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ABSTRACT

Algorithms for theoretical reverse translation have
direct applications in degenerate PCR. The conven-
tional practice is to create several degenerate
primers each of which variably encode the peptide
region of interest. In the current work, for each
codon we have analyzed the flanking residues in
proteins and determined their influence on codon
choice. From this, we created a method for theoret-
ical reverse translation that includes information
from flanking residues of the protein in question.
Ourmethod, named the neighbor correlationmethod
(NCM) and its enhancement, the consensus-NCM
(c-NCM) performed significantly better than the
conventional codon-usage statistic method (CSM).
Using the methods NCM and c-NCM, we were able
to increase the average sequence identity from 77%
up to 81%. Furthermore, we revealed a significant
increase in coverage, at 80% identity, from _ 20%
(CSM) to ` 75% (c-NCM). The algorithms, their
applications and implications are discussed herein.

INTRODUCTION

Word usage and codon usage in bacterial genomes has
been extensively documented, both in the coding (1) and
non-coding regions (2). These reports show that word
usage in genomes is non-random and it serves as a
biological signature of the organism in question. One such
signature is codon usage in open reading frames (ORFs),
and is reflected in measures such as the codon adaptation
index (CAI) (3). Though CAI provides a convenient
measure of codon bias, several reports show that codon
usage is not a property of isolated codons and in several

cases the bases immediately upstream or downstream
affect the translation (4). Such neighboring base effects are
well studied in case of stop codon read-through experi-
ments where the flanking base or codon has been shown to
affect the accuracy and magnitude of read-through (5).
Apart from single bases, the effect of flanking codons has
also been well studied in literature. Gutman and Hatfield
(6) show that there is a strong first-order Markovian
relationship between codons in a gene and this relation is
seen even after translation, in proteins. Boycheva and
colleagues extended this study to reveal that translation
efficiency is strongly dependent on the dicodon pair that
encodes for a given amino acid pair (7). They suggest that
relative orientations of t-RNA in the ribosome may cause
the observed differences in translation efficiency and
subsequently certain dicodon pairs are selected evolu-
tionarily. Moura and coworkers use a more recent and
larger dataset for an analysis of dicodon usage patterns in
both prokaryotes and eukaryotes. Their results suggest
that the geometric constraints imposed by the translation
machinery are driving forces in the evolution of gene
sequences in bacteria (8). Collectively, these results suggest
the existence of strong first-order Markovian relationships
between codons in a gene. We hypothesized that
information content of such correlations is carried over
to the proteins, at least in part, when the gene is
translated. This information manifests itself as a lack of
randomness in the choice of codons and it is apparent
when one attempts to theoretically reverse translate a
protein sequence.
Reverse translation has been discussed earlier as an

abstract logical flow of information from proteins to
DNA (9). In this work, we consider the pragmatic
problem of theoretical reverse translation itself, rather
than that of information flow from proteins to DNA.
Theoretical reverse translation of protein sequences has
potential applications in primer design for degenerate
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PCR and in design of synthetic genes (10). In degenerate
PCR, several primers are designed, each representing a
variant DNA sequence encoding the peptide region of
interest. One of the best methods designed for degenerate
PCR can, in the best case scenarios, still utilize up to 128
primers on one end (50- or 30-end) and one or more at the
other end (11). Though no specific software is available
for reverse translation, the conventional procedure is
to substitute codons for residues based on the overall
genomic codon usage probabilities which required differ-
ent primers be designed for each ambiguous codon in the
gene in the region of interest. In practice, it is common for
almost all possibilities to be covered, increasing the
number of required primers exponentially. Thus, improve-
ments in reverse translation will help reduce the ambiguity
in degenerate PCR.
Improvements in reverse translation can be brought

about by studying the rules of codon usage in the genome,
which is feasible due to availability of whole genome
sequences. In this study, we created a framework for
reverse translation of bacterial gene sequences and term it
the neighbor correlation method (NCM), due to its use
of neighboring (flanking) sequence information to predict
codon usage. We provide evidence for the dependency of
codon choice on the flanking amino acid residues and used
this dependency to reverse-translate protein sequences
from two model genomes. We confirmed that NCM was a
substantial improvement over the conventional method
(codon-usage statistic method—CSM). Furthermore,
we introduced a modification to both CSM and NCM
[consensus CSM (c-CSM) and consensus NCM (c-NCM)]
to improve significantly the sensitivity of reverse transla-
tions by both CSM and NCM, and show that these
observed differences in performance are statistically
significant. Finally, using the protein sequences of
Salmonella typhi CT18 and the probability matrix from
Escherichia coli K12, we show that it is possible to reverse
translate sequences from organisms for which a reverse
translation matrix is not available, by using a matrix from
a related organism.

MATERIALS AND METHODS

All sequences were obtained from the NCBI database. For
the analyses, the genome and predicted ORF sequences of
E. coli K12 (12), B. subtilis (13), and S. typhi CT18 (14),
Acidobacteria bacterium (NC_008095), Aquifex aeolicus
(15), Bacteroides thetaiotaomicron (16), Bordetella pertus-
sis (17), Campylobacter jejuni (18), Caulobacter crescentus
(19), Chlamydia trachomatis (20), Clostridium acetobutyli-
cum (21), Dehalococcoides ehtenogenes (22), Deinococcus
radiodurans (23), Fusobacterium nucleatum (24),
Lactobacillus acidophilus (25), Mesorhizobium loti (26),
Methanococcus jannaschii (27), Methanopyrus kandleri
(28), Mycobacterium bovis (29), Mycobacterium tubercu-
losis (30), Mycoplasma genitalium (31), Myxococcus
xanthus (32), Nanoarchaeum equitans (33), Prochlorococ-
cus marinus (34), Pseudomonas aeruginosa (35), Rickettsia
prowazekii (36), Sulfolobus solfataricus (37), Synechococ-
cus elongatus (38), Thermoplasma acidophilum (39),

Ureaplasma urealyticum (40) and Magnetococcus sp.
(NC_008576) were used. We used needle, an implementa-
tion of the Needleman–Wünsch algorithm available in the
EMBOSS package (41) for all sequence identity analyses.
The algorithms discussed were implemented in PERL
(script provided as Supplementary Data) on a Linux
platform.

Analysis for non-random codon usage dependency
on flanking amino acid residues

For codons of interest, random occurrence model was
constructed based on codon usage and amino acid
frequencies in a given genome. We used 10 000 such
random sets to calculate the z-scores for each residue–
codon–residue combination. From the z-scores, P-values
were calculated and were multiply corrected for both
codon occurrence and amino acid occurrence biases using
Bonferroni correction. To identify those combinations that
have a skewed occurrence, we used a stringent threshold
of P50.0001.

Creation of the probability matrix for CSM

Codon usage in the genome interest was calculated using
the CUSP program in the EMBOSS package (41), and a
codon usage probability table was created based on that
information. For each amino acid the segmented prob-
ability interval spans from 0.0 to 1.0, where each
consecutive non-overlapping segment corresponds to
probability of a unique codon (Figure 1A). This prob-
ability interval matrix had 64 individual data points under
21 categories (20 amino acids+ stop codons).

Creation of the probability matrix for NCM

For each tripeptide A1–A2–A3 in the genome of interest,
we calculated the usage probabilities of codons for A2
flanked by A1 and A3. Based of these probabilities, we
created a probability interval matrix for all combinations
of A1–C�–A3, where C� is the codon that encodes A2.
The probability interval matrix thus created had 24
400 individual data points under 8000 categories
(20� 20� 20 amino acid combinations). Creation of
such a probability interval for the tripeptide S–A–S is
illustrated in Figure 1B.

Reverse translation

In reverse translation using CSM, a random number r was
generated where 0� r� 1, for each amino acid in the
query protein sequence. The codon corresponding to the
probability interval within which r falls was chosen for
reverse translation. In NCM, overlapping tripeptides were
used instead of single codons, and the codon was predicted
for the second residue. However, when reverse translating
with NCM, the first residue and stop codons were assigned
based on probability alone. This procedure is also
illustrated in Figure 1. c-NCM was created as an
enhancement to NCM, in which reverse translation was
performed n times using NCM for each protein sequence.
The final DNA sequence was obtained by creating a
consensus sequence from the n sequences created.

e16 Nucleic Acids Research, 2008, Vol. 36, No. 3 PAGE 2 OF 8



Statistical analyses of differences between various methods

In order to statistically test the difference in performance
of the different methods, we used (i) either Kolmgorov–
Smirnov (KS) or Mann–Whitney (MW) test for com-
paring distributions of nucleotide sequence identity and
(ii) F-test followed by FDR to identify sequence identity
range that is over-represented in one method over another.
These tests were used to compare (i) c-NCM and NCM
(ii) NCM and CSM and (iii) c-NCM and CSM. In case of
KS and MW tests, we used the sequence identity data. For
the F-test and subsequent FDR analysis, we used the
number of sequences scoring within a given sequence
identity interval (for example, 300 sequences scored
between 80% and 85%). All tests were run in R (http://
www.r-project.org). The complete statistical analysis and
data are provided in Supplementary Data.

Statistical analyses of iteration threshold for c-NCM

The c-NCM was performed on a random set of 1000
sequences in the E. coli K12 genome. Various iterations
were used, ranging from 5 to 100 in five steps. Resultant
sequences were compared with reference gene sequences
using needle and percentage identity calculated. The
distribution of scores from 50 iterations was compared
to (i) that of NCM for these 1000 sequences and (ii) the
distribution of scores from 100 iterations. For the
comparison, we used KS test with alternative hypothe-
sis=greater. There was no significant difference between

the scores of iterations 50 and 100 (P=0.2406). However,
there was a significant difference between NCM and the
50-iteration c-NCM (same test as above, P52.2� 10–16),
and hence we used 50 iterations as the threshold for
c-NCM predictions. A similar approach was used to test
the performance of c-CSM. The results of c-CSM were
then compared with those of c-NCM.

RESULTS AND DISCUSSIONS

Reverse translation of protein sequences is necessary for
the design of degenerate primers. In most cases, reverse
translation uses the codon usage statistics of the complete
genome or a representative set of genes for the organism
of interest. While dictated by overall genomic preference,
this method rests on the assumption that usage of a codon
in a gene is essentially random. Until this study, there has
been no comprehensive analysis on the statistics of
reverse-translation using the classical method. In this
work, we show that the choice of codons for reverse
translation can be refined further by taking into account
the residues flanking the residue of interest in a protein.
Based on this observation, we have devised a method
called the NCM that uses the correlation between codon
usage and flanking residues in proteins. As a case study,
we have analyzed the efficiency of reverse-translation
using NCM performed on the set of predicted ORF of
E. coli K12 and B. subtilis.

Figure 1. Illustration of reverse translation methods. (A) shows reverse translation of a protein sequence based on codon usage and (B) shows the
reverse translation using NCM. GS represents ORF (gene) sequences from the genome of interest. The first part shows the creation of probability
intervals for both panels. For NCM, Bayesian probabilities of codon usage were calculated given the flanking residues. Note that the codon usage
profiles for alanine are distinct between the two methods. The second part depicts the reverse translation process, which is similar to both methods.
A random number ‘r’ was generated and the codon corresponding to the probability interval (the horizontal line spanning 0.0–1.0 in both panels)
within which r fell was used for creation of the ORF. This codon was then used for reverse translation.
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Correlation between codon choice and the flanking amino
acid residues in theE. coliK12 genome

We analyzed the codon usage in the genomes of both
E. coli K12 and B. subtilis and observed that the codon
usage was not random but was to some extent dependent
on the flanking codons. This dependency on flanking
codons was reflected as a dependency on the flanking
residues in proteins. For example, the codon GGC (Gly)
encodes for 40.5% of all glycine residues present in E. coli
(Supplementary Data). In the NCM, there are 400
possible theoretical combinations for any given codon.
If the distribution of GGC were to be random, each of the
combinations would span 0.25% (random probabil-
ity=0.0025) of the probability space. However, we
observed that GGC is often flanked by branched chain
aliphatic amino acids and hydrophobic amino acids. The
12 combinations (3% of total possible combinations)
shown in Table 1 contribute almost 12% of total GGC
usage in the genome, yielding a usage that is as much as
four times the expected random usage.
Though the analysis of GGX shows that codon usage is

non random, the data discussed is specific for E. coli.
Furthermore, glycine is encoded by only four codons and
does not exhibit maximum degeneracy. In order to both
test these observations in multiple genomes as well as to
use a more degenerately encoded amino acid, we have
analyzed the codon usage for the amino acid arginine in
30 genomes. Arginine is encoded by six codons and is
amongst the most degenerately encoded amino acids along
with leucine and serine. In our analysis, for each of the six
codons (C), we generated 10 000 random distributions
with flanking amino acid residues (R1–C–R2). Using these
random distributions, z-scores and P-values for each
observed combination were calculated. The calculated P-
values were adjusted for both codon representation bias
(for a given codon) and amino acid representation biases

(across all codons for a given flanking pair) using the
Bonferroni correction. The resultant values were screened
using a stringent threshold of P50.0001. We observed
that even after stringent corrections there were several
combinations that had a non-random distribution. The
results of these tests are given in Supplementary Data.

These tests prove that codon usage varies with a change
in flanking amino acid residues. We therefore hypothe-
sized that a method exploiting the flanking residue
information will be more sensitive in detecting signals
that are lost in the conventional method (CSM) for reverse
translation.

Comparison and analysis of reverse translations using
CSM andNCM

In order to compare the performance of CSM and NCM,
we reverse translated all the proteins in two genomes,
E. coliK12 and B. subtilis, using both methods. Identity of
the reverse translated proteins with the reference (original)
ORF was used to quantify sensitivity of the methods.
First, the distribution of percentage identities of nucleo-
tide sequences reverse translated via NCM is significantly
greater than that for CSM (P52.2� 10–16; one-tailed KS
test). A second assessment of performance using ratios of
sequence identities (%IDNCM/%IDCSM) revealed that
there was a small yet statistically significant increase in
average sequence identities (P52.2� 10�16; one-tailed
MW test, null-hypothesis: ratio=1). The average increase
in sequence identity for all the sequences was �1%. We
then grouped all sequence identities into bins of width 5%
and tested which bins were significantly enriched in NCM
over CSM. This revealed that NCM reverse translates
a significantly large number of protein sequences to
nucleotides withq high identities of 480–85% (P-value:
4.5� 10–15, Fisher’s test and FDR correction; Figure 2A).
At this sequence identity range, there are twice as many
DNA sequences predicted by NCM (239 sequences) as are
predicted by CSM (103 sequences).

With B. subtilis the overall numbers were lower,
although we observed a similar trend. For NCM, the
total number of sequences that had more than 75%
identity was 3670 and the same for CSM was 3347
(Figure 2B). This represented an increase 410% in NCM
predictions over CSM predictions. A 1% increase in the
median sequence identity was seen for the B. subtilis data
set as was in E. coli. As we increased the threshold to 80%,
we observed 200 proteins that were reverse translated by
NCM yet only 114 by CSM. Moreover, the average
identity of sequences reverse translated by either method
was lower in B. subtilis than in E. coli K12. On the whole,
these results suggest more random choice of codons in
B. subtilis than in E. coli K12. These collective results
underscore an important and fundamental distinction
between the two groups of bacteria tested: increased
randomness in the gram positive genome (B. subtilis) may
be an indicator of its earlier evolutionary origin as
compared to the gram negative (E. coli) genome (42).

In order to identify the CAI range within which NCM
was effective, we compared the distribution of CAI values
of genes whose IDNCM/IDCSM ratio was 41.01 with those

Table 1. Table showing strong distribution of the codon ‘GGC’ flanked

by hydrophobic amino-acids (ILV)

Residue 1 codon Residue 2 Occurrence
(Occ)

p(R1-GGC-R2)
(pX) = Occ/Total

pX/pRand

A GGC G 326 0.008 134 3.253
A GGC V 399 0.009 956 3.982
G GGC G 362 0.009 033 3.613
G GGC V 343 0.008 559 3.423
I GGC A 352 0.008 783 3.513
I GGC G 371 0.009 257 3.703
I GGC V 303 0.007 561 3.024
L GGC A 364 0.009 083 3.633
L GGC G 473 0.011 803 4.721
L GGC V 477 0.011 902 4.761
S GGC G 324 0.008 085 3.234
V GGC G 326 0.008 134 3.253

Occurrence in table denotes overall genomic occurrence of the
combination. The pX denotes the occurrence probability of the
combination X (occurrence/total occurrences of the codon GGC).
The pRand denotes the random occurrence probability of the
combination X (pRand=1/400=0.0025). The pX/pRand denotes
the ratio between observed and expected probabilities. These 12
combinations (out of 400) represent almost 12% of the total
occurrences of GGC in the genome (expected=3%) representing a
skew in codon usage dependent on flanking residues.
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whose IDNCM/IDCSM ratio was50.99 (KS test, alternative
hypothesis=CAI distribution of NCM is lesser than that
of CSM; P51.0� 10–6). These results show that NCM
performs significantly better than CSM in regions of
low CAI.

Comparison of CSM and NCM on various phyla
in the bacterial kingdom

In the previous section, we discussed and compared the
results of reverse translation using CSM and NCM in two
divergent bacterial species. Despite the phylogenetic
distance between the two species, the both were eubacteria
with moderate GC content. In order to show that the
differences are real, we tested and compared the methods
28 different bacterial genomes, each representing a major
clade in the bacterial kingdom as listed in KEGG (43).
This list included one each of various groups like
Archaebacteria, alpha-, beta-, gamma- and delta-
proteobacteria, firmicutes, mollicutes, actinomyces,
halo- and acido-bacteria, green sulfur and non-green

sulfur bacteria, and cyanobacteria. The exhaustive list of
organisms and a comparison of CSM and NCM in these
genomes is tabulated in Table 2, and Supplementary Data
lists the minima, maxima, median, first and third quartiles
for these methods for all the genomes. From Table 2, it is
evident that NCM outperforms CSM not only in genomes
with moderate GC content but also in all major bacterial
clades.

Improving the performance of NCM: the c-NCM

While NCM offered a better method to reverse-translate
protein sequences, the overall improvement over CSM
was apparent only at a higher sequence identity cut-off
and for only a small fraction of the sequences. In order to
improve the sensitivity of NCM, we developed a technique
known as c-NCM, where the same protein was reverse-
translated n times and a consensus was derived from the
resultant sequence set. Our tests with a random set of 1000
sequences derived from E. coli K12 genome (Figure 3)
demonstrated a drastic improvement from 1 cycle to 20
cycles. After 25 cycles, there was only a small improve-
ment in prediction efficiency, which became insignificant
beyond 50 cycles as compared to 100 cycles (KS test,
alternative hypothesis= two-tailed: P-value=0.2406).
Moreover, our tests with a sample set of 100 sequences
show that there is no significant improvement in sequence
identity between 100 and 1000 cycles (data not shown).
Hence we chose to use 50 cycles for subsequent
c-NCM-based studies. The results of c-NCM are sum-
marized along with those for CSM and NCM, in
Figure 2A and 2B for E. coli K12 and B. subtilis,
respectively. The average identity of reverse translated
sequences increased by 4% with c-NCM when compared
to the results from NCM. In summary, c-NCM reverse
translated 475% of sequences with 80% identity or more
while the percentage of sequences scoring the same with
NCM was 520% in both genomes. This difference is
highly significant (P=0 for 485–90% ID and 2.3� 10–44

for 480–85% ID, Fisher’s test and FDR correction).
These results revealed that c-NCM is an effective method
for reverse translation of protein sequences based on
genomic usage matrices, and also indicate that the
performance of c-NCM was significantly better than
both NCM and CSM. As was the case for CSM and
NCM, we tested c-NCM on all the 30 genomes (Table 2).
It could be seen that the performance of c-NCM was
significantly different between both NCM and CSM for
all phyla.
Apart from testing c-NCM on different genomes, we

were also interested in analyzing the effects of consensus
improvisation on the CSM method. Differences from the
normal trend, if any, would allow us to discern genomes
that have increased, or decreased randomness in their
codon usage. On the same set of 30 genomes, we
performed c-CSM (50 cycles) and compared the results
with that of c-NCM using a Wilcoxon Rank Sum test. The
results in Table 2 show that in 70% (21 of 30) of the tested
genomes, c-NCM had a better performance than c-CSM.
In five cases, the difference between the two methods
was insignificant. These genomes were, Aquifex aeolicus

Figure 2. Percentage identity distribution of reverse translated ORF
sequences in E. coli K12 and B. subtilis are shown in Panel A and B,
respectively. This study compares the identities of reverse translations
by CSM, NCM and c-NCM, revealing the distribution of percentage
identities of reverse translated ORFs to the native ORFs. Two
genomes, E. coli K12 and B. subtilis, are represented herein. Note
that the NCM predictions are both qualitatively and quantitatively
better and are also more numerous beyond 77% identity in both cases.
This graph depicts the current limits of theoretical reverse-translation at
�85% for all the methods. The improvement of c-NCM over CSM and
NCM, especially in regions of higher sequence identity, is clearly visible
and significant (F-test with FDR correction; P52.3� 10–44).
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(hyperthermophile), Bordetella pertussis (beta-
proteobacteria), Methanopyrus kandleri (euryarchaeota),
Prochlorococcus marinus (cyanobacteria) and Acidobac-
teria bacterium (acidobacteria). In four other cases,
c-CSM performed significantly better than c-NCM: they
were Rickettsia prowazekii (alpha-proteobacteria/
Rickettsiae), Clostridium acetobutylicum (Clostridia),
Fusobacterium nucleatum (Fusobacteria), and Lactobacil-
lus acidophilus (Lactobacillales). These results, at least for
P. marinus and M. kandleri, show that in archaeal and
cyanobacterial genomes very little of tricodon usage
information is carried over to the protein level.

Application of reverse translation to an external genome:
Salmonella typhiCT18

In the previous sections, we demonstrated that the
improvised method (c-NCM) performed significantly
better than CSM and NCM. We hypothesized that
NCM matrices created from a genome can be used for
reverse translating protein sequences from a related
genome. S. typhi CT18 is 67% identical to E. coli K12
genome at the DNA level, and hence was a good model
system to test our hypothesis. Results from these
comparisons showed significant differences between the
prediction quality between CSM and NCM. Again, as was
seen in 21 other genomes, the use of c-NCM improved
prediction quality, with average identity beyond 80%.
There was a very small difference in the average identities
and the distribution between S. typhi CT18 (Figure 4) and
E. coli K12 (Figure 2A). These observations confirmed

Table 2. Table comparing performance of CSM, NCM, c-CSM and c-NCM in 30 different clades of bacterial kingdom

Clade Organism Genome ID CSM–cNCM NCM–cNCM cCSM–cNCM

Hyperthermophiles Aquifex_aeolicus NC_000117 2.2xE-16 2.2xE-16 0.2643
Bacteroides Bacteroides thetaiotaomicron NC_000908 2.2xE-16 2.2xE-16 2.2xE-16
Beta-proteobacteria Bordetella pertussis NC_000909 2.2xE-16 2.2xE-16 2.2xE-16
Delta-proteobacteria Myxococcus xanthus NC_000918 2.2xE-16 2.2xE-16 2.2xE-16
Epsilon-proteobacteria Campylobacter jejuni NC_000919 2.2xE-16 2.2xE-16 2.2xE-16
Alpha-proteobacteria Caulobacter crescentus NC_000962 2.2xE-16 2.2xE-16 2.2xE-16
Chlamydia Chlamydia trachomatis NC_000963 2.2xE-16 2.2xE-16 2.2xE-16a

Clostridia Clostridium acetobutylicum NC_001263 2.2xE-16 2.2xE-16 2.2xE-16
Green-nonsulfur Dehalococcoides ethenogenes NC_002162 2.2xE-16 2.2xE-16 5.168xE-08
Deinococcus Deinococcus radiodurans NC_002163 2.2xE-16 2.2xE-16 2.2xE-16
Fusobacteria Fusobacterium nucleatum NC_002516 2.2xE-16 2.2xE-16 1.567xE-08
Lactobacillales Lactobacillus acidophilus NC_002578 2.2xE-16 2.2xE-16 2.2xE-16
Alpha-rhizobacteria Mesorhizobium loti NC_002678 2.2xE-16 2.2xE-16 2.2xE-16
Euryarchaeota Methanococcus jannaschii NC_002696 2.2xE-16 2.2xE-16 0.2876
Euryarchaeota Methanopyrus kandleri NC_002754 2.2xE-16 2.2xE-16 2.936xE-10
Actinobacteria Mycobacterium bovis NC_002929 2.2xE-16 2.2xE-16 2.2xE-16
Actinobacteria Mycobacterium tuberculosis NC_002936 2.2xE-16 2.2xE-16 2.2xE-16
Mollicutes Mycoplasma genitalium NC_002945 2.2xE-16 2.2xE-16 2.2xE-16
Nanoarchaeota Nanoarchaeum equitans NC_003030 2.2xE-16 2.2xE-16 2.2xE-16a

Cyanobacteria Prochlorococcus marinus NC_003454 2.2xE-16 2.2xE-16 2.2xE-16a

Gamma-proteobacteria Pseudomonas aeruginosa NC_003551 2.2xE-16 2.2xE-16 0.01897
Alpha/Rickettsiae Rickettsia prowazekii NC_004663 2.2xE-16 2.2xE-16 2.2xE-16
Crenarchaeota Sulfolobus solfataricus NC_005072 2.2xE-16 2.2xE-16 0.761
Cyanobacteria Synechococcus elongatus NC_005213 2.2xE-16 2.2xE-16 0.0011
Euryarchaeota Thermoplasma acidophilum NC_006576 2.2xE-16 2.2xE-16 2.2xE-16
Spirochete Treponema pallidum NC_006814 2.2xE-16 2.2xE-16 2.2xE-16 a

Mollicutes Ureaplasma urealyticum NC_008009 2.2xE-16 2.2xE-16 0.0455
Acidobacteria Acidobacteria bacterium NC_008095 2.2xE-16 2.2xE-16 5.471xE-05
Magnetococcus Magnetococcus MC-1 NC_008576 2.2xE-16 2.2xE-16 2.2xE-16

aIn these cases, c-CSM performed significantly better than c-NCM.

Figure 3. Standardization of iteration values for c-NCM. This
figure illustrates the improvement in sensitivity as the number of
iterations is increased in NCM. We performed c-NCM-based reverse
translations for 1000 randomly chosen proteins using various iterations
(5–100, in five steps) and compared the results with (A) predictions
from NCM and (B) predictions from 100 iterations of c-NCM. It can
be seen that the largest difference is between iteration values of 1
(NCM) and 50 (KS test, alternative=greater; P=2.2� 10–16).
However, there is a small increase of sensitivity as the iterations are
increased. The sensitivity difference was tested to 100 cycles and since
there was no significant difference between 50 and 100 cycles (KS test,
alternative=greater; P=0.2406), we chose the threshold for c-NCM
at 50 cycles.
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that our method can be successfully applied to related
genomes, suggesting increased fidelity in the design of
degenerate primers for an organism whose gene sequence
information is meager or non-existent. In such cases, the
use of (c-)NCM matrices from a related organism is a
viable alternative.

Throughout this work, we have concentrated on the
applications of reverse translation in design of degenerate
PCR. However, these studies also reveal the underlying
logic of codon usage in genes in general, and such
knowledge will be imperative in the design of synthetic
genes to be used in artificial genetic systems and can also
be used to adapt recombinant genes in a host specific
manner.
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