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Abstract

Background

Enhancers regulate transcription of target genes, causing a change in expression level.

Thus, the aberrant activity of enhancers can lead to diseases. To date, a large number of

enhancers have been identified, yet a small portion of them have been found to be associ-

ated with diseases. This raises a pressing need to develop computational methods to pre-

dict associations between diseases and enhancers.

Results

In this study, we assumed that enhancers sharing target genes could be associated with

similar diseases to predict the association. Thus, we built an enhancer functional interaction

network by connecting enhancers significantly sharing target genes, then developed a net-

work diffusion method RWDisEnh, based on a random walk with restart algorithm, on net-

works of diseases and enhancers to globally measure the degree of the association

between diseases and enhancers. RWDisEnh performed best when the disease similarities

are integrated with the enhancer functional interaction network by known disease-enhancer

associations in the form of a heterogeneous network of diseases and enhancers. It was also

superior to another network diffusion method, i.e., PageRank with Priors, and a neighbor-

hood-based one, i.e., MaxLink, which simply chooses the closest neighbors of known dis-

ease-associated enhancers. Finally, we showed that RWDisEnh could predict novel

enhancers, which are either directly or indirectly associated with diseases.

Conclusions

Taken together, RWDisEnh could be a potential method for predicting disease-enhancer

associations.

1. Introduction

Enhancers are genomic cis-regulatory elements that activate transcription of their target genes,

thus playing an important role in the pathogenesis of complex diseases. Indeed, genetic
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alterations of enhancers have been proven to contribute to disease progression [1]. Until now,

more than three million enhancers have been identified by international consortiums such as

ENCODE [2], FANTOM [3, 4], and NIH Epigenome Roadmap [5] using computational meth-

ods [6]. To accumulate functions of enhancers, annotation databases for enhancers have also

been built. For example, EnhancerAtlas [7] is a resource for enhancer annotation and analysis

in 105 human cell/tissue types. The target genes and their expression of enhancers are also

integrated into GeneHancer [8] and McEnhancer [9], respectively.

Besides functions accumulated in the annotation databases, enhancers’ functions in terms

of pathology are getting more focused. Indeed, genetic variants of enhancers play important

roles in disease progression [1] because enhancers are regulatory elements that alter the

expression level of their target genes. Mutations of enhancers can be associated with disease

[10]. However, most studies about disease-enhancer associations are carried out for individual

enhancers [11–13]. Recently, information on these associations from literature has been col-

lected into a DiseaseEnhancer database and is publicly available [14]. However, only a small

set of enhancers has been related to diseases. Therefore, there is a pressing need to predict

novel disease-enhancer associations using computational methods.

In this study, we present a method RWDisEnh to predict novel disease-enhancer associa-

tions. The problem can be formulated as a ranking of candidate enhancers/diseases based on

their relative importance to a disease/enhancer of interest, respectively. It was said that if an

enhancer targets a disease-associated gene, then this enhancer is functionally connected to the

disease [15]. Thus, we assumed that enhancers sharing target genes are associated with diseases

that have similar phenotypes. Firstly, we built networks of enhancers and diseases based on

functional interactions among enhancers and similarities among diseases as well as known dis-

ease-enhancer associations. The functional interaction between every pair of enhancers was

assessed based on the significant sharing of their target genes to form a homogeneous network

of enhancers (i.e., an enhancer functional interaction network where all nodes are enhancers).

The similarity between every pair of diseases was calculated based on semantic similarity

between two corresponding Disease Ontology (DO) terms [16] to form a homogeneous net-

work of diseases (i.e., a disease similarity network where all nodes are diseases). The two

homogeneous networks were then connected by known disease-enhancer associations col-

lected from DiseaseEnhancer [14] to form a heterogeneous network of diseases and enhancers.

Secondly, a random walk with restart (RWR) scheme on these networks was proposed to esti-

mate the degree of association between a disease and an enhancer. RWR is the state-of-the-art

guilt-by-association approach [17] and has been successfully used for various problems in bio-

medical research [18], especially ones in predicting disease-associated biomarkers such as

genes [19–22] and non-coding RNAs [23–28]. Besides, RWR is also shown its dominance in

other applications such as the prediction of drug-target interactions [29] and disease-related

microRNA-environmental factor interactions [30]. In addition, RWR was proven to be the

best one among network-based methods, including other commonly used network diffusion

methods, proposed for the prediction of disease-gene associations [31]. To demonstrate the

added value of the homogeneous networks, we compared the prediction performance of

RWDisEnh on the heterogeneous network of diseases and enhancers with that on the

enhancer functional interaction network and the disease similarity network. Experimental

results show that RWDisEnh achieved the best performance in terms of AUC (area under the

ROC curve) when it was performed on the heterogeneous network of diseases and enhancers.

To our knowledge, RWDisEnh is among the first network-based ones proposed for the pre-

diction of disease-enhancer associations. As a kind of network diffusion method, RWR glob-

ally searches on the networks for novel enhancers/diseases associated with a disease/an

enhancer of interest, respectively. To show the advance of RWDisEnh, we compared
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RWDisEnh with another network diffusion method, i.e., PageRank with Priors [32], on the

enhancer functional interaction network. As assumed that enhancers sharing target genes are

associated with similar diseases and defined a functional interaction between two enhancers

using their shared target genes; thus, we additionally assessed whether enhancers neighboring

with known disease-associated enhancers in the enhancer functional interaction network can

be good candidates using MaxLink method [33,34]. In contrast to the network diffusion meth-

ods, MaxLink locally searches neighbors of known disease-associated enhancers for the novel

ones. Experimental results showed that the prediction performance of the three methods is

comparable on the enhancer functional interaction network; however, they were all worse

than that of RWDisEnh on the disease similarity network and the heterogeneous network.

Finally, we showed that RWDisEnh could predict novel enhancers associated with diseases

with supporting direct and indirect evidence from genome-wide association studies and litera-

ture, respectively.

2. Materials and methods

2.1 RWDisEnh

In this section, we describe the RWDisEnh method. Briefly, first, we built an enhancer functional

interaction network, a disease similarity network, and a heterogeneous network of diseases and

enhancers. The disease similarity network was formed based on DO-based similarity between

every pair of mapped DO terms (Fig 1(A)). The enhancer functional interaction network was

constructed by connecting every pair of enhancers where their target genes are significantly

overlapped (Fig 1(B)). Then, these two networks were connected using known disease-enhancer

associations collected from DiseaseEnhancer [14] to construct the heterogeneous network of dis-

eases and enhancers (Fig 1(C)). Finally, a random walk model was proposed to predict novel dis-

ease-enhancer associations based on the constructed networks (Fig 1(D)).

2.1.1 Construction of a disease similarity network. To construct the DO-based disease

similarity network, we calculated the similarity between any pair of mapped DO terms in the

set of 2,161 DO terms having annotations in the DGA database [35]. Disease Ontology (DO) is

a standardized structured vocabulary database for human disease to provide the biomedical

community with consistent, reusable, and sustainable descriptions of human disease terms

and related medical vocabulary disease concepts [16]. As with other biomedical ontologies

[36], DO terms are organized as a directed acyclic graph where the term "disease" is defined as

a root; meanwhile, other terms can be a leaf, a child, or a parent of others. DGA database pro-

vides a comprehensive and integrative annotation of the human genes by DO terms [35].

The similarity between two ontology terms was calculated based on the information con-

tent (IC) of each term, which is defined as the following:

ICðtÞ ¼ � log ðpðtÞÞ ð1Þ

where p(t) is the probability of term t occurring in a corpus (i.e., an annotation database, e.g.,

DGA for DO). More specifically, i.e., p tð Þ ¼ f ðtÞ
f ðrootÞ such that f(t) = Annot(t)+∑c2Children(t)f(c). In

this formula, Annot(t) means the number of genes annotated with t in the corpus, and Chil-
dren(t) represents the set of children terms of t in the DO graph. root is the root term of the

DO graph. Then, the semantic similarity between the two DO terms, ti and tj, based on the

most informative common ancestor approach Resnik [37], is calculated as follows:

simTermðti; tjÞ ¼ maxc2Pðti ;tjÞ
ðICðcÞÞ ð2Þ

where P(ti, tj) is the set of shared ancestors of ti and tj.
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For a pair of diseases di and dj, which are directly mapped to ti and tj, respectively, the simi-

larity between them is defined as follows (Fig 1(A)):

wij ¼ simDisðdi; djÞ ¼ simTermðti; tjÞ ð3Þ

We calculated the similarity for every pair of DO terms in a total of 2,152 DO terms to con-

struct a DO-based disease similarity network, GD(VD, ED). By selecting pairs having simDis(di,
dj)>0, we also constructed a DO-based disease similarity network containing 806,505 interac-

tions. Fig 1(A) illustrates the construction of the disease similarity network. This network was

Fig 1. Illustration of RWDisEnh method. RWDisEnh includes two main steps. Step 1—Construction of homogeneous and heterogeneous networks: (a) A disease

similarity network was formed based on DO-based similarities between every pair of mapped DO terms. (b) An enhancer functional interaction network was

constructed by connecting every pair of enhancers significantly sharing target genes. (c) A heterogeneous network of diseases and enhancers was built by connecting

the enhancer functional interaction network, the disease similarity network, and known disease-enhancer associations. Step 2—Prediction of promising disease-
enhancer associations: (d) A random walk model was proposed on the networks to rank candidate enhancers/diseases. For disease-centric view: Given a disease d1,

the goal is to rank all candidate enhancers (e1, e4, e5, and e6) by their relevance to d1. For enhancer-centric view: Given an enhancer e3, the goal is to rank all candidate

diseases (d2, d3, and d5) by their relevance to e3. Finally, highly ranked candidates (e.g., e1, e4 for the disease-centric, and d2, d5 for the enhancer-centric) were selected

as promising ones to be associated with the disease of interest (d1)/the enhancer of interest (e3), respectively.

https://doi.org/10.1371/journal.pone.0260432.g001
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then represented as an adjacency matrixWD, where its element (WD)i,j was set to wij represent-

ing the similarity between disease di and dj.
2.1.2 Construction of an enhancer functional interaction network. It was assumed that

if an enhancer targets a disease-associated gene, then this enhancer is functionally connected

to the disease [15]. Thus, we here define a functional interaction between two enhancers using

shared target genes. To this end, we collected known enhancer-target gene interactions

between 792 enhancers and 667 target genes from the DiseaseEnhancer database [14]. Then, a

functional interaction between two enhancers ei and ej was defined if there is significant over-

lap between their target sets using the hypergeometric distribution

p ¼
Xminðnj;niÞ

i¼k

nj
k

 !
n � nj
ni � k

 !

n

ni

 ! ð4Þ

where

• n is a number of target genes in the DiseaseEnhancer database

• ni is a number of target genes of enhancer ei

• nj is a number of target genes of enhancer ej

• k is a number of shared target genes between two enhancers ei and ej.

By selecting only enhancer pair having p-value� 0.05, we finally obtained 2,636 significant

associations among 539 enhancers. Fig 1(B) illustrates the construction of the enhancer func-

tional interaction network, GE(VE, EE). This network was then represented by an adjacency

matrixWE, where an element (WE)i,j was set to 1 or 0 with respect to whether an interaction

between two enhancers ei and ej exists or not.

2.1.3 Construction of a heterogeneous network of diseases and enhancers. We collected

1,059 known disease-enhancer associations from the DiseaseEnhancer database [14], which is

a comprehensive map of manually curated disease-enhancer associations between 802 enhanc-

ers and 167 human diseases. Enhancers in the database are represented by their positions in

chromosomes (i.e., start and end positions). Disease names were mapped to DO terms before

estimating the similarity between the two diseases. Finally, we constructed 963 DO term-

enhancer associations between 122 DO terms and 738 enhancers.

The heterogeneous network of diseases and enhancers was constructed by connecting the

enhancer functional interaction network with the disease similarity network by known dis-

ease-enhancer associations (Fig 1(C)). Finally, 554 DO term-enhancer associations between

102 diseases and 512 enhancers remained (i.e., diseases and enhancers which do not belong to

the disease similarity network and the enhancer functional interaction network respectively

were removed). Associations between diseases and enhancers can be considered as a bipartite

network. This network was represented by an adjacency matrixWED, where an element

(WED)i,j of the matrix represents whether or not an enhancer ei is known to be associated with

a disease dj.
2.1.4 A random walk scheme on networks of diseases and enhancers. In this section, we

describe how the random walk with restart algorithm (RWR) used in RWDisEnh can rank

candidate enhancers/diseases relatively to a set of enhancers/diseases known to be associated

with a disease of interest (d)/an enhancer of interest (e), respectively.
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A random walk scheme. Given a connected weighted network G(V, E) with a set of nodes V
= {v1, v2, . . ., vN}, N is the number of nodes in the network, and a set of links E = {(vi, vj)| vi,
vj2V}, a set of source nodes S�V and a N×N adjacency matrixW of link weights. Here, we

introduce algorithms for measuring the relative importance of node vi to S. RWR is a variant

of the random walk and it mimics a walker that moves from a current node to a randomly

selected adjacent node or goes back to source nodes with a restart-probability γ2(0, 1). RWR

equation can be described as follows:

Ptþ1 ¼ ð1 � gÞW 0Pt þ gP0 ð5Þ

where Pt is a N×1 probability vector of |V| nodes at a time step t of which the ith element repre-

sents the probability of the walker being at node vi2V, and P0 is the N×1 initial probability vec-

tor.W0 is the transition matrix of the graph, the (i, j) element inW0, denotes a probability with

which a walker at vimoves to vj among V\{vi}. All nodes in the network are eventually ranked

according to the steady-state probability vector P1. The steady-state of each node represents

its relative importance to the set of source nodes S.
The prediction of disease-enhancer associations can be formulated as the ranking of candi-

date enhancers/diseases by their relative importance measured by the RWR algorithm to a set

of source nodes (S), where S includes enhancers/diseases known to be associated with a disease

of interest (d)/an enhancer of interest (e), respectively. In other words, the relative importance

value measures how much a candidate enhancer/disease is associated with d/e (Fig 1(D)). This

algorithm was used for predicting disease-gene associations [19–22,38,39]. In the following

sections, we are going to describe more detail on how the RWR algorithm is applied to net-

works of diseases and enhancers to predict disease-enhancer associations.

A random walk scheme on the enhancer functional interaction network and the disease simi-
larity network. The enhancer functional interaction network and the disease similarity network

are homogeneous networks, which contain only one type of node (i.e., either enhancer or dis-

ease). In the first case, the prediction of disease-enhancer associations is considered in a dis-

ease-centric view: Given a disease d1, the goal is to rank all candidate enhancers by their

relevance to d1 (Fig 1(D)). Then, the enhancer functional interaction network was used as a

homogeneous network of enhancers. Thus, the transition matrixW0 is defined as follows:

ðW 0Þij ¼
ðWEÞij
P
jðWEÞij

ð6Þ

whereWE is the adjacency matrix of the enhancer functional interaction network.

In the second case, the prediction of disease-enhancer associations is considered in an

enhancer-centric view: Given an enhancer e3, the goal is to rank all candidate diseases by their

relevance to e3 (Fig 1(D)). Then, the disease similarity network was used as a homogeneous

network of diseases. Thus, the transition matrixW0 is defined as follows:

ðW 0Þij ¼
ðWDÞij
P
jðWDÞij

ð7Þ

whereWD is the adjacency matrix of the disease similarity network.

In addition, the set of source nodes (S) was specified by enhancers that were known to be

associated with d1 in the disease-centric view, and it was specified by diseases known to be

associated with e3 in the enhancer-centric view (Fig 1(D)). Then, the initial probability vector
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was defined as follows:

p0

i ¼

1

jSj
if vi 2 S

0 otherwise
ð8Þ

8
<

:

All remaining enhancers/diseases in the homogeneous network of enhancers/diseases were

specified as candidate enhancers/diseases, respectively.

A random walk scheme on the heterogeneous network of diseases and enhancers. The RWR

algorithm can be extended to work on a heterogeneous network of diseases and enhancers.

Thus, the transition matrixW0 was defined as follows:

W 0 ¼
W 0
E W 0

ED

W 0
DE W 0

D

" #

ð9Þ

whereW 0
E andW 0

D are intra-subnetwork transition matrices of the enhancer functional inter-

action network and the disease similarity network, respectively.W 0
ED; W

0
DE are inter-subnet-

work transition matrices. Let λ be the jumping probability the random walker jumps from the

enhancer functional interaction network to the disease similarity network or vice versa. Then,

these matrices were defined as follows:

ðW 0

EDÞi;j ¼ p djjei
� �

¼

lðWEDÞij
P
jðWEDÞij

if
X

j
ðWEDÞij 6¼ 0

0 otherwise

ð10Þ

8
><

>:

ðW 0

DEÞi;j ¼ p ejjdi
� �

¼

lðWEDÞji
P
jðWEDÞji

if
X

j
ðWEDÞji 6¼ 0

0 otherwise

ð11Þ

8
><

>:

ðW 0

EÞi;j ¼

ðWEÞij
P
jðWEÞij

if
X

j
ðWEDÞij ¼ 0

ð1 � lÞðWEÞij
P
jðWEÞij

otherwise

ð12Þ

8
>>>><

>>>>:

ðW 0

DÞi;j ¼

ðWDÞij
P
jðWDÞij

if
X

j
ðWEDÞji ¼ 0

ð1 � lÞðWDÞij
P
jðWDÞij

otherwise

ð13Þ

8
>>>><

>>>>:

whereWED is the adjacency matrix of the bipartite network.

In this case, we only consider the prediction of disease-enhancer associations in a disease-

centric view: Given a disease of interest d1, the set of source nodes (S) was specified by the set

of enhancers known to be associated with d1 (S’) and d1. By letting η be the parameter to weigh

PLOS ONE A network-based method for predicting disease-associated enhancers

PLOS ONE | https://doi.org/10.1371/journal.pone.0260432 December 8, 2021 7 / 20

https://doi.org/10.1371/journal.pone.0260432


the importance of each network, the initial probability vector was defined as follows:

p0

i ¼

1 � Zð Þ
1

jS0j
if vi 2 S

0

Z if vi � d1

0 otherwise

ð14Þ

8
>>><

>>>:

All remaining enhancers in the enhancer functional interaction network were specified as can-

didate enhancers.

2.2 Baselines

2.2.1 PageRank with Priors. Similar to the RWR algorithm, PageRank with Priors (PRP)

[32], an extension of the original Google’s PageRank algorithm [40], is also a network diffusion

method. PRP mimics a random Internet surfer starting from one of a set of source nodes (S),
and follows one of the links randomly in each step. In this process, the surfer jumps back to

the source nodes at back-probability β 2(0, 1), thus restarting the whole process. Therefore,

this algorithm generates a score that is proportional to the probability of reaching any node on

the graph. This score indicates the relative importance of those nodes to the source nodes.

Given the enhancer functional interaction network, GE(VE, EE), and a set of known enhancers

(S) associated with a disease of interest d, each candidate enhancer was assigned a score repre-

senting its relative importance to S. Then, the candidate enhancers were ranked by their score.

Formally, the PRP algorithm can be described as follows:

ptþ1

i ¼ ð1 � bÞð
X

j2ðVEinÞi

pjip
t
jÞ þ bp

0

i ð15Þ

where (VEin)i is a set of incoming enhancers of ei, pji is the probability of the random surfer

arriving ei from ej. pji is defined as follow:

pji ¼
ðWEÞji

P
k2ðVEoutÞj

ðWEÞjk
ð16Þ

where (VEout)j is a set of outgoing enhancers of ej.
Similar to the random walk scheme on the enhancer functional interaction network, pi0 is

the initial probability of ei and is assigned to zero or 1/|S| if ei is a non-source node or a source

node, respectively (Eq 8). In addition, all remaining enhancers in the enhancer functional

interaction network were specified as candidate enhancers.

For running on the heterogeneous network of diseases and enhancers,WE in Eq 16 was

replaced byW’ in Eq 9. Given a disease of interest d1, the set of source nodes (S) was specified

by the set of enhancers known to be associated with d1 (S’) and d1, and then pi0 is set as in Eq

14.

2.2.2 MaxLink. In addition to the network diffusion methods, i.e., RWR and PRP, we

investigated a neighborhood-based method, MaxLink [33,34]. Given a disease of interest (d1),
the neighborhood-based algorithm was based on direct neighbors of source nodes (S) (i.e.,

known d1-associated enhancers in the enhancer functional interaction network, GE(VE, EE)).
MaxLink considers neighbors of S as candidate enhancers and assigns to each candidate (vi) a

score corresponding to the number of links to S (ML). This score is used for ranking the candi-

date enhancers. To avoid highly connected nodes from receiving high ranking, which are

solely based on their high degree (deg(vi)), MaxLink discards candidates with connection
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probability� 0.5, where the connection probability was defined as follows:

connection probability við Þ ¼

jSj

ML

 !
jVEj � jSj

deg ðviÞ � ML

 !

jVEj

deg ðviÞ

 ! ð17Þ

For running on the heterogeneous network of diseases and enhancers, GE(VE, EE) was

replaced by G(V, E). Similarly, given a disease of interest d1, the set of source nodes (S) was

specified by the set of enhancers known to be associated with d1 (S’) and d1, then neighbors of

S’ were set as candidate enhancers.

2.3 Performance evaluation

To assess the prediction performance of ranking methods (i.e., RWDisEnh and baselines) on

different networks of diseases and enhancers, we used the leave-one-out cross-validation

(LOOCV) method for each disease/enhancer depending on disease/enhancer-centric view.

More specifically, for the disease-centric view with each disease (d) with known associated

enhancers (S), in each round of LOOCV, we held out one known d-associated enhancer. The

held-out enhancer (s) and remaining enhancers (C) in the enhancer functional interaction net-

work, which were not known to be associated with d, were then ranked by the method. After

that, we plotted the receiver operating characteristic (ROC) curve and calculated the area

under the curve (AUC) to compare the performance of the methods. This curve represents the

relationship between sensitivity and (1-specificity), where sensitivity refers to the percentage of

known d-associated enhancers that were ranked above a particular threshold, and specificity
refers to the percentage of enhancers that were not known to be associated top-ranked below

this threshold. More specifically, given a threshold τ, we counted TP (true positives), FN (false

negatives), FP (false positives), and TN (true negatives), which were formally defined as fol-

lows:

P ¼
X

s2S

IðrankðsÞ � tÞ FN ¼
X

s2S

IðrankðsÞ > tÞ ð18Þ

FP ¼
X

c2C

IðrankðcÞ � tÞ TN ¼
X

c2C

IðrankðcÞ > tÞ ð19Þ

where rank(s), rank(c), and I(�) denote the rank of s, the rank of an enhancer c out of the set C,

and the indicator function, respectively. Then, we defined sensitivity and (1-specificity) as fol-

lows:

sensitivity ¼
TP

TP þ FN
ð20Þ

1 � specificity ¼
FP

FP þ TN
ð21Þ

By varying τ from one to the number of enhancers in the set C[{s}, the relationship between

sensitivity and (1-specificity) was plotted. The ROC curve is the curve constructed based on

those pairs of values, and the AUC is the area under the ROC curve. For the enhancer-centric

view, we repeat the same procedure for each enhancer.
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3. Results

3.1 Parameter settings

To estimate the prediction performance of RWDisEnh on the heterogeneous network of dis-

eases and enhancers, we varied parameters λ, η, and γ in a range of (0, 1). First, we kept λ = η =

0.5, and varied γ in {0.1, 0.3, 0.5, 0.7, 0.9}. Second, we kept λ = γ = 0.5, and varied η in {0.1, 0.3,

0.5, 0.7, 0.9}. Third, we kept η = γ = 0.5, and varied λ in {0.1, 0.3, 0.5, 0.7, 0.9}. Then, we used

the LOOCV scheme for each disease in the set of 102 diseases, which have at least one known

disease-associated enhancer in the enhancer functional interaction network. Finally, the per-

formance of RWDisEnh was summarized as the average of AUC values over the entire set of

diseases. Fig 2 shows that the prediction performance of RWDisEnh was mostly stable against

the change of parameters. The minimal performance was 0.856 and achieved at λ = η = 0.5 and

γ = 0.3, meanwhile the maximal one was 0.883 when λ = η = 0.5 and γ = 0.9. Fig 2 also shows

that when γ increased, the prediction performance was increased. This indicates that disease-

associated enhancers tend to closely interact with each other. When η was varied, the predic-

tion performance was changed slightly in a range of (0.857, 0.859), indicating that RWDisEnh

was stable with the change of η. For the change of λ when γ = η = 0.5, RWDisEnh performed

slightly better when λ increased. More specifically, RWDisEnh achieved worst (AUC = 0.857)

and best (AUC = 0.869) performance at λ = 0.1 and λ = 0.7, respectively. This meant that if we

force the random walker tends to jump from the enhancer functional interaction network to

the disease similarity network, then RWDisEnh archived better performance.

3.2 RWDisEnh on networks of diseases and enhancers

In this section, we demonstrate the effects of the enhancer functional interaction network and

the disease similarity network (i.e., the homogeneous networks) on the prediction

Fig 2. Prediction performance of RWDisEnh on the heterogeneous network of diseases and enhancers with different

parameter settings. Restart Probability: λ = η = 0.5, and γ in {0.1, 0.3, 0.5, 0.7, 0.9}. Network importance: λ = γ = 0.5, and η
in {0.1, 0.3, 0.5, 0.7, 0.9}; and Jumping Probability: η = γ = 0.5, and λ in {0.1, 0.3, 0.5, 0.7, 0.9}. Average AUC values and

standard errors were calculated based on the set of diseases for each data point.

https://doi.org/10.1371/journal.pone.0260432.g002
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performance of RWDisEnh. To this end, we compared the prediction performance of RWDi-

sEnh on the heterogeneous network of diseases and enhancers (shortly called the heteroge-

neous network) with that on the homogeneous networks. The prediction performance of

RWDisEnh was also assessed using the LOOCV scheme.

First, we assessed the prediction performance of RWDisEnh on the heterogeneous network

and the enhancer functional interaction network. Due to the stability of RWDisEnh on the

heterogeneous network, we set λ = η = 0.5, and varied γ in {0.1, 0.3, 0.5, 0.7, 0.9} for the com-

parison. By using the LOOCV scheme, only diseases having at least two known associated

enhancers were satisfied for experiments with RWDisEnh on the enhancer functional interac-

tion network. Thus, 54 of 102 diseases were used for the analysis of the two networks for a fair

comparison. Fig 3 shows that the prediction performance of RWDisEnh on the two networks

is stable when γ is changed. More importantly, the prediction performance of RWDisEnh on

the heterogeneous network was better than that on the enhancer functional interaction net-

work (i.e., average AUC values were 0.945 and 0.795 for the heterogeneous and the enhancer

functional interaction networks, respectively; p-value = 1.00 × 10−9 using t-Test: Two-sample

assuming unequal variances). This indicated that without the disease similarity network,

RWDisEnh performed relatively poorer compared to the case the disease similarity network

was integrated with the enhancer functional interaction network in the heterogeneous net-

work. This also demonstrated the important role of the disease similarity network in predict-

ing novel disease-enhancer associations.

Second, we assessed the prediction performance of RWDisEnh on the disease similarity

network. Similarly, only 47 enhancers having at least two known associated diseases were valid

for LOOCV analysis on the disease similarity network. More specifically, for each enhancer e,
in each round of LOOCV, we held out one disease known to be associated with e. The rest of

Fig 3. Performance comparison of RWDisEnh on the heterogeneous network of diseases and enhancers and that on the

enhancer functional interaction network and the disease similarity network. λ and η are set to 0.5 for RWDisEnh running

on the heterogeneous network of diseases and enhancers, γ is varied in {0.1, 0.3, 0.5, 0.7, 0.9} for the three networks. Average

AUC values and standard errors were calculated based on the set of diseases/enhancers for each data point.

https://doi.org/10.1371/journal.pone.0260432.g003
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the known diseases associated with enhancer e were used as seed nodes (S). The held-out dis-

ease and remaining diseases in the disease similarity network, which were not known to be

associated with e, were ranked by RWDisEnh. Then, the ROC curve was constructed, and the

AUC was used to assess the performance of RWDisEnh on the disease similarity network. Sim-

ilarly, the performance of RWDisEnh was summarized as the average of AUC values over the

entire set of 47 enhancers. Fig 3 also shows that the prediction performance of RWDisEnh is

higher when γ is increased. More importantly, RWDisEnh performs better on the heteroge-

neous network than on the disease similarity network (i.e., average AUC values were 0.945 and

0.826 for the heterogeneous and the disease similarity networks, respectively; p-

value = 1.24 × 10−5 using t-Test: Two-sample assuming unequal variances). This means that

when the enhancer functional interaction network was absent, then the prediction perfor-

mance of RWDisEnh was decreased significantly. This also indicates that enhancer interac-

tions also significantly contributed to the prediction performance. Taken together, disease

similarity and enhancer functional interaction information helped improve the prediction per-

formance of disease-enhancer associations.

Moreover, RWDisEnh performed better on the disease similarity network than on the

enhancer functional interaction network (i.e., average AUC values were 0.826 and 0.795 for

the disease similarity network and the enhancer functional interaction network, respectively;

p-value = 2.38 × 10−3 using t-Test: Two-sample assuming unequal variances). Together with

the previous observation that the prediction performance of RWDisEnh was increased when

the random walker tends towards the disease similarity network, this result indicates that the

disease similarity network contributed more to the prediction performance than the enhancer

functional interaction network.

3.3 Performance comparison between RWDisEnh and other methods

To our knowledge, HEDD [15] is the first computational method proposed for predicting dis-

ease-enhancer associations. The method in HEDD was based on an assumption that if an

enhancer targets a known disease-associated gene, then this enhancer is functionally con-

nected to the disease. Therefore, HEDD relied on known enhancer-target gene and known dis-

ease-gene associations. Formally, let PEG be the probability of association between an enhancer

and a gene, and PGD be the probability of association between a gene and a disease. Then, the

probability of association between the enhancer and the disease is PED = PEG × PGD. Since

HEDD did not rely on known disease-enhancer associations when scoring a pair of enhancer

and disease; thus, it was not suitable to be selected for the comparison with our method based

on the LOOCV scheme.

Therefore, we compared RWDisEnh with another network diffusion method, i.e., PageR-

ank with Priors (PRP) [32], and a neighborhood-based method, i.e., MaxLink [33,34] based on

their best settings. Due to stability of the performance, γ is set to 0.5 for RWDisEnh on both

the heterogeneous network and the functional enhancer interaction; meanwhile, γ is set to 0.9

for RWDisEnh on the disease similarity network. Meanwhile, PRP archived the best perfor-

mance with the back-probability β = 0.7. Fig 4 shows the prediction performance of the three

methods in terms of ROC and AUC values on the heterogeneous network and the enhancer

functional interaction network. The results on the heterogeneous network indicate that

RWDisEnh (AUC = 0.945) is better than the PRP (AUC = 0.921) and the MaxLink method

(AUC = 0.819). Interestingly, the prediction performance of RWDisEnh (AUC = 0.795) and

PRP (AUC = 0.792) on the enhancer functional interaction network are comparable with that

of the MaxLink method (AUC = 0.794). This supports our assumption that neighbors of

known disease-associated enhancers (i.e., they share target genes) can be promising disease
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enhancers. Thus, although the neighborhood-based method locally searches neighbors of

known disease-associated enhancers for novel disease enhancers, it achieves comparable per-

formance with the global methods (i.e., RWDisEnh and PRP) on the same network.

3.4 Prediction of novel disease-associated enhancers

Besides showing the overall performance of RWDisEnh on predicting disease-enhancer associ-

ations based on known disease-enhancer associations using the LOOCV scheme, we here

demonstrate its ability in predicting novel disease-associated enhancers. In particular, for each

in the set of 102 diseases, we used RWDisEnh on the heterogeneous network to rank all

Fig 4. Performance comparison between RWDisEnh and other methods. The best settings of RWDisEnh and PRP were used.

https://doi.org/10.1371/journal.pone.0260432.g004
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candidate enhancers (i.e., enhancers which were not known to be associated with a disease of

interest). Then, we selected the top 10 ranked candidate enhancers of each disease for the evi-

dence search.

3.4.1 Search for direct evidence. We collected evidence of the association between single

nucleotide polymorphisms (SNPs) located in the top-ranked candidate enhancers and diseases

from genome-wide association studies. To this end, we used PhenoScanner [41,42], a curated

database of publicly available results from large-scale genetic association studies in humans.

PhenoScanner helps scan more than 65 billion genotype-phenotype associations for over 150

million genetic variants. By using a genomic region search, we found 12 direct associations

between four diseases and 12 enhancers (Table 1). For example, a genome-wide association

study in the Japanese population [43] (PubMed ID: 26818947) identified rs1421085, located in

enhancer chr16:53799602–53801200, significantly (p-value = 4.0 x 10−15) associated with type

2 diabetes. A SNP rs10877013 (p-value = 7.2 x 10−6) in enhancer chr12:58163402–58165600

was found to be associated with rheumatoid arthritis [44] (PubMed ID: 24390342). A compre-

hensive genome-wide association meta-analysis found several SNPs located in eight enhancers

(i.e., chr9:22071264–22073264, chr9:22072402–22073600, chr9:22075795–22077795, chr9:220

93330–22095330, chr9:22096002–22099600, chr9:22101602–22110600, chr9:22110602–

22120000 and chr9:22123402–22125200) associated with myocardial infarction [45] (PubMed

ID: 26343387). Finally, SNPs in two enhancers (i.e., chr17:59234602–59239400 and

chr9:21974127–21976127) were found to be associated with coronary heart disease [46]

(PubMed ID: 28714975) [47] (PubMed ID: 29212778).

3.4.2 Search for indirect evidence. In addition to direct evidence from genome-wide

association studies, we here search for indirect evidence from the literature for the top-ranked

candidate enhancers. Genetic variants of enhancers contribute important roles in disease pro-

gression because enhancers are regulatory elements that alter the expression level of their tar-

get genes. Aberrant activity of enhancers may result in diseases, i.e., cancers [1,10]. Therefore,

to support potential associations between top-ranked enhancers with a disease, we collected

evidence from the literature that indicates changes in gene expression of target genes of the

enhancers associated with the disease of interest. Finally, we found evidence of the association

with 22 diseases for 37 enhancers (S1 Table). For instance, it was shown that a higher expres-

sion level of ID2 (i.e., the target gene of enhancer chr2:8440002–8455200) was associated with

advanced breast cancer [48]. CCL2 (targeted by enhancer chr17:32559802–32586800) is

important for regulating cell growth and survival by inhibiting necrosis and autophagy and is

overexpressed in luminal B breast cancer cells and [49]. For endometrial cancer, it was indi-

cated that high expression of PTEN targeted by enhancer chr17:5519002–5520600 is positively

correlated with myometrial invasion in endometrial cancer [50]. Expression of BCL2 (targeted

by two enhancers chr15:54202002–54203000 and chr15:54203002–54203600) is significantly

more frequent in early clinical stages in both types of endometrial cancer [51]. A high expres-

sion level of SOX9 is associated with gastric cancers [52]. Guo et al., 2012 showed that the over-

expression of SOX9 protein in hepatocellular carcinoma tissues is of predictive value on tumor

progression and poor prognosis [53]. For lung cancer, BCL11A (targeted by chr2:60719002–

60776000) overexpression predicts survival and relapse in non-small cell lung cancer [54].

Finally, up-regulated p16 expression may represent a unique feature of aggressive neuroblas-

toma [55].

4. Conclusions and discussion

Enhancers regulate their target genes; thus aberration on enhancers could change the expres-

sion level of the target genes, and consequently may cause diseases. To date, millions of
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Table 1. Enhancers directly associated with four diseases from genome-wide association studies.

Disease Enhancer Target Genes Location SNP ID (P-value) PubMed

ID

type-2 diabetes chr16:53799602–

53801200

IRX5, IRX3 Intron rs1421085 (4.0E-15) 26818947

rheumatoid

arthritis

chr12:58163402–

58165600

TSPAN31, CYP27B1,

TSFM, AVIL, FAM119B

Intron rs10877013 (7.2E-6) 24390342

myocardial

infarction

chr9:22071264–

22073264

CDKN2A Intron rs10757269 (1.483E-55), rs10757270 (8.832E-53), rs4451405 (1.476E-

8), rs4645630 (2.271E-9), rs9632884 (4.005E-56), rs9632885 (9.062E-

25)

26343387

chr9:22072402–

22073600

CDKN2A Intron rs10757270 (8.832E-53), rs9632885 (9.062E-25) 26343387

chr9:22075795–

22077795

CDKN2A Intron rs10757271 (2.531E-57), rs10811652 (1.646E-58), rs1412832 (3.349E-

8), rs1831733 (1.702E-65)

26343387

chr9:22093330–

22095330

CDKN2A Intron rs10738608 (1.424E-70), rs4977757 (1.69E-67) 26343387

chr9:22096002–

22099600

CDKN2A Intron rs4977574 (1.1E-18) 17478679

rs4977574 (3.0E-44) 19198609

rs2891168 (1.32E-7), rs4977574 (1.32E-7) 21088011

rs4977574 (1.02E-19) 21378990

rs4977574 (8.0E-6) 24916648

rs10757274 (1.331E-73), rs1537371 (9.721E-71), rs2891168 (5.0E-75),

rs2891168 (5.636E-75), rs4977574 (4.584E-75)

26343387

chr9:22101602–

22110600

CDKN2A Intron rs6475608 (6.3E-8) 17478679

rs1333042 (1.32E-7) 21088011

rs10757275 (3.753E-74), rs1333042 (6.798E-71), rs1333043 (3.64E-

70), rs1412834 (8.419E-15), rs1537372 (1.089E-64), rs1537373

(2.883E-71), rs62555370 (2.64E-15), rs62555371 (2.846E-15),

rs6475609 (9.021E-15), rs7859362 (2.365E-70), rs7859727 (1.119E-70)

26343387

chr9:22110602–

22120000

CDKN2A, ANRIL Intron rs1333045 (6.3E-15), rs2383207 (1.0E-16) 17478679

rs944797 (1.2E-14) 21971053

rs1004638 (5.919E-15), rs10511701 (5.069E-68), rs10733376 (1.097E-

14), rs10738609 (1.52E-72), rs1333045 (3.282E-14), rs1537374

(5.113E-15), rs1537375 (5.988E-68), rs1537376 (8.325E-16),

rs2383206 (8.557E-16), rs2383207 (5.512E-15), rs7341786 (1.214E-

14), rs7341791 (1.226E-14), rs944797 (1.334E-15)

26343387

chr9:22123402–

22125200

CDKN2A, MTAP,

CDKN2B-AS1, CDKN2B

downstream rs10757278 (1.0E-20), rs1333046 (2.5E-17) 17478679

rs10738610 (3.611E-73), rs10757277 (9.542E-71), rs10757278 (1.041E-

70), rs10757279 (1.209E-70), rs10811656 (3.856E-65), rs1333046

(1.734E-73), rs1333047 (1.078E-66), rs4977575 (9.325E-67),

rs7857118 (3.09E-69)

26343387

coronary heart

disease

chr17:59234602–

59239400

TBX4, BCAS3, TBX2,

NACA2

Intron rs1476098 (6.27E-6), rs1476099 (7.31E-6), rs2041302 (7.43E-6),

rs2159373 (5.88E-6), rs2378816 (9.24E-6), rs9905761 (6.72E-6)

28714975

rs11868441 (3.593E-9), rs11868441 (3.8E-6), rs1476098 (1.2E-6),

rs1476098 (8.514E-10), rs1476098 (9.0E-10), rs1476099 (1.3E-6),

rs1476099 (9.489E-10), rs2041302 (1.152E-9), rs2041302 (2.0E-6),

rs2159373 (1.103E-9), rs2159373 (1.9E-6), rs2378816 (3.383E-9),

rs2378816 (3.8E-6), rs8075455 (2.063E-9), rs8075455 (2.4E-6),

rs9905761 (1.405E-9), rs9905761 (2.2E-6)

29212778

chr9:21974127–

21976127

CDKN2A Intron rs3731239 (4.224E-7) 21378988

rs36228834 (1.67E-8), rs3731239 (7.55E-14) 26343387

rs36228834 (4.65E-9), rs3731239 (1.25E-17) 28714975

rs36228503 (2.624E-6), rs36228834 (1.833E-15), rs36228834 (6.8E-9),

rs3731238 (2.997E-6), rs3731239 (1.8E-36), rs3731239 (1.916E-47)

29212778

https://doi.org/10.1371/journal.pone.0260432.t001
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enhancers have been discovered, yet our understanding of their associations to diseases is very

limited. DiseaseEnhancer [14] is a pioneer in collecting disease-enhancer associations by liter-

ature curation. Considering the huge amount of enhancers and diversity of diseases, computa-

tional methods are needed to narrow down a list of potential disease-associated enhancers.

The computational methods score the degree of association between diseases and enhancers.

Based on these scores, enhancers/diseases are ranked, then top-ranked enhancers/diseases can

be selected as promising candidates for further analyses. In this study, we assumed that func-

tional interacting enhancers are associated with similar diseases. Therefore, we developed a

computational method to exploit the similarities among diseases and functional interactions

among enhancers. More specifically, the degree of association between a disease and an

enhancer was globally measured by a random walk scheme on networks of diseases and

enhancers. The experimental results showed that our method achieved the best performance

in terms of AUC value when the disease similarity network and the enhancer functional inter-

action network were used simultaneously. Also, our method performed better than the other

network diffusion and the neighborhood-based method, which locally searches neighbors of

known disease-associated enhancers for novel ones. Finally, we applied our method to find

potential enhancers associated with 102 diseases. A total of 12 enhancers was found directly to

be associated with four diseases from genome-wide association studies. Besides, we found indi-

rect evidence from the literature for 37 enhancers that changes in the expression of their target

genes are associated with 22 diseases.

Finally, network-based methods have been shown to be dominant ones for various biomed-

ical problems. For example, HotNet was proposed for predicting significantly mutated path-

ways and subnetworks associated with clinical data in cancer [56,57]; and graph kernel

diffusion methods [58], e.g., Gaussian Kernel [59,60] and Laplacian Exponential Diffusion

Kernel [61], were successfully used for the prediction of disease-gene associations. In addition,

other approaches for predicting associations have been also applied for predicting non-coding

RNA-disease association [62–65] and synergistic drug combinations [66]. Therefore, the adop-

tion of those methods for the prediction of disease-enhancer associations could be a potential

direction in future studies. In addition, by constructing more comprehensive networks of dis-

eases, enhancers, and their target genes such as a tripartite network of them, multiplex net-

works of enhancers and diseases, or a combination between a multiplex and a heterogeneous

network, the RWR algorithm could help predict disease-enhancer associations more effectively

[17].

Supporting information

S1 Table. Enhancers indirectly associated with 22 diseases with evidence from the litera-

ture search.
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