 85%–15% with an additional 20% of the training data being used
for validation.

3.2. CHHO algorithm

HHO algorithm [17] is a meta-heuristic population-based op-
timisation algorithm developed by Heidari and Mirjalili et al. in
2019. It is influenced by the manner in which Harris Hawks’ track
a prey in nature. The Harris Hawks’ exhibit a special kind of tech-
nique to hunt the prey named surprise pounce. HHO algorithm
conveys various exploration and exploitation approaches, that are
affected by the exploring of the target, surprise pounce, and then
attacking the prey in a distinctive style. A mathematical prototype
is put forward to replicate the way in which Harris Hawks’ hunt
in nature. Now, the various steps that HHO algorithm comprise
to emulate the attacking style of nature’s Harris Hawks’ are
described.
4

3.2.1. Initialisation
Chaotic initialisation is done when assigning values to the

vectors initially. The feature vectors are initialised using the Sine
Chaotic map. The first feature vector is initialised randomly and
the other feature vectors are derived from the first one by using
the Sine Chaotic map. Additionally, all the other parameters are
set to some starting values. Using Chaotic maps [34][35] to look
for global optimum solutions aids in enhancing the diversity
of the solutions. Let fi denotes the ith feature vector. Then the
formula for obtaining the fi+1, the (i + 1)th feature vector, given
the values of the ith feature vector can be obtained by any of the
following Chaotic maps.

1. Sine Chaotic Map:

fi+1 =
k
4
sin(π fi) , k = 4 (1)

2. Singer Chaotic Map:

fi+1 = µ(7.86fi − 23.31fi2 + 28.75f 3i − 13.302875f 4i ) (2)
µ = 1.07

3. Sinusoidal Chaotic Map:

fi+1 = cf 2i sin(π fi) , c = 2.3 (3)

4. Chebyshev Chaotic Map:

fi+1 = cos(arccos fi) (4)

5. Tent Chaotic Map:

fi+1 =

{
fi
0.7 fi < 0.7
10
3 (1− fi) fi ≥ 0.7

(5)

6. Logistic Chaotic Map:

fi+1 = cfi(1− fi) , c = 4 (6)

7. Iterative Chaotic Map:

fi+1 = sin(
cπ
fi

) , c = 0.7 (7)

3.2.2. Exploration
In this phase, all the Harris Hawks are considered as possible

solutions to the FS problem. The Harris Hawks are one of the
most intelligent birds and they can effortlessly trace a prey with
their keen eyes but at times, the prey cannot be seen. In HHO,
each Harris Hawk is considered a possible solution and the prey
is taken to be the Harris Hawk which yields the minimum value
when passed to the objective function (the best possible solu-
tion amongst the current set of Harris Hawks, one which yields
maximum classification accuracy selecting the minimum number
of features possible). There are two possible ways to imitate the
exploration strategy of Harris Hawks as stated in Eq. (8).

P(i+ 1) =

⎧⎪⎪⎨⎪⎪⎩
Prand(i)− f1|Prand(i)− 2f2P(i)|,
when r ≥ 0.5
(Pprey(i)− Pm(i))− f3(LL+ f4(UL− LL)),
when r < 0.5

(8)

ere, P(i) denotes the position of a Harris Hawk in the ith it-
ration. P(i + 1) is the new position of the Harris Hawk at the
nd of the ith iteration. Pprey(t) is the location of the prey. Prand(t)
ignifies an arbitrary solution chosen from the current population
f the Harris Hawks. Here, r , f1, f2, f3, f4 are numbers that are
andomly chosen from the range (0, 1). LL denotes the lower limit
r bound and UL stands for the upper limit or bound. P stands
m
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or average position of the current generation of hawks. And the
ormula for Pm is given by Eq. (9).

Pm =
1
M

M∑
j=1

Pj(i) (9)

where, the size of the current population is M and the position of
every hawk in the ith iteration is given by Pj(i).

This first perspective gives rise to solutions based on the
position of a randomly chosen hawk and the locations of other
hawks. The second perspective initiates solutions based on the
position of the prey, mean position of the hawks at the beginning
of the current iteration, and other arbitrary scaled factors. Here,
f3 is a scaling factor and as the value of f4 tends towards 1, it aids
in enhancing the randomness of this method. To the Lower Limit
(LL), a random length is added. It ensures that more domains of
the feature space are discovered.

3.2.3. Changeover between exploration and exploitation
The HHO algorithm can exhibit a changeover between the

exploration and exploitation aspects. It can also show alteration
between various exploitative actions based on the escaping en-
ergy of the rabbit and the probability of the rabbit escaping. As
the prey attempts to escape, its escaping energy diminishes. If the
initial energy of the prey is depicted by X0, the current iteration
is denoted by m and the total iterations are denoted by M , then
the escaping energy of prey in the mth iteration (say, X) can be
depicted by Eq. (10).

X = 2X0(1−
m
M

) (10)

he value of X0 varies in the range [−1, 1] randomly. When the
alue of X0 decreases from 0 to −1, it signifies that the prey gets
ired and when it increases from 0 to 1, it means that the prey
ets revitalised. Normally, X decreases as the iterations progress.
xploration is favoured when |X | ≥ 1 and exploitation is done
hen |X | < 1.

.2.4. Exploitation
In this stage of the HHO, neighbourhood of the feature vectors

re exploited. The Harris Hawks execute the surprise pounce
seven kills strategy [36]) by charging on the target spotted in
he exploration phase. It utilises four separate approaches based
n the location of the chase that was determined in the previous
tage. The four approaches comprise soft besiege, hard besiege,
oft besiege with progressive rapid dives and hard besiege with
rogressive rapid dives. When |X | ≥ 0.5, then it is opted for soft
esiege else hard besiege, where X stands for the current energy
f the prey. There is also another parameter t , which designates
he probability of the prey escaping and it is taken randomly in
he interval (0, 1). Lower value of t means that the prey has higher
hances of fleeing. The four methods are discussed below.
Soft besiege is opted for when t ≥ 0.5 and |X | ≥ 0.5. The prey

r the rabbit has ample energy but the hawks surround the rabbit
hen it tries to deceive the Harris Hawks and get away. Finally,
he hawks carry out the surprise dive on the prey. This can be
rafted mathematically as given in Eq. (11) to Eq. (13).

(i+ 1) = ∆P(i)− X |JS Pprey − P(i)| (11)

P(i) = Pprey − P(i) (12)

S = 2(1− f5) (13)

ere, f5 is a random number between 0 and 1, and JS depicts the
andom Jump Strength of the prey while it is striving to get away.
 i

5

P(i) stands for the difference between the location of the prey
nd the position of the current Harris Hawk in the ith iteration.
Hard besiege is selected when t ≥ 0.5 and |X | < 0.5. The

abbit is worn out and the amount of energy it has to escape is
ow. The Harris Hawks barely need to perform the surprise dive.

(i+ 1) = Pprey(i)− X |∆P(i)| (14)

Soft besiege with continuous or progressive rapid dives is the
ext technique. When the prey has |X | ≥ 0.5 and t < 0.5, it has
ore energy to get away, and also good chances of escaping. Here

he Harris Hawks carry out the surprise dive in two moves.
In the first move, the Hawks surround the prey and move to

location after assessing the next move of the prey.

= Pprey(i)− X |JS Pprey(i)− P(i)| (15)

n the next move, the Harris Hawks choose whether to perform
he jump after contrasting with the result of the preceding dive
nd its corresponding result, and if it is seen that such a dive
s not reasonable, then based on the Levy Flight idea, uneven
rregular dives are performed. The Levy Flight (LF) idea is used
o imitate the misleading manner in which preys behave while
rying to escape the swift, non-uniform descents of Hawks around
he prey while it strives to get away. It is backed by observations
n real life in the way in which various animals such as monkeys
nd sharks chase preys [37,38] .

= N + R× levy(D) (16)

denotes the dimension of the solution. R is a random vector of
he dimensions 1× D. Here, levy is the Levy Flight function [39],
alculated using the equation written below.

evy(x) = 0.01×
v1 × σ

|v2|
1
β

, σ =

(
Γ (1+ β)× sin( πβ

2 )

Γ ( 1+β

2 )× β × 2( β−1
2 )

)1/β

(17)

here the value of β is set to 1.5 and the other two parameters,
1 and v2 are generated randomly in the range 0 to 1 (both
nclusive). In the method of soft besiege with progressive rapid
ives, the position of the Harris Hawk at the end of the iteration
s updated according to the formula stated in Eq. (18).

(i+ 1) =
{
N, if fitness(N) < fitness(P(i))
L, if fitness(L) < fitness(P(i))

(18)

here fitness(x) denotes the value obtained when x is passed as
arameter to the fitness or the objective function.
The last technique is Hard besiege with continuous or progres-

ive rapid dives, when t < 0.5 and |X | < 0.5. There is not much
nergy left in the prey to escape and the hawks implement rapid
umps before exhibiting the surprise dive on the prey. The motion
f the Hawks can be mathematically shown as in Eq. (18).
The values of N and L are obtained from the Eqs. (19) and (20).

= Pprey(i)− X |JS Pprey(i)− Pm(i)| (19)

= N + R× levy(D) (20)

here Pm(i) is obtained as described in Eq. (3).

.3. Simulated annealing

SA [40] is a local search algorithm which is incorporated into
he HHO to enhance the exploitation properties of the latter,
o that it looks for global optimum and does not get stuck in
ny local optima. It is a probabilistic technique. At each iteration
nside the SA, the neighbour of the current solution is assigned to
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he feature vector if a lower cost than the original feature vector
s obtained using the objective function. A neighbour yielding
higher cost in the objective function can also be assigned to

he feature vector with a pre-specified probability, to search
or the global optimum and avoid local optimum. Hence, the
lgorithm is hill-climbing, barring the fact that instead of the
est move from a point, it chooses a random one. Probability of
ccepting an uphill move is equal to exp( delE

Temp ), where delE =
ind_fitness(curr_state) − find_fitness(random_nbr). Hence, delE is
qual to the difference in the value of fitness function(find_fitness)

obtained by passing the current state(curr_state) and the ran-
domly chosen neighbour(random_nbr) of the current state and
it is analogous to the difference in the energy levels of the two
states in the annealing method. The variable Temp is comparable
to Temperature in the actual process of Annealing. It is decreased
gradually by a constant until it reaches some value.

3.4. Fitness function

This part is for assessing the quality of a feature vector. Since
the FS algorithm used here is a wrapper-based method, a learning
algorithm is required. The K-Nearest Neighbours (KNN) classi-
fier [41] is employed for calculating the accuracy of the proposed
method. In the method of FS, the main objectives are to increase
the accuracy and also decrease the number of features selected.
The classification error needs to be minimised for this purpose.
Hence it is required to minimise the number of traits selected
as well as the error in classifying. The fitness function or the
objective function computes the fitness as written in Eq. (21).

fitness = α
q
Q
+ (1− α)

e
E

(21)

where q denotes the number of features selected by the current
feature vector, Q denotes the total number of features present in
the dataset, e stands for the error in classification of the current
feature vector and E stands for the error in classification when
all the features are used. Here, α is a parameter in the range 0
to 1(both inclusive) that gives us the relative weightage of the
classification error and the number of features selected. After
training over the training dataset, it is observed that optimal
performance is obtained when the value of α is set at 0.2

3.5. Proposed algorithm for feature selection

In the process of FS, our main aims are to minimise the
number of attributes chosen and to maximise the accuracy of
the model. It was observed in earlier studies, HHO outperformed
many other optimisation algorithms. However, the HHO algo-
rithm has two major drawbacks. Firstly, the solutions are not very
diverse and secondly, the solutions may get stuck in local optima.
To overcome the first drawback, the initialisation is done using
the Sine Chaotic map, which ensures solution diversity. Whereas
SA algorithm is integrated into the algorithm to augment the
exploitation property of the HHO and ensure that the HHO looks
for global optima. The SA algorithm boosts the local searchability
of the HHO algorithm. When the SA algorithm is invoked from
the HHO algorithm, the solution returned is accepted only if the
fitness of that solution is not worse than the original solution
by some particular value (the tuning settings are recorded in
Table 4).
6

Algorithm 1 Pseudo code for HHO with SA and Chaotic
initialisation
Input: Population size S and Maximum iterations M
Output: Position of the prey and the value returned when it is
passed as an argument to the objective function
1: initialise the first Harris Hawk’s feature vector randomly
2: initialise the rest of the Harris Hawks using the Sine Chaotic

map from equation (1).
3: for m← 1 . . .M do
4: Compute the fitness values of Harris Hawks by passing to

the objective function as stated in equation (21).
5: Select the position of Harris Hawk with best fitness to be

the prey, denoted by Pprey
6: for each Harris Hawk do
7: For exploitation purpose, initialise the value of Jump

Strength(JS): JS = 2(1− rand())
8: Compute current Energy X using equation (10)
9: if |X |≥ 1 then
0: Do exploration according to equation (8) and corre-

spondingly update the feature vector
1: else if |X |< 1 then

12: Let X and t denote the energy and probability,
respectively, of the prey escaping

3: if t ≥ 0.5 and |X |≥ 0.5 then
14: Perform Soft besiege in accordance with equations

(11) to (13) and update the feature vector
5: else if t ≥ 0.5 and |X |< 0.5 then

16: Perform Hard besiege in accordance with equation
(14) and update the feature vector

7: else if t < 0.5 and |X |≥ 0.5 then
18: Perform Soft besiege with continuing rapid dives in

accordance with equations (15) to (18) and update
the feature vector

9: else if t < 0.5 and |X |< 0.5 then
20: Perform Hard besiege with continuing rapid dives in

accordance with equation (18) to (20) and update the
feature vector

1: end if
2: end if

23: end for
24: if Fitness of best solution == Terminating Condition then
5: Break out of the for loop

26: end if
27: Apply SA algorithm to the current set of solutions, and

accept a solution only if it is not worse than the original
by some margin

8: end for
9: Return the current best solution along with its fitness value

3.5.1. Computational complexity
The FS algorithm that is implemented is the HHO along with

SA and Chaotic initialisation. If there are S features vectors ini-
tially, the time and space complexity for the initialisation are
O(S). If there are M iterations and DN is the dimension of the
search space of the algorithm, then the complexity for updat-
ing the location of the feature vectors by the HHO method is
O(S∗M) + O(S∗M∗DN ). For SA, the computational complexity
is O(M∗MSA∗NSA), where MSA denotes the number of iterations
inside the SA method and NSA denotes the number of neigh-
bours of the current feature vector generated for choosing a ran-
dom neighbour, inside the SA method. Hence, the computational
complexity of the entire method for FS is: O(S(1+M+M∗DN )+
S∗M ∗N ). Fig. 2 displays the flowchart for the entire process.
SA SA
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Fig. 2. Flowchart of the proposed work for the detection of COVID-19 from
CT-scans.

Table 1
The experimental results that are obtained with various types of Chaotic maps.
Chaotic map Final fitness Accuracy (%) No. of features Time (mm:ss)

No map 0.763453 98.48 498 51:03
Sine 0.573282 98.85 469 48:12
Singer 0.596292 98.59 399 51:43
Sinusoidal 0.581294 98.68 342 49:04
Chebyshev 0.824525 98.03 902 47:13
Tent 0.792435 98.11 758 48:59
Logistic 0.601328 98.65 528 52:02
Iterative 0.593123 98.57 405 53:43

Table 2
Parameter tuning for the temperatures in Simulated Annealing.
Initial temp Final temp Initial fitness Final fitness

5 1 0.715347 0.715763
10 6 0.715347 0.715868
15 11 0.715347 0.759687
20 16 0.715347 0.714409
25 21 0.715347 0.716493

4. Results and discussion

4.1. Dataset used

The SARS-COV-2 CT-Scan Dataset1 [24], available on Kaggle,
s used in this work for the purpose of training and testing. It
ontains 2482 CT scan images in total. Among them, 1252 scans
re from COVID-19 positive patients whereas the remaining 1230

1 https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset.
7

Fig. 3. Some sample CT scan images from the SARS-COV-2 CT-Scan dataset.

scans are from COVID-19 negative patients. Fig. 3 shows some
representative images from the dataset.

The images are resized to a fixed dimension of 224 × 224
before being passed to the DenseNet model. Online data aug-
mentation is employed to increase the variation in the training
data. The augmentation methods include the following: random
rotation up to 45 degrees, random zoom up to a factor of 0.2, and
random horizontal flip. Thereafter, all the images are normalised
into the range of [0, 1] before being passed to the DenseNet
model.

4.2. Choice of chaotic map

Table 1 contains the results of the experiments performed
with different Chaotic maps to judge the performance of each
one. It is noted that a lot of the maps achieve similar accuracies.
Finally, we select the Sine Chaotic map which achieves the best
accuracy score in the present case.

4.3. Tuning of parameters in FS

In this step, a set of parameters are assigned values for the
FS algorithm to yield the best performance. The values that the
parameters in FS are allocated influence the overall performance
of the optimisation algorithm. For each parameter, we run the
algorithm over a set of possible values that the parameter can be
allotted and then we choose the particular value for which the
algorithm gives the best fitness value. In this case, it is aimed to
reduce the error rate in the process of classification as well as the
number of features selected for FS.

4.3.1. Parameter tuning in SA algorithm
Here we discuss the results of tuning the various parameters

in SA. Table 2 highlights the experimental results of tuning the
initial and final temperatures. Table 3 highlights the experimental
results of tuning the alpha value. Based on the results, the initial
and final temperatures are chosen as 20 and 16 respectively. Also,
the cooldown factor in SA has been chosen to be 0.2 based on the

results.

https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
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able 3
arameter tuning for cooldown factor (alpha) in SA.
Alpha Initial fitness Final fitness

0.5 0.715347 0.714930
0.4 0.715347 0.715659
0.3 0.715347 0.804340
0.2 0.715347 0.714409
0.1 0.715347 0.715034

Table 4
Value of constraint parameter such that the feature vectors with fitness worse
than the original feature vector should be discarded if they exceed this margin
Value of the parameter Initial fitness Final fitness

0.00005 0.725451 0.725320
0.00010 0.725451 0.724218
0.00020 0.725451 0.724888
0.00030 0.725451 0.725159
0.00040 0.725451 0.725334
0.00050 0.725451 0.725343

No constraint 0.725451 0.725409

4.3.2. Parameter tuning for the acceptance threshold
This parameter decides how worse a solution should be ac-

epted from the SA algorithm when it is invoked from the overall
HO algorithm. The exact statement is in line 27 of Algorithm 1
entioned above.
The values of the constraint are tabulated in Table 4 and as

vident from the table, discarding the solutions that are worse
han 0.00010 with respect to the original solution leads to the
est performance. The solution from the local search (SA) is
ccepted based on this parameter. If the improvement that it
rovides is worse than this constraint value (0.00010 as obtained
rom the table) then the solution is rejected else we take up the
alue in the future iterations.

.3.3. Parameter tuning in HHO algorithm
In the HHO algorithm, the first parameter that is encountered

or tuning is the number of search agents. From Fig. 4, it can
e seen that if the number of search agents is set beyond 10,
he outcomes are not affected significantly. Hence, there are 10
earch agents initially. If the number of search agents are taken
o be more than 10, the least fitness amongst the Harris Hawks
s not affected. Hence, it can be inferred that 10 search agents
uffice for this case.
The other parameter that is tuned here is the maximum num-

er of iterations in each run of the FS algorithm. As evident from
ig. 5, the maximum number of iterations is set at 15. Increasing
he value of this parameter only increases the time required for
he algorithm to execute without any change in the fitness value
f the best search agent.

.4. Parameter settings of the other FS algorithms

The parameters that are used for the other FS algorithms
onsidered in the paper for comparison are mentioned in Table 5.
he parameter names stated in the table are taken directly from
heir respective papers or are commonly used as such. Also, a
arameter lying in the range [a, b] signifies that the parameter
aries from a to b over the iterations.

.5. Results

Other than the FS algorithm selected in this paper, many
eta-heuristic algorithms such as Genetic Algorithm (GA) [42],
8

Fig. 4. Graph demonstrating that increasing the number of search agents beyond
a particular limit does not yield any major change in the fitness value of the
best search agent.

Fig. 5. Graph illustrating that increasing the maximum number of iterations
beyond a particular value does not cause any notable change in the fitness value
of the best search agent.

Whale optimisation Algorithm (WOA) [43], Grey Wolf optimisa-
tion (GWO) [44], Particle Swarm optimisation (PSO) [45], Har-
mony Search (HS) [46], Binary Bat Algorithm (BBA) [47], Gravita-
tional Search Algorithm (GSA) [48] can also be chosen as FS algo-
rithms. Comparative results have shown that he selected method
delivers better performance than the other meta-heuristic FS
algorithms and some state-of-the art methods as listed in Table 7.

Table 6 illustrates that the performance of the basic DL model
can be boosted by carrying out FS after feature extraction. The
other FS algorithms are run till the value of fitness obtained
for the leading feature vector is the same for five consecutive
iterations or for fifteen iterations (as the number of iterations
for the CHHO has been found out to be fifteen by tuning the
hyperparameter), whichever is more. The percentage increase
column in Table 6 is with respect to the classification accuracy
obtained from the DenseNet201 model without using any FS
algorithm, which is 93.52%. There is a significant enhancement
in the accuracy of the overall model after the process of FS. The
HHO algorithm gets stuck in local optima, and hence another
meta-heuristic algorithm called SA is used to ameliorate the ex-
ploitation property of the HHO algorithm. Also, another demerit
of the HHO is the limited population diversity. Hence, the first
feature vector is initialised randomly and the rest of the popu-
lation is initialised using the Sine Chaotic map. The augmented
population diversity while initialising , by using the Sine Chaotic
map speeds up the convergence rate of the algorithm.
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able 5
he parameter settings for some of the other FS algorithms that are used for
omparison.
Algorithm Parameters

GA rate_of_crossover = 0.4
rate_of_mutation = 0.3

GSA ϵ = 10−5
Ginitial = 6

GWO a lies in [2 0]

PSO Weight lies in [1 0]

HS HMCRvalue = 0.9

MA rate_of_mutation = 0.2
pos_attraction_constant1 = 1
pos_attraction_constant2 = 1.5
init_nuptial_dance_coeff = 0.1
init_random_walk_coeff = 0.1
gravitational_coeff = 0.8
visibility_coeff = 2

BBA α = 0.95
rate_of_pulse_emission = 0.15
loudness_val = 1
β = 0.5

WOA a lies in [2 0]

SCA a = 3
r1 lies in [1 0]

RDA α = 0.2
Upper_Bound = 5
Lower_Bound = −5
γ = 0.5
β = 0.1

EO a1 = 2
size_of_pool = 4
a2 = 1
GPvalue = 0.5

The proposed FS algorithm thus performs better than many
ther meta-heuristic algorithms. The convergence curves for the
lgorithms considered for comparison are shown in Fig. 6
Table 6 also underlines the number of features selected and

he reduction in the number of features selected after running
he optimisation algorithms at the end of the proposed method.
s evident, the FS process chooses only those features that help
n the procedure of classification. The number of features selected
y the optimisation algorithm presented in this paper is less than
ost of the other optimisation algorithms considered here for
omparison. The method that we have proposed for FS reduces
he number of features selected by more than 75 percent of the
9

Fig. 6. The convergence curves for a few of the algorithms considered here for
comparison of the proposed method.

original features and around one-fourth of the initial total number
of features present are selected for classification. Also, the per-
formance of the system is augmented and error in classification
decreases by a significant margin.

Table 7 compares the performance of the presented approach
and other state-of-the-art methods. In terms of accuracy, the
present method can be compared to the other state-of-the-art
methods and delivers performance on a par with the other meth-
ods.

From the observed results, it can be inferred that performing
FS after the feature extraction process ameliorates the perfor-
mance of the system. Not only is the number of selected fea-
tures drastically reduced, but also the accuracy of classification
increases by a good margin, by discarding the redundant and
insignificant features. It enhances the performance of the system,
apart from conserving space and time. It can also be noted that
adding the SA and Sine Chaotic maps boosts the accuracy of the
HHO each time.

HHO has already been shown to deliver results that are com-
parable (if not better) to the existing meta-heuristic algorithms
[17]. Also, SA has been used previously with the meta-heuristic
algorithms to enhance their performance [21–23]. The enhanced
local search property of SA has inspired us to incorporate the
SA into the HHO algorithm. The Chaotic maps [34,35] have been
observed to enhance the diversity of the solutions, and hence it
has also been integrated into the algorithm.
able 6
omparison of the present method with other optimisation based FS methods.
Algorithm Pop size Max_itn % Acc % inc(acc) Features % decrease Fit Evn hh:mm:ss

DenseNet N/A N/A 93.52 0.00 1920 0 N/A N/A
GA [42] 15 15 97.70 4.18 642 66.56 730 00:05:19
GSA [48] 15 15 98.28 4.76 1346 29.89 256 00:03:26
GWO [44] 15 15 97.63 4.11 704 63.33 650 00:03:46
PSO [45] 15 15 97.63 4.11 918 52.19 256 00:03:15
HS [46] 10 15 98.34 4.82 642 66.56 271 00:03:09
MA [49] 15 15 98.34 4.82 1346 29.89 2 521 00:37:29
BBA [47] 15 15 98.34 4.82 607 68.38 490 00:04:38
WOA [43] 15 15 98.34 4.82 812 57.71 720 00:04:12
SCA [50] 15 15 98.12 4.60 619 67.76 432 00:03:57
RDA [51] 15 15 98.03 4.51 402 79.06 1 230 00:12:48
EO [52] 15 15 98.12 4.60 662 65.52 398 00:03:21

HS-MA [53] 20 20 98.34 4.82 912 52.50 12 342 02:30:47
SSD-LAHC [54] 30 25 98.52 5.00 902 53.02 9 234 02:19:53
HAGWO [55] 15 15 98.36 4.84 1236 35.62 2 000 01:28:36
RTHS [56] 15 20 98.24 4.72 179 90.68 2 925 00:10:32

HHO 10 15 98.42 4.90 476 75.21 776 00:02:30
CHHO+ SA 10 15 98.85 5.33 469 75.57 3 861 00:48:12



R. Bandyopadhyay, A. Basu, E. Cuevas et al. Applied Soft Computing 111 (2021) 107698

T
C

p
p
l
c

w

able 7
omparison with state-of-the-art approaches.
Method Percent accuracy

Jaiswal et. al. [58] 96.25
Soares et. al. [24] 97.38
Wang et. al. [59] 90.83
Silva et. al. [60] 98.50
Goel et. al. [61] 97.78

CHHO+ SA 98.85

Table 8
Results of the various algorithms on the RC08 problem.
Algorithm f v

GA 0.000000000 0.416666667
WOA 2.000000000 0.000000000
GWO 2.000000635 0.000000000
PSO 2.000000000 0.000000000
HS 2.000742969 0.000000000
BBA 2.014718336 0.000000000
GSA 2.000044044 0.000000000

COLSHADE 2.000000000 0.000000000
sCMAgES 2.000000000 0.000000000
SASS 2.000000000 0.000000000

SA 2.826997797 0.000000000
HHO 2.000000000 0.000000000
CHHO+SA 2.000000000 0.000000000

4.6. Real-world optimisation problems

In this section, we also evaluate the performance of the
resent approach on some real-world constrained optimisation
roblems. In the subsections below, we present a brief out-
ine of the problem statements, and also present the results in
orresponding tables. In the tables, f denotes the value of the
function to be minimised, and v is a penalisation factor based
on the inequality and equality constraints which should be 0
in the ideal case. We have also included the results of some
recent algorithms (COLSHADE, sCMAgES, SASS) in addition to the
popular and standard algorithms (like GA, GSA, GWO, etc.) for the
purpose of comparison. The problems are taken from [57] and
the exact definitions of the problems are provided below. To deal
with the constraints, a simple boundary penalty based approach
is used.

4.6.1. RC08: Process synthesis problem
The results obtained by the various algorithms are highlighted

in Table 8 and the problem details are defined below.
Minimise x2 + 2x1
subject to the constraints

1. g1(x̄) = −x21 − x2 + 1.25 ≤ 0
2. g2(x̄) = x1 + x2 ≤ 1.6

with bounds

1. 0 ≤ x1 ≤ 1.6
2. x2 ∈ [0, 1]

4.6.2. RC13: Process design problem
The results obtained by the various algorithms are highlighted

in Table 9 and the problem details are defined below.
Minimise 5.357854x21 + 40792.141 − 37.29329x4 +

0.835689x4x3
subject to the constraints

1. g1(x̄) = −92+ a3x4x2 + a1 + a2x4x3 − a4x4x3 ≤ 0
¯ 2
2. g2(x) = −110+ a7x4x2 + a5 + a6x5x3 + a8x1 ≤ 0

10
Table 9
Results of the various algorithms on the RC13 problem.
Algorithm f v

GA 24614.05506 3.616334258
WOA 26888.88250 0.000000000
GWO 26887.44540 0.000000000
PSO 26887.42221 0.000000000
HS 26890.44140 0.000000000
BBA 27863.88673 0.000000000
GSA 27536.85742 0.000000000

COLSHADE 26887.42200 0.000000000
sCMAgES 26887.42221 0.000000000
SASS 26887.42200 0.000000000

SA 25467.04135 0.000000000
HHO 26887.42339 0.000000000
CHHO+SA 26887.42221 0.000000000

Table 10
Results of the various algorithms on the RC21 problem.
Algorithm f v

GA 0.5505580258 59.324530710
WOA 0.2352424579 0.000000000
GWO 0.2352430476 0.000000000
PSO 0.2352424579 0.000000000
HS 0.2488310738 0.000000000
BBA 0.2693890470 0.000000000
GSA 0.2412716274 0.000000000

COLSHADE 0.2352424600 0.000000000
sCMAgES 0.2352424679 0.000000000
SASS 0.2352424600 0.000000000

SA −0.8015697572 0.000000000
HHO 0.2352424579 0.000000000
CHHO+SA 0.2352424679 0.000000000

3. g3(x̄) = a9 + a11x4x1 + a10x4x3 − 25+ a12x1x2 ≤ 0

with bounds

1. 27 ≤ x3, x1, x2 ≤ 45
2. x4 ∈ 78, 79, . . . , 102
3. x5 ∈ 33, 34, . . . , 45

4.6.3. RC21: Multiple disc clutch brake design problem
The results obtained by the various algorithms are highlighted

in Table 10 and the problem details are defined below.
Minimise π (x22 − x21)x3(x5 + 1)ρ
subject to the constraints

1. g1(x̄) = −pmax + prz ≤ 0
2. g2(x̄) = przVsr − Vsr,maxpmax ≤ 0
3. g3(x̄) = ∆R+ x1 − x2 ≤ 0
4. g4(x̄) = −Lmax + (x5 + 1)(x3 + δ) ≤ 0
5. g5(x̄) = sMs −Mh ≤ 0
6. g6(x̄) = T ≥ 0
7. g7(x̄) = −Vsr,max + Vsr ≤ 0
8. g7(x̄) = T − Tmax ≤ 0

here

1. Mh =
2
3µx4x5

x32−x
3
1

x22−x
2
1
N.mm

2. ω = πn
30 rad/s

3. A = π (x22 − x21) mm2

4. prz =
x4
A N/mm2

5. Vsr =
πRsrn
30 mm/s

6. Rsr =
2
3
x32−x

3
1

x22x
2
1

mm

7. T = Izω

Mh+Mf
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able 11
esults of the various algorithms on the RC31 problem.
Algorithm f v

GA 252.1980357000 0.000000000
WOA 0.0000000000 0.000000000
GWO 0.0000000000 0.000000000
PSO 0.0000000000 0.000000000
HS 0.0000000039 0.000000000
BBA 0.0000204294 0.000000000
GSA 0.0000000000 0.000000000

COLSHADE 0.0000000000 0.000000000
sCMAgES 0.0000000000 0.000000000
SASS 0.0000000000 0.000000000

SA 0.4060476713 0.000000000
HHO 0.0000000000 0.000000000
CHHO+SA 0.0000000000 0.000000000

Table 12
Results of the various algorithms on the RC02 problem.
Algorithm f v

GA 1 982 341.232347 1052226.253000
WOA 7 627.294131 4134.68254
GWO 14 079.909500 41.47897
PSO 7 043.365909 5000.49975
HS 7 149.418361 8332.36337
BBA 6 808.191262 338700.38450
GSA 6 565.456142 6565.45614

COLSHADE 7 049.037000 0.00000
sCMAgES 7 049.036954 0.00000
SASS 7 049.037000 0.00000

SA 581.480853 876462.75750
HHO 6 989.986571 6001.39413
CHHO+SA 7 047.767548 245.29036

8. ∆R = 20 mm
9. Lmax = 30 mm

10. µ = 0.6
11. vsr,max = 10 m/s
12. δ = 0.5 mm
13. s = 1.5
14. Tmax = 15 s
15. n = 250 rpm
16. Iz = 55 Kg m2

17. Ms = 40 Nm
18. Mf = 3 Nm
19. pmax = 1

ith bounds

1. 60 ≤ x1 ≤ 80
2. 90 ≤ x2 ≤ 110
3. 1 ≤ x3 ≤ 3
4. 0 ≤ x4 ≤ 1000
5. 2 ≤ x5 ≤ 9

4.6.4. RC31: Gear train design problem
The results obtained by the various algorithms are highlighted

in Table 11 and the problem details are defined below.
Minimise ( 1

6.931 −
x1x2
x3x4

)2

subject to the constraints

1. g1−4(x̄) = 12− xi ≤ 0
2. g5−8(x̄) = (60− x̄) ≤ 0

4.6.5. RC02: Heat exchanger network design (Case 2)
The results obtained by the various algorithms are highlighted

in Table 12 and the problem details are defined below.
Minimise ( x1

120x4
)0.6 + ( x2

80x5
)0.6 + ( x3

40x6
)0.6

subject to the constraints
11
1. h1(x̄) = x1 − 104(x7 − 100) = 0
2. h2(x̄) = x2 − 104(x8 − x7) = 0
3. h3(x̄) = x3 − 104(500− x8) = 0
4. h4(x̄) = x1 − 104(300− x9) = 0
5. h5(x̄) = x2 − 104(400− x10) = 0
6. h6(x̄) = x3 − 104(600− x11) = 0
7. h7(x̄) = x4 ln (x9 − 100)−x4 ln (300− x7)−x9−x7+400 = 0
8. h8(x̄) = x5 ln (x10 − x7)− x5 ln (400− x8)− x10 + x7 − x8 +

400 = 0
9. h9(x̄) = x6 ln (x11 − x8)− x6 ln (100)− x11 + x8 + 100 = 0

with bounds

1. 104
≤ x1 ≤ 81.9× 104

2. 104
≤ x2 ≤ 113.1× 104

3. 104
≤ x3 ≤ 205× 104

4. 0 ≤ x4, x5, x6 ≤ 5.074× 10−2
5. 100 ≤ x7 ≤ 200
6. 100 ≤ x8, x9, x10 ≤ 300
7. 100 ≤ x11 ≤ 400

5. Conclusion

In this work, a two-stage pipeline composed of feature extrac-
tion followed by FS is proposed for the detection of COVID-19
from CT-scan images. For feature extraction, a state-of-the-art
CNN architecture, DenseNet, is used. For the purpose of FS from
the extracted features, a hybrid meta-heuristic optimisation al-
gorithm combining HHO with SA is used. The naive HHO’s draw-
backs are overcome by incorporating SA and Chaotic initialisation.
The results indicate that the inclusion of the feature extraction
stage provides better performance as compared to the vanilla
CNN. It is also observed that the proposed method achieves
better accuracy than some state-of-the-art methods. Additionally,
the present method also provides a significant reduction in the
number of relevant features as compared to some well-known
optimisation algorithms.

It is seen that on increasing the population size beyond a
certain point, there is no increase in the classification accuracy,
the best fitness among the Harris Hawks does not increase be-
yond a particular margin however much the population size or
the number of iterations is increased. It performs best when
the population size is set at 10, and the maximum number of
iterations is set at 15, as discussed in Section 4. The primary
limitation of this algorithm is that it consumes too much time,
mainly due to the time complexity of SA. The SA algorithm after
being added to the HHO increases the time consumed by the
optimisation algorithm by a good margin. Besides, the attention
mechanism in the CNNmodel can be explored to improve the fea-
ture extractor and ameliorate the performance. The optimisation
algorithm used here can solve complex optimisation problems as
well as high-dimensional FS problems.
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