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Abstract: Image vignetting is one of the major radiometric errors, which occurs in lens-camera
systems. In many applications, vignetting is an undesirable phenomenon; therefore, when it is
impossible to fully prevent its occurrence, it is necessary to use computational methods for its
correction in the acquired image. In the most frequently used approach to the vignetting correction,
i.e., the flat-field correction, the usage of appropriate vignetting models plays a crucial role. In the
article, the new model of vignetting, i.e., Smooth Non-Iterative Local Polynomial (SNILP) model,
is proposed. The SNILP model was compared with the models known from the literature, e.g.,
the polynomial 2D and radial polynomial models, in a series of numerical tests and in the real-
data experiment. The obtained results prove that the SNILP model usually gives better vignetting
correction results than the other aforementioned tested models. For images larger than UXGA format
(1600× 1200), the proposed model is also faster than other tested models. Moreover, among the
tested models, the SNILP model requires the least hardware resources for its application. This means
that the SNILP model is suitable for its usage in devices with limited computing power.

Keywords: image vignetting; lens shading; vignetting correction; flat-field correction; vignetting
modeling; approximation function; low-level vision; embedded vision systems

1. Introduction
1.1. Problem of Vignetting

The image vignetting is a phenomenon of the reduction of the brightness of an image
from its optical center toward its edges. The vignetting is often an unintended and unde-
sired effect, and its characteristics depends on optical properties of the lens-camera system.
Considering the causes of vignetting, there are four main types of this phenomenon [1,2],
listed it in the order of the place of its occurrence from an imaged scene to an image sensor,
i.e., mechanical vignetting, optical vignetting, natural vignetting, and pixel vignetting.
Mechanical vignetting refers to the occlusion of the light path by elements of lens-camera
system, such as a filter mounted on a lens. This type of vignetting usually causes a 100%
reduction in image brightness, which means a complete loss of information. Therefore,
this type of vignetting will not be taken into consideration in this article. The next type of
vignetting is optical vignetting, which refers to the light fall-off caused by the blockage of
off-axis incident light inside the lens body. The amount of blocked light depends on the
physical dimensions of the lens, particularly the lens focal length, diameter of lenses in
the lens body, and the lens aperture setting. Natural vignetting refers to the light fall-off
related to the geometry of the image-forming system. Pixel vignetting refers to the light
fall-off related to the angle-dependent sensitivity of the image sensor pixels.

The effect of vignetting is undesirable in many applications, especially when there is
a need for stitching images for creating panoramic images [3,4] or mosaic images [5,6], ra-
diometric, or quantitative analysis of images [7,8], e.g., in such areas as microscopy [6,9,10],
micro CT imaging [11], and remote sensing [12,13]. The best way to reduce vignetting is to
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remove its causes, e.g., by the usage of a lens with appropriate characteristics or by careful
choice of exposure parameters. However, the usage of such solutions is not always possible
nor brings the desired result. In such cases, the only solution is to use a software-based
vignetting correction method.

1.2. Vignetting Correction

Probably the most frequently used approach to vignetting correction is based on
the idea of ”flat field correction.” In this approach, the vignetting is estimated based on
reference image of vignetting IV , which presents uniformly illuminated flat surface with
a uniform color. The only source of brightness differences across IV is the vignetting of
the used lens-camera system. The way an image IV is formed can be described by the
following formula:

IV(i, j) = V(i, j) · I f lat(i, j), (1)

where V is a real vignetting of the analyzed lens-camera system, I f lat is an ideal image of
a scene with reference flat surface, and (i, j) are, respectively, horizontal and vertical pixel
coordinates. Vignetting estimator Ṽ is established during approximation process using
assumed vignetting model VM and image IV , i.e.,

Ṽ(i, j) = approx
(
VM, IV(i, j)

)
, (2)

where Ṽ ∈ (0, 1]. For obtaining image Ĩ with corrected vignetting, which is based on the
acquired image I, the following calculations must be done:

Ĩ(i, j) = I(i, j) · Ṽ(i, j)−1. (3)

For the best correction results the images IV and I should be acquired using the same
lens-camera system, its parameters (e.g., focal length for zoom lenses), and it exposure
parameters (e.g., aperture stop number of the lens). In practice, for real-time vignetting
correction, (3) is realized using lookup table.

The flat field correction is, of course, not the only approach which realizes the vi-
gnetting correction. The others are based on, e.g., physically-based models of vignetting [14,15]
and analysis of a sequence of images [1–3,16] or a single image [17–20] of a natural scene to
estimate the vignetting. However, the usage of these approaches is connected with many
limitations. In the case of methods, which use the physically-based approach, detailed
information about the parameters of a lens-camera system is needed, which is often un-
available. Additionally, the obtained vignetting model is usually limited to only one type
of vignetting. In the case of both aforementioned image-based approaches, the vignetting
estimation is usually obtained as a result of finding an optimal value an objective function
for an assumed radial vignetting model; however, this assumption limits the number of
lens-camera systems for which these approaches can be used. Moreover, the effectiveness
of image-based methods depends strongly on the precision of localization of correspond-
ing pixels in images sequence, which requires usage of an additional correction of lens
distortion. It should also be mentioned that the effectiveness of these methods strongly
depends on scene uniformity.

In comparison to the aforementioned approaches, the flat-field-based approach is more
universal; this method can be used for virtually any lens-camera system. The adjustment
of the flat-field method to the analyzed system is the matter of the usage of the vignetting
model, which is appropriate for the actual vignetting occurring in the analyzed system.
This mainly means the usage of vignetting model, for which assumptions of its use are
consistent with the features of vignetting of the analyzed lens-camera system.

Over the years, in the literature, different vignetting models based on the idea of
parametric approximation have been presented, e.g., polynomial model [1,21,22], expo-
nential polynomial model [21], hyperbolic cosine model [23], Gaussian function [24], and
radial polynomial model [25]. The last three aforementioned vignetting models belong to a
popular approach, which assumes that the actual vignetting V of lens-camera system has a
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cylindrical symmetry. This means that vignetting can be modeled using radial function,
i.e., the lens-camera vignetting V(i, j) is a function of r, where r is a distance between pixel
p(i, j) and optical center C (with coordinates (iC, jC)) of the lens-camera system. The use
of the radial vignetting assumption simplifies the process of searching for the vignetting
estimator; the approximation of the 2D function is replaced by the approximation of the
1D function. On the other hand, searching for optical center is not a trivial task [26]; its
realization involves additional calculations and is a source of potential errors. Moreover,
the usage of a radial function limits the applicability of this method.

The choosing of the proper vignetting model is not the only problem related to flat-
field correction. The other problem is the preparation of a reference scene, especially the
uniform illumination of the reference surface is a problem. It should be emphasized that
the quality of the obtained Ṽ estimator strongly depends on the luminance uniformity of
the reference scene.

1.3. Objective of the Work

The assumption about radial vignetting can be used for most lens-camera systems.
However, there is a large group of systems for which this assumption is not applicable,
e.g., industrial lenses designed with reducing vignetting in mind, perspective-control
and focal plane-control lenses (shift and tilt lenses), and anamorphic lenses. There-
fore, there is a need for an universal vignetting model which can be used for different
lens-camera systems.

Good examples of such an universal solution are the vignetting models proposed by
Sawchuk in 1977, in Reference [21], in the form of polynomial 2D (P2D) and exponential
polynomial 2D vignetting models. In both models, vignetting estimators are found as
a result of seeking a solution to the multiple regression problem. Another universal
solution was proposed in 2004 by Yu [23]. The proposed method is based on the idea of
wavelet denoising and decimation. The common feature of the aforementioned methods is
the relatively high computational complexity of these methods. Due to this feature, these
methods are not very suitable for implementation in devices with relatively low computing
power or memory resources, such as, e.g., portable devices, smart cameras, vision sensors,
embedded vision systems, and unmanned vehicles. Hence, there is a need to develop a
universal vignetting model that will combine relatively low computational and memory
complexity with the high accuracy of vignetting correction.

A possible solution to this problem uses the idea of decomposition of the 2D ap-
proximation problem into many interrelated 1D approximation problems. This approach
was presented by Reference [27–29]. The results obtained so far in this area are briefly
described and summarized in Section 2. The aim of the conducted research was to improve
the vignetting model based on this idea. The new vignetting model (SNILP) that meets
this requirement is presented in Section 3. Section 4 presents results of experiment that
was performed to compare the quality of the vignetting correction results obtained from
the new model with the results obtained from selected vignetting models described in
the literature. In Section 5, comparisons of others features of the compared models are
presented. Lastly, Section 6 contains a summary of the research.
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2. Vignetting Models Based on Decomposition
2.1. Local Parabolic Model

The problem of vignetting estimation is, in fact, the problem of seeking an approxi-
mation function of 2D data. As presented in Reference [27], in the form of Local Parabolic
model, the 2D multiple approximation problem for image of size M × N pixels can be
decomposed into M + N simple linear regression problems using the following formula:

Ṽ(i, j) =
1
2

(
Ṽxj(i) + Ṽyi (j)

)
, (4)

where

Ṽxj(i) = axj ,2 i2 + axj ,1 i + axj ,0,
Ṽyi (j) = ayi ,2 j2 + ayi ,1 j + ayi ,0,

(5)

are, respectively, values of approximation functions of degree 2 obtained for the i-th point
of the j-th horizontal line and the j-th point of the i-th vertical line of the input image. The
parameters a of functions (5) are obtained as a result of repeated 1D polynomial regression
of degree 2, which is performed along each horizontal and each vertical line of the input
image.

2.2. Local Polynomial (LP) Model

The more general Local Polynomial (LP) model of vignetting was proposed in Refer-
ence [28]. In this model, the degree of polynomial s used as 1D regression function is not
limited to degree of 2 but can be freely chosen; hence, Ṽxj and Ṽyi are calculated as follows:

Ṽxj(i) = axj ,s is + . . . + axj ,1 i + axj ,0,
Ṽyi (j) = ayi ,s js + . . . + ayi ,1 j + ayi ,0,

(6)

where s is the assumed degree of regression polynomials.
The LP model gives more exact approximation results of vignetting than Local

Parabolic model. However, the more exact analysis of the LP model shows that the
obtained surface of vignetting estimator is non-smooth and ragged.

2.3. Smooth Local Polynomial (SLP) Model

As a solution to this problem, in Reference [29], the Smooth Local Polynomial (SLP) model
was proposed. The core idea of this method is the iterative repetition of the LP model
estimation, i.e.,

Ṽk(i, j) = LP
(

Ṽk−1(i, j)
)

, (7)

where Ṽk is a result of the k-th iteration of the SLP, and, for k = 0, it holds that

Ṽ0(i, j) = IV(i, j), (8)

which is the input image for the SLP model. It follows directly from the definition of the
SLP model that, for k = 1, the results obtained from this model are the same as the results
obtained from the LP model.
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2.4. Essential Properties of the LP and SLP Models

The following belong to the essential properties of each of the vignetting models:
accuracy of reproducing the actual vignetting V on the basis of the obtained image or
images IV , features of the obtained model (such as, e.g., surface smoothness), and ease of
use of the model. Due to the fact that, when determining the vignetting estimate for real
lens-camera systems, it is difficult to reliably verify the correctness of the obtained model,
it was decided to perform numerical simulations.

The same test conditions were used in all simulations presented in this section, as
well as in Section 3.2. The simulation conditions are described in detail in Appendix A.
For comparison of vignetting models, lenses with three focal lengths were simulated for
135 film format, i.e., f = 24 mm, 50 mm, and 300 mm. This selection of focal lengths
includes the most important focal lengths of lenses (converted to the appropriate image
formats used in a given application), which are used for, e.g., photography, film-making,
monitoring, machine vision, and remote sensing.

The use of vignetting models based on the idea of image decomposition requires the
determination of the degree of the polynomial that will be used to approximate individual
lines of the image. In the case of the presented simulation results, the following polynomial
degree values were used, respectively, to the aforementioned focal lengths: 10, 6, and 2.
Such a selection of the degrees of approximation polynomials results from the fact that, for
these degrees of the polynomial, the best results (in terms of Root Mean Square Error) of
the vignetting estimation for the tested focal lengths were obtained. To obtain statistically
reliable results, the simulations were repeated for each lens 100 times.

The most important property of vignetting model is probably its accuracy. Thanks to
the simulation, the exact shape of the V vignetting is known. Hence, for evaluation of model
accuracy, the commonly used difference measures, such as Mean Absolute Error (MAE)

MAE
(
Ṽ, V

)
=

1
MN

M

∑
i=1

N

∑
j=1

∣∣Ṽ(i, j)−V(i, j),
∣∣ (9)

or Root-Mean-Square Error (RMSE)

RMSE
(
Ṽ, V

)
=

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

(
Ṽ(i, j)−V(i, j)

)2, (10)

can be used. Figure 1 presents values of those measures obtained for the simulated data.
Based on the knowledge about the causes of vignetting, it can be concluded that the

vignetting function should have a smooth surface. As previously mentioned, surfaces
obtained from the LP model are non-smooth; thus, they differ from the vignetting of real
lens-camera systems. Figure 2 presents a comparison of smoothness of exemplary results
obtained from the LP model and different numbers of iterations of the SLP model. The
presented results confirm the significant improvement in smoothness obtained by using
the SLP model compared to the LP model.
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Figure 1. Comparison of MAE and RMSE error values obtained for the LP, SLP, and SNILP models and simulated vignetting
of lenses with different focal length f ; results for IV contained with Gaussian mixture noise (A5) for σadd = 5% and
σmulti = 10%. Results for the LP model are equal to results from the SLP model for k = 1. Results for the SNILP model are
presented as orange lines, whereas lines, from bottom to top, represent minimal, first quartile, median, third quartile, and
maximal of error values.
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(a) original IV image (b) equivalent results for LP and SLP for k = 1

(c) SLP, k = 2 (d) SLP, k = 3

(e) SLP, k = 5 (f) SLP, k = 10

Figure 2. Comparison of surface smoothness of vignetting estimators Ṽ obtained from: (b) LP and (b–f) SLP models,
(a) image IV of size 640× 480 pixels contained with Gaussian mixture noise (A5) for σadd = 5% and σmulti = 10%.

The smoothness of the surface of vignetting estimator Ṽ can be evaluated not only vi-
sually but also using objective measures, such as Mean Local Standard Deviation (MLSD) and
Mean Local Slope Corrected Deviation (MLSCD). The usage of MLSD measure for smoothness
evaluation is based on the idea of Local Standard Deviation (LSD), which was used for
decades by image processing community, in original [30,31] or slightly modified form, for
evaluation of local changes in images. LSD is calculated in moving window wij of size
wx ×wy, where coordinates (i, j) defined the position of the window center in the analyzed
image I of resolution M× N, i.e.,

wij = I(i− rx : i + rx, j− ry : j + ry), (11)

where 2rx + 1 = wx, and 2ry + 1 = wy; notation a : b denotes the range of values from a to
b with increment +1. In this work, MLSD is calculated as follows:
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MLSD
(

I
)
=

1
(M− wx + 1)(N − wy + 1)

M−rx

∑
i=rx+1

N−ry

∑
j=ry+1

LSD(wij), (12)

where

LSD(wij) = σ(wij) =

√√√√ 1
wx wy

wx

∑
g=1

wy

∑
h=1

(
wij(g, h)− wij

)2, (13)

and

wij =
1

wx wy

wx

∑
g=1

wy

∑
h=1

wij(g, h). (14)

The idea of MLSCD is based on the idea of MLSD with one important modification;
in the case of MLSCD locally (i.e., inside of moving window wij), the standard deviation
σ(wij) of pixel values is not calculated, such as in LSD, in relation to the average value wij of
pixels inside wij, but in relation to a local 2D polynomial approximation PolyApps

2D
(
wij
)

of degree s of image I surface covered by wij. This change results in a much lower
sensitivity of the MLSCD measure to different slopes of analyzed surfaces; thanks to this,
the proposed measure suits better to measure the surface smoothness than the MLSD
measure. This property of MLSD results from the fact that values of LSD are strongly
influenced by the local slope of the analyzed surfaces; therefore, in the LSD measure, the
fluctuations of surface smoothness are dominated by changes of pixel values caused by a
surface slope. The MLSCD measure is calculated as follows:

MLSCD
(

I
)
=

1
(M− wx + 1)(N − wy + 1)

M−rx

∑
i=rx+1

N−ry

∑
j=ry+1

σ(∆ij), (15)

where

σ(∆ij) =

√√√√ 1
wx wy

wx

∑
g=1

wy

∑
h=1

(
∆ij(g, h)− ∆ij

)2, (16)

and

∆ij = wij − PolyApps
2D
(
wij
)
, (17)

∆ij =
1

wx wy

wx

∑
g=1

wy

∑
h=1

∆ij(g, h). (18)

It is worth noting that, using s = 0 in (17), the MLSCD measures come down to
calculating the value of MLSD. In the work, the windows size wx = wy = 7 were used
for both MLSD and MLSCD measures; in the case of MLSCD, s = 2 was used. To reduce
the influence of the border effect associated with the use of a moving window on the
smoothness evaluation results, the range of coordinates of moving window centers used
for calculation of MLSD and MLSCD (Equations (12) and (15)) is smaller than the actual
size of the analyzed images.

Figure 3 presents the comparison of MLSD and MLSCD values obtained for LP and
SLP (for k = 1, . . . , 30, where, as mentioned earlier, for k = 1, it holds that LP(IV) =
SLP(IV)) models for simulated vignetting of three focal length f of simulated lenses (see
Appendix A for experiment details). The presented results show that the SLP model
outperforms the LP model at the price of k times larger computational complexity. At this
moment, the practical question that arises is as follows: Is it possible to obtain estimation
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results with quality similar to those obtained from the SLP model for large k, with the
computational cost close to the cost required for the LP model?

1 2 3 4 5 6 7
No. of iterations k for SLP model

4

4.1

4.2

4.3

4.4

4.5

M
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#10-3

(a) MSLD, lens f = 24 mm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of iterations k for SLP model

10-6

10-4

M
LS

C
D

(b) MLSCD, lens f = 24 mm
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No. of iterations k for SLP model
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2.6

M
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D

#10-3

(c) MSLD, lens f = 50 mm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

No. of iterations k for SLP model

10-6

10-4

M
LS

C
D

(d) MLSCD, lens f = 50 mm

1 2 3 4 5 6 7 8 9 10
No. of iterations k for SLP model

10-4

10-3

M
LS

D

(e) MSLD, lens f = 300 mm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

No. of iterations k for SLP model

10-10

10-5

M
LS

C
D

(f) MLSCD, lens f = 300 mm

Figure 3. Comparison of MLSD and MLSCD values obtained for the LP, SLP, and SNILP models and simulated vignetting
of lenses with different focal length f ; results for IV contained with Gaussian mixture noise (A5) for σadd = 5% and
σmulti = 10%. Results for the LP model are equal to results from the SLP model for k = 1. Results for the SNILP model are
presented as orange lines, whereas lines, from bottom to top, represent minimal, first quartile, median, third quartile, and
maximal of error values.
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3. SNILP—A New Vignetting Model
3.1. Model Description

To simplify further considerations, the whole process of repeated 1D polynomial
regression is based on the horizontal and the vertical lines, and then calculation, based on
these results, approximated values of the input image I for point (i, j), which, from now
on, is, respectively, denoted as PolyApps

x
(

I, (i, j)
)

and PolyApps
y
(

I, (i, j)
)
; s is a degree of

the used 1D polynomial regression and, later, 1D approximation function.
In the SLP model, the approximations of the input image IV based on indepen-

dently calculated approximations for horizontal and vertical lines, i.e., Ṽx and Ṽy. The
values of these estimators depend only on the input image and the chosen degree s
of regression polynomial. The usage of the opposite approach is the foundation idea
used in the new Smooth Non-Iterative Local Polynomial Vignetting (SNILP) model. The
values of approximations PolyApps

x and PolyApps
y of IV are calculated in sequences,

e.g., as a first approximation in horizontal direction is calculated, and, then, based on these
results, the approximation in vertical direction is calculated. This procedure can be written
formally as

Ṽx(i, j) = PolyApps
x
(

IV , (i, j)
)
, (19)

Ṽ(i, j) = PolyApps
y

(
Ṽx, (i, j)

)
. (20)

All operations used for calculation needed in the SNILP model are linear. Therefore,
the sequence of the directions in which the regression is performed does not matter; hence,

Ṽ(i, j) = PolyApps
y

(
PolyApps

x

(
IV ,
(
∀i, ∀j

))
, (i, j)

)
= PolyApps

x

(
PolyApps

y

(
IV ,
(
∀i, ∀j

))
, (i, j)

)
. (21)

Since, in practice, the acquisition parameters of image IV are selected so that there is
no saturation phenomenon in it, therefore, the following condition is fulfilled max(Ṽ) < 1.
Hence, it is necessary to normalize the range of Ṽ to the range (0, 1], which is performed as
follows:

Ṽ(i, j) :=
Ṽ(i, j)

maxi,j
(
Ṽ(i, j)

) . (22)

From now on, Ṽ denotes the vignetting estimate in the normalized range.

3.2. Selected Properties of the SNILP Model

Analyzing the properties of the SNILP model, it is worth starting with paying attention
to the fact that, in practice, the relationship (21) is satisfied with a certain error. The
occurrence of this numerical error is related to the fact that the change of the order of
directions in which the 1D approximations are calculated (e.g., first along X axis, and then
along Y axis) may cause some differences in estimation results. However, on the basis of
the carried out tests, the results of which are presented in Table 1 and Figure 4, it can be
concluded that, for each repetition, the maximal error that arises due to a change in the
approximations directions order was not greater than 2× 10−12; so, they are irrelevant,
even in the case of use 16-bit analog-to-digital converters in a camera image processor. The
conditions of numerical test were identical to those used in Section 2.4.

Idempotence is the property of some mathematical operations or algorithms, whereby
its multiple applications for the same data and the same parameters does not affect the
obtained result. In the case of the SNILP model, it means

Ṽ(i, j) = SNILP
(

IV(i, j)
)
= SNILPk

(
SNILPk−1

(
. . . SNILP2

(
SNILP

(
IV(i, j)

))
. . .
))

, (23)
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where k is a number of repetition usage of the SNILP model. In practice, however, because
of the presence of the numerical error in polynomial approximation procedures,

SNILP
(

IV(i, j)
)
= SNILPk

(
SNILPk−1

(
. . . SNILP2

(
SNILP

(
IV(i, j)

))
. . .
))

+ ε(i, j), (24)

where ε(i, j) is the error value for point (i, j) related to numerical errors.

(a) median, lens f = 24 mm (b) mean, lens f = 24 mm (c) max, lens f = 24 mm

(d) median, lens f = 50 mm (e) mean, lens f = 50 mm (f) max, lens f = 50 mm

(g) median, lens f = 300 mm (h) mean, lens f = 300 mm (i) max, lens f = 300 mm

Figure 4. Errors related to using SNILP model with different sequence of approximation directions, examples for images IV

of resolution 1280× 1024 pixels contained with Gaussian mixture noise (A5) for σadd = 5% and σmulti = 10%.
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Table 1. Differences in values of vignetting estimators for using the SNILP model with different
sequences of approximation direction.

Percentile
Focal Length [mm]

24 50 300

0 0.0 0.0 0.0
0.05 1.11e-16 0.0 0.0
0.25 4.44e-16 1.11e-16 1.11e-16
0.5 1.67e-15 1.11e-16 1.11e-16

0.75 7.44e-15 2.22e-16 3.33e-16
0.95 3.26e-14 4.44e-16 4.44e-16

1 7.04e-13 1.89e-15 1.55e-15

mean 7.13e-15 1.80e-16 1.83e-16

Figure 5 presents mean errors ε̄(i, j) calculated for different numbers k of repeated
usage of the SNILP model, the values ε̄(i, j) calculated on the basis of 100 repetitions of the
experiment. One additional usage (k = 2) of the SNILP model changes, on average, the
results for each point (i, j) not more than 10−13, and such changes do not have practical
meaning. The influence of numerical errors is, of course, more visible for larger k, but,
even for k = 25, the values of ε̄(i, j) are not greater than 10−11. The maximum difference
between RMSE values caused by repetitive usage of the SNILP model does not exceed
5× 10−13. These results show that usage of the SNILP model is an idempotent operation.

3.3. Comparison of the SLP and SNILP Models

Figure 1 presents a comparison of MAE and RMSE values for SLP (box-plot) and
SNILP (orange lines—solid line is a median) models. The presented plots show that
differences between results, obtained from the SLP and SNILP models, gradually decrease
with the execution of subsequent iterations of the SLP model. Based on these results, the
following supposition can be formulated:

lim
k→∞

SLPs
k(IV) = SNILPs(IV), (25)

i.e., vignetting estimates obtained from the SNILP model are, for the same degree s of
approximation polynomials, asymptotes for a series of estimates obtained from the succes-
sive iterations of the SLP model. This supposition is confirmed by the results (Figure 3) of
measure of smoothness, using the MLSD and MLSCD measures, of vignetting estimate
surfaces obtained from both models.

Comparing the SLP model with the SNILP model, it should be recalled that the result
for the SNILP model is obtained in one step, when a qualitative similar result from the
SLP model requires k iterations. In the SLP model, for the image of size M× N pixels, one
iteration step includes N approximations in the horizontal direction, M approximations in
the vertical direction, and MN summations and MN splits for calculation of mean from
these approximations. In the case of the SNILP model, a whole calculation requires only
N approximations in the horizontal direction, as well as M approximations in the vertical
direction. Hence, assuming a similar quality of the results obtained from the SLP and
SNILP models and the same polynomial degree s used in both models, the following
relationship between the computational complexities of these models is true:

O
(

SNILP(M, N)
)
<

1
k

O
(

SLP(k, M, N)
)
. (26)
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(a) f = 24 mm, k = 2 (b) f = 50 mm, k = 2 (c) f = 300 mm, k = 2

(d) f = 24 mm, k = 5 (e) f = 50 mm, k = 5 (f) f = 300 mm, k = 5

(g) f = 24 mm, k = 25 (h) f = 50 mm, k = 25 (i) f = 300 mm, k = 25

Figure 5. Mean errors ε̄(i, j) related to using SNILP in an iterative manner for different numbers of repetitions k, results for
image IV of size 1280× 1024 pixels contained with Gaussian mixture noise (A5) for σadd = 5% and σmulti = 10%.



Sensors 2021, 21, 7086 14 of 25

4. Experimental Results
4.1. Assumptions and Conditions of the Experiment

The aim of conducted experiment was a comparison, based on real data, of the
selected, known from the literature, vignetting models with the SNILP model. The quality
of vignetting model can be evaluated by the analysis of the result image:

Ĩ f lat = IV · Ṽ−1, (27)

i.e., results of correction of the vignetting image IV , with the usage of vignetting estimates
Ṽ obtained using different vignetting models. Ideal correction results should be flat, i.e.,
all pixels in the corrected image Ĩ f lat should have the same value. Of course, in the case
of real data, this ideal result cannot be achieved because of the presence of noise in the
input IV image. In such cases, the pixels in the Ĩ f lat image should have similar values with
the possible minimal dispersion. Good measures of dispersion are standard deviation
(STD) and interquartile range (IQR); therefore, these measures were used for quantitative
assessment of the vignetting correction results. Hence, a lower value of STD

(
Ĩ f lat

)
or

IQR
(

Ĩ f lat
)

means better ability of the analyzed vignetting model to adapt to the real
vignetting.

Since the IV image contains noise, and the estimation result Ṽ may differ significantly
from the vignetting of a given camera, it is possible that the Ĩ f lat image will contain pixels
with values beyond the range of [0, 255], i.e., the range of pixel values for cameras used in
the experiment. Therefore, the correction result, i.e., the image Ĩ f lat, before its evaluation, is
subjected to the operation of truncation of pixel values according to the formula

Ĩ f lat(i, j) :=


0 for Ĩ f lat(i, j) < 0

Ĩ f lat(i, j) for Ĩ f lat(i, j) ∈ [0, 255]
255 for Ĩ f lat(i, j) > 255

. (28)

The data analyzed in the experiment were acquired using three different webcams,
namely: Logitech C920, Xiaomi IMILAB CMSXJ22A, and A4Tech PK-910H (Figure 6),
which, in the article, are denoted, respectively, as CAM-A, CAM-B, and CAM-C. In the
case of webcams, their manufacturers do not provide detailed technical data, such as, e.g.,
lens focal length, lens speed, etc. However, the webcams used in the experiment were
carefully selected to differ in their parameters, particularly the field of view and geometric
distortions; comparison of the webcams main technical data is presented in Table 2. Such a
selection of cameras allows for carrying out the experiment for possibly different examples
of real vignetting.

Figure 6. Cameras used in the experiment, from left to right: Logitech C920 (CAM-A), Xiaomi
IMILAB CMSXJ22A (CAM-B), and A4Tech PK-910H (CAM-C).
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Table 2. Main technical data of the cameras used in the experiment.

Parameters

Webcam

CAM-A CAM-B CAM-C

Logitech
C920

Xiaomi
IMILAB CMSXJ22A

A4Tech
PK-910H

Diagonal field of view 78° 85° 70°
Maximal resolution 1920× 1080 1920× 1080 1920× 1080

Maximal frame rate @ 1080p 30 fps 30 fps 30 fps
Focus type auto focus fixed focus fixed focus

Focus range — — >60 cm
Remarks: All data are provided by camera manufacturers.

As a flat-field surface needed for acquiring vignetting image (IV), the uniformly back-
lighted milky poly(methyl methacrylate) (PMMP, ”plexiglass”) panel of size 50 cm× 100 cm
and thickness 2.5 mm was used. As a light source, the Asus PA248QV graphic monitor
displaying a white screen with brightness set to maximum, i.e., 300 lx, was used. The
plexiglass panel was carefully positioned parallel to the monitor screen surface. In order
to position the camera parallel to the monitor screen, each camera was positioned in such
a way that the geometric distortions of the obtained reproduction of the test image were
symmetric. The test image was displayed on a monitor serving as the panel illumination
(Asus PA248QV), and the acquired images were observed in real time on the second
monitor. For the time of acquiring the images, the aforementioned plexiglass panel was
inserted between the monitor and the used camera.

In order to reduce the noise which is present in the captured images, in the experiment,
the IV image was used, obtained as the average of 100 originally captured images IVe . Since
the aim of the experiment is evaluation of availability of fitting of the compared vignetting
models to the real vignetting, there is no need for calculating of vignetting estimate for
each color channel, i.e., R, G and B, of the IV image. Therefore, in the experiment, for each
camera, as the input image,

IV = 0.2989R + 0.5870G + 0.1140B (29)

was used. The exposure parameters for each camera were carried out automatically for the
first image IV1 , and, for the rest of the images, i.e., IV2 , . . . , IV100 , the same parameters were
used.

The IVe images were acquired in the darkroom so that additional lights did not interfere
with this process. Additionally, in the case of CAM-A and CAM-B, all signaling diodes
with which the cameras are equipped were covered. Unfortunately, due to its design (the
signaling diode has the form of a ring around the lens), such an operation was impossible
with the CAM-C. However, failure to perform this operation had no significant impact on
the acquired images IVe due to the relatively high brightness of the imaged panel surface
compared to the CAM-C signaling diodes, and quite large distance between the camera
and the plexiglass panel.

It is important to notice that, because of the aim of the experiment eventually small
errors in, e.g., positioning of the monitor, the plexiglass panel or the cameras, as well as
a small non-uniformity of screen illumination, do not influence on qualitative evaluation
of the experiment results. Of course, such errors affect the quantitative results of the
estimation; however, these errors do not change the judgment of the ability of the tested
vignetting models on finding the best approximation Ṽ based on the input image IV ; it is
exactly this feature of the vignetting models that is evaluated in the experiment.

In the experiment, four vignetting models were compared, i.e., polynomial 2D (P2D),
radial polynomial (RP), smooth local polynomial (SLP), and smooth non-iterative local
polynomial (SNILP). The entire experiment (i.e., from image acquisition, through all
calculations, up to data presentation) was performed using MATLAB R2021a software
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package with appropriate Toolboxes, i.e., IMAGE ACQUISITION, IMAGE PROCESSING, and
CURVE FITTING.

For implementation of the P2D model, the MATLAB fit function from CURVE FIT-
TING TOOLBOX, which calculates, among others, 2D polynomial approximation, can be
used. However, due to the limitation of this function, it can only be used for approximation
of polynomials with a maximum degree s = 5; in the experiment, the own function, which
directly uses ordinary least squares equation for 2D polynomial approximation, was written
and used. It is important to notice that the own function, in general, has no limit for degree
s of the approximation polynomial. Moreover, the own function returns the approximation
results faster than the fit function, and the differences between approximation results
obtained from the own function and the fit function for data from the experiment are no
greater than 10−10; therefore, from a practical point of view, they are negligible.

The implementation of the RP model uses MATLAB polyfit and polyval functions,
which calculate parameters of approximation polynomial and values of approximation
function using the obtained parameters. The implemented own function, which carries out
these tasks, was no better than the aforementioned MATLAB functions. Additionally, in
the case of the RP model, there is a need for founding of optical center C of the lens-camera
system based on IV image; from this point, the distance r is calculated (see Section 1.2).
In the experiment, C was found by searching of the coordinates of the maximum of 2D
polynomial approximation of degree s = 2 of the IV image. This approach was compared
with others, e.g., a 2D polynomial approximation with degree s = 4 and the usage of
smoothing function with moving window; however, none of the tested approaches give
better results in the sense of values of STD

(
Ĩ f lat

)
and IQR

(
Ĩ f lat

)
than the usage of a

2D polynomial approximation with s = 2.
In the case of SLP and SNILP, both models were implemented using polyfit and

polyval functions for 1D approximation and calculation approximated values. The results
for the SLP model are obtained for k = 25 iterations.

All models were compared for different degrees s of the approximation polynomials,
i.e., for s ∈ {2, . . . , 10}. The tested range of the values of polynomials degree fully covers
the value of the approximation polynomial degree used in practice; in the literature, it is
recommended to use s from 2, for tasks that do not require precise correction, and up to 6
in more demanding applications.

4.2. Results of the Experiment

In Figure 7, acquired calibration images (Figure 7a–c) and IV images (Figure 7d–f)
obtained from the tested cameras are presented. The numerical results of the experiment
are presented in Tables 3 and 4. Additionally, in Figure 8, comparison of normalized IV
images and the obtained Ṽ for s = 10 is presented. The normalized images norm(IV) are
calculated as follows:

norm
(

IV(i, j)
)
= IV(i, j) ·max

∀i,j

(
smooth

(
IV(i, j)

))−1
, (30)

where smooth
(

IV(i, j)
)

is a result of smoothing of the IV image with 2D Gaussian filter
with standard deviation σ = 0.5 and size 10× 10; the norm(IV) images are used only for
visualization (these images are not used during calculation of Ṽ). Figure 9 shows the results
of corrections of IV images, i.e., the Ĩ f lat images, obtained for s = 10.
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(a) calibration image, CAM-A (b) calibration image, CAM-B (c) calibration image, CAM-C

(d) IV , CAM-A (e) IV , CAM-B (f) IV , CAM-C

Figure 7. Comparison of acquired calibration images and IV images obtained from the tested cameras.

Table 3. Comparison of STD
(

Ĩ f lat
)

values.

Camera Model
Order

2 3 4 5 6 7 8 9 10

CAM-A

P2D 0.4831 0.4802 0.3932 0.3371 0.2930 0.2837 0.2746 0.2677 0.2577
RP 0.6181 0.6181 0.5858 0.5858 0.5837 0.5837 0.5828 0.5828 0.5805
SLP 0.4485 0.4338 0.3254 0.3148 0.2796 0.2732 0.2520 0.2493 0.2458

SNILP 0.4485 0.4338 0.3254 0.3148 0.2796 0.2732 0.2520 0.2493 0.2458

CAM-B

P2D 2.7785 2.7503 0.9788 0.9395 0.9299 0.9224 0.6145 0.6017 0.5447
RP 2.8143 2.8143 1.2296 1.2296 1.2322 1.2322 1.0423 1.0423 1.0143
SLP 2.2618 2.2276 0.9267 0.9222 0.6818 0.6665 0.5295 0.5178 0.4965

SNILP 2.2618 2.2276 0.9267 0.9222 0.6818 0.6665 0.5295 0.5178 0.4965

CAM-C

P2D 2.0798 1.8989 1.7279 1.6951 0.8810 0.8221 0.7058 0.6857 0.5785
RP 2.8762 2.8762 2.6539 2.6539 2.2816 2.2816 2.2510 2.2510 2.2501
SLP 2.0720 1.8825 1.5142 1.4789 0.6578 0.6446 0.5635 0.5408 0.4378

SNILP 2.0720 1.8825 1.5142 1.4789 0.6578 0.6446 0.5635 0.5408 0.4378
Remarks: For camera cells, background colors (from blue, through light blue, light red to red) represent range (from the best to the worst
one) of the model results based on the STD

(
Ĩ f lat

)
values.

Table 4. Comparison of IQR
(

Ĩ f lat
)

values.

Camera Model
Order

2 3 4 5 6 7 8 9 10

CAM-A

P2D 0.6565 0.6629 0.5102 0.4101 0.3563 0.3512 0.3363 0.3302 0.3088
RP 0.8365 0.8365 0.7544 0.7544 0.7459 0.7459 0.7415 0.7415 0.7421
SLP 0.6156 0.5762 0.3974 0.3818 0.3480 0.3408 0.2989 0.2951 0.2901

SNILP 0.6156 0.5762 0.3974 0.3818 0.3480 0.3408 0.2989 0.2951 0.2901

CAM-B

P2D 2.7444 2.6071 1.2456 1.1831 1.0988 1.0824 0.6802 0.6854 0.6690
RP 2.8675 2.8675 1.6103 1.6103 1.6080 1.6080 1.3072 1.3072 1.3121
SLP 3.2378 3.2712 1.1637 1.1685 0.8412 0.8102 0.6674 0.6548 0.6277

SNILP 3.2378 3.2712 1.1637 1.1685 0.8412 0.8102 0.6674 0.6548 0.6277

CAM-C

P2D 2.9902 2.9323 2.2331 2.2332 1.0541 1.0078 0.9222 0.8944 0.7722
RP 4.0800 4.0800 3.1657 3.1657 2.7657 2.7657 2.6463 2.6463 2.6344
SLP 2.8820 2.8441 2.1795 2.1818 0.8612 0.8455 0.7420 0.7182 0.5849

SNILP 2.8820 2.8441 2.1795 2.1818 0.8612 0.8455 0.7420 0.7182 0.5849
Remarks: For camera cells, background colors (from blue, through light blue, light red to red) represent range (from the best to the worst
one) of the model results based on the IQR

(
Ĩ f lat

)
values.
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(a) norm(IV) for CAM-A (b) norm(IV) for CAM-B (c) norm(IV) for CAM-C

(d) Ṽ, CAM-A, P2D (e) Ṽ, CAM-B, P2D (f) Ṽ, CAM-C, P2D

(g) Ṽ, CAM-A, RP (h) Ṽ, CAM-B, RP (i) Ṽ, CAM-C, RP

(j) Ṽ, CAM-A, SLP and SNILP (k) Ṽ, CAM-B, SLP and SNILP (l) Ṽ, CAM-C, SLP and SNILP

Figure 8. Comparison of vignetting estimates Ṽ obtained for the tested cameras and vignetting models for degree s = 10 of
the used approximation polynomials. The charts (j–l) present results obtained for the SLP and SNILP models, which, in the
case of the used parameter k = 25 (number of iterations), in the SPL model, are equivalent.
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(a) CAM-A, P2D (b) CAM-B, P2D (c) CAM-C, P2D

(d) CAM-A, RP (e) CAM-B, RP (f) CAM-C, RP

(g) CAM-A, SLP and SNILP (h) CAM-B, SLP and SNILP (i) CAM-C, SLP and SNILP

Figure 9. Comparison of vignetting correction of flat-field image IV for the tested cameras and vignetting models for degree
s = 10 of the used approximation polynomials. The charts (j–i) present results obtained for the SLP and SNILP models,
which, in the case of the used parameter k = 25 (number of iterations), in the SPL model, are equivalent.

4.3. Discussion of the Results

The experiment on real data confirms the results of numerical tests (Section 3.3), i.e., for
a large number k of iterations of the SLP model, the results obtained from the SLP and
SNILP models are the same. However, it is important to remember that the computation
time which is needed for obtaining the same results from both models is much longer in
the case of the SLP model than in the case of the SNILP model.

Comparing results from all tested models, it can be easily seen that, beyond the results
for the IQR measure obtained from CAM-B for s ∈ {2, 3}, the order of the obtained results
(regardless of the used measure) is the same, i.e., the best results are given by the SLP and
SNILP models, slightly worse results are given by the P2D model, and much worse results
are obtained from the RP model. It is worth noting that, e.g., for the STD measure and
s ≥ 4, the results from the SNILP and SLP models are usually at least 2 times better than
the results obtained from the RP model, which is preferred by many authors.

The STD and IQR measures show aggregated information about models quality.
Additional knowledge about the models is provided by the graphs presented in Figure 9.
Comparing the results for the SPL and SNILP models with the results obtained for the P2D
and RP models, it can be seen that the spatial uniformity of the dispersion of values in
the Ĩ f lat images are different. For the individual Ĩ f lat images obtained from the SLP and
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SNILP models, the dispersion of its values is spatially uniform, which indicates—assuming
that the mean value of cameras noise ηCam = 0—a good fit of the Ṽ estimates to the input
images IV . Following this line of thinking, assuming that the I f lat images were taken
correctly, it means that the Ṽ estimates obtained from these models exactly approximate the
real vignetting V of the individual cameras. Contrary to these results, in the Ĩ f lat images
obtained from the P2D and RP models, regions exist in which the spatial uniformity is
not preserved. This is especially true for the results obtained for CAM-B (Figure 9b,e) and
CAM-C (Figure 9c,f). Based on above the assumptions, the occurrence of such areas in the
Ĩ f lat image proves that the obtained vignetting estimate Ṽ is inaccurately adjusted to the
real vignetting V of the tested camera.

5. Comparison of Others Features of the Tested Vignetting Models

The quality of the vignetting correction results is not the only criterion which should
be taken into consideration while choosing a model of vignetting for a specific application.
The others are, e.g., computational complexity (determining the speed of calculation),
a required memory size (determining the size of images for which the selected model
can be used in the given conditions, e.g., using intelligent camera with limited hardware
resources), and, last but not least, the minimum amount of data required to save the
determined vignetting estimate.

In Table 5, results of the measurement of computation times of the compared vignetting
models are presented. Additionally, in Figure 10, the obtained results are presented in
the form of a log-log graph. The presented results are obtained as a median value from
10 measures for each tested image format and the vignetting model. For all vignetting
models, the degree s = 5 of their approximation polynomials was chosen. In the case
of the RP model, an image optical center was found using the same method as in the
experiment (Section 4.1). For the SLP model, the number of iterations k = 10 was chosen.
The test vignetting images were obtained using the method presented in Appendix A.
The measurements were conducted on a computer equipped with AMD Ryzen 7 3800X
processor, 16 GB RAM, and a M.2 PCIe NVMe SSD disk. The results show that the SNILP
model, already, for images with a resolution equal to or greater than 1600× 1200, is the
fastest model. The difference in computation times between the SNILP model and the next
model, i.e., RP, grows with increasing image resolution. It is worth noticing that the results
obtained for the SLP and SNILP models confirm relation (26), i.e., that the calculation for
the SNILP model is at least k times faster than in the case of the usage the SLP model.

Table 5. Computation times of the tested models for selected image formats and the degree of approximation polynomial s = 5.

Image Resolution Image Size [Mpx] Image Format
Computional Time [s] for Model

P2D RP SLP SNILP
320× 240 0.08 QVGA 0.03 0.02 0.10 0.01
640× 480 0.31 VGA 0.11 0.06 1.43 0.14
800× 600 0.48 Super VGA 0.17 0.10 1.81 0.18

1024× 768 0.79 XGA 0.30 0.18 2.44 0.24
1280× 1024 1.31 SXGA 0.54 0.30 3.42 0.33
1600× 1200 1.92 UXGA 0.74 0.44 4.14 0.40
1920× 1080 2.07 HDV 0.80 0.48 4.43 0.43
2048× 1080 2.21 2K Digital Cinema 0.94 0.50 4.68 0.45
3840× 2160 8.29 4K UHDTV 3.36 2.10 11.70 1.14
4096× 2160 8.85 Canon PowerShot G9 X Mark II 3.78 2.18 12.22 1.19
5472× 3648 19.96 4K Digital Cinema 20.85 4.60 23.40 2.29
7680× 4320 33.18 8K UHDTV 61.03 8.43 34.21 3.35
8688× 5792 50.32 Canon EOS 5DS 158.97 17.48 52.16 5.10

Remarks: For each image resolution, color of cell background (from blue, through light blue, light red to red) represents range (from the
best to the worst one) of the vignetting model computational times.
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Figure 10. Comparison of computation times of the tested models for selected image formats and the
degree of approximation polynomial s = 5. Exact information about chosen image formats is given
in Table 5.

The lower bound of a model required memory size can be estimated from the analysis
of the minimal memory size needed for calculation of vignetting estimate. In the case of
the tested models, for this purpose, Ordinary Least Squares method is used; hence, based
on its matrix formulation, i.e.,

β̃ =
(
XTX

)−1XTy, (31)

where β̃ is a vector of estimated polynomial parameter, X is a matrix of independent
variables, and y is a vector of observations; it can be seen that the size of the matrix
X, in practice, is determining the amount of needed memory. Let I denote the size of
the analyzed image of resolution M × N, where M ≤ N, and s is an order of the used
approximation polynomial. The comparison of X size is presented in Table 6; in the table,
additional remarks about memory size needed by each vignetting model are also presented.
Based on this information, it can be concluded that the SNILP model has the lowest memory
requirements among the analyzed models.

Table 6. Comparison of models required memory size.

Model Size of X Remarks

P2D 1
2
(
s2 + 3s + 2

)
I

RP (s + 1)I

In the case of this model, the stage of searching for an optical center of the IV image can require
more memory than the stage of approximation of the radial function Ṽ. For the approach to
searching for the optical center, which is used in the experiment above, the statement is true when

1
2
(
s2

c + 3sc + 2
)
I > (s + 1)I ,

where sc is the order of 2D polynomial used for image optical center searching.

SLP 1
M (s + 1)I

In the SPL model, there is a stage of calculation vignetting estimate Ṽ by averaging (4) the
previously calculated values Ṽx and Ṽy, which requires additional space of a size 2I to keep these
variables. Because of the small value of s, which is commonly used, the stage of averaging
usually requires more memory than 1D approximation needed for calculation of Ṽx and Ṽy.

SNILP 1
M (s + 1)I
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The determined vignetting estimate can be saved in form, e.g., a matrix Ṽ of size I or
a set of parameters. The exact number of needed parameters for each model is presented
in Table 7. This comparison shows that the SLP model requires the largest number of
parameters. The SNILP model requires N(s + 1) parameters less, but, when compared
with the P2D model, and especially with the RP model, the number of parameters which are
required to save the vignetting estimate Ṽ is still large. On the other hand, in order to use
the vignetting estimate Ṽ saved in the form of a set of parameters, it is necessary to carry
out appropriate calculations which require appropriate hardware resources (including
memory larger than I needed for save Ṽ in form of a matrix) and time. Moreover, in
applications where the real-time vignetting correction is needed, e.g., on-line monitoring
or quality control, storing Ṽ in the form of a matrix is the best solution. In such cases, the
advantages of usage a smaller number of parameters, as in the case of P2D and RP models,
are no longer relevant.

Table 7. The number of parameters required for saving vignetting estimation results.

Model Type of Parameters Number of Parameters

P2D parameters of 2D approximation polynomial 1
2
(
s2 + 3s + 2

)
RP parameters of 1D radial polynomial function +

coordinates of image optical center s + 3

SLP parameters of 1D approximation of each line in the horizontal and the vertical
direction of the input image IV

(M + N)(s + 1)

SNILP parameters of 1D approximation of each line along the larger side of the input
image IV

M(s + 1), where M ≤ N

6. Conclusions

Both, i.e., numerical and experimental, results prove that the proposed SNILP vi-
gnetting model outperforms the SLP model in both quality of vignetting estimation and
the computation speed. The comparison of results obtained from the SNILP model with
these obtained from the P2D and RP models shows that the proposed model provides
a better vignetting correction, in a sense of the used measures STD

(
Ĩ f lat

)
and IQR

(
Ĩ f lat

)
,

than both models known from the literature.
Summarizing the results presented in this article, it can be stated that the SNILP

vignetting model is a universal vignetting model (similar to the P2D and SLP models).
However, compared to these models, the SNILP model is characterized by greater accuracy
of the obtained result Ṽ. It should also be noted that, compared to the widely used RP
model, the SNILP model gives for s ≥ 2 better, and, for s ≥ 4, much better, results and
can be used for vignetting correction of virtually any lens-camera system (where the usage
of the RP model is limited due to the use of the radial function). Moreover, the results
from the SNILP model for larger images are obtained in the lowest computation time and
the more limited hardware resources can be used for its computing. This last feature is
especially important for visual systems that have limited computational capabilities, such
as, e.g., smart cameras and sensors, embedded vision systems or vision systems used in
unmanned vehicles.

So far, the vignetting models presented in the literature can be divided into two groups,
i.e., universal models (e.g., the P2D model), in which usage is not limited to a certain
type of vignetting, but their use requires relatively high computing power and dedicated
models (e.g., the RP model), which have a relatively low requirement for computing power;
however, their usage is limited. Hence, there is no model that would combine its universal
application with low computational complexity. Based on the results presented in the
article, it can be concluded that the proposed SNILP model combines these requirements
and, in this sense, is a novel contribution to solving the vignetting correction issue.
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Abbreviations
The following abbreviations are used in this manuscript:

IQR InterQuartile Range
LP Local Polynomial (vignetting model)
LSCD Local Slope Corrected Deviation
LSD Local Standard Deviation
MAE Mean Absolute Error
MLSD Mean Local Standard Deviation
MLSCD Mean Local Slope Corrected Deviation
P2D Polynomial 2D (vignetting model)
PolyApps

x/y Polynomial Approximation of degree s among horizontal (x) or vertical (y) line of
the input image

RMSE Root Mean Square Error
RP Radial Polynomial (vignetting model)
SLP Smooth Local Polynomial (vignetting model)
SNILP Smooth Non-Iterative Local Polynomial (vignetting model)
STD STandard Deviation
VM Vignetting Model

Appendix A. Data Preparation for Numerical Tests

Because of the aims of numerical tests, there is no need for using very accurate models
of vignetting V; therefore, as the vignetting function V, the relatively simple cos4 model
of off-axis illumination [15] was adopted. The original formula was modified for easier
calculation of V for different resolutions of the analyzed images. Hence, the vignetting
function V used in test is defined as follows:

V(i, j) =
1(

1 + (rD/2 f )2
)2 , (A1)

where V(i, j) ∈ (0, 1], f is the focal length of the lens in millimeters, D is a length of
diagonal of a simulated sensor in millimeters, and r is a normalized distance from the
center (ic, jc) of an image to the image pixel of coordinates (i, j) (where i ∈ {1, M} and
j ∈ {1, , N}) and is calculated as follows:

r =
R

max(R)
, (A2)

R =
√
(i− ic)2 + (j− jc)2. (A3)
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The obtained vignetting V is a radial function.
To simulate non-radial vignetting, it is enough to slightly modify (A3), i.e.,

R =

√
(i− ic)2 +

(
α(j− jc)

)2, (A4)

where, for α = 1, V(i, j) is a radial function, and, for α 6= 1, V(i, j) is a non-radial function,
e.g., for α > 1, the vignetting in the vertical (y) direction is stronger than in the horizontal (x)
direction. For simulation of a lens with optical center shifted in relation to the geometrical
center of the lens, it is enough to replace in (A3) or (A4) coordinates (ic, jc) of the geometrical
lens center by coordinates (ioc, joc) of the simulated optical center of the lens.

For the tests, in which the results are presented in Sections 2 and 3, the values of D
and f were chosen according to 135 (35 mm) film standard; hence, D/2 = 43.267 mm. The
tests were carried on for the three values of lens focal length f , i.e., 24 mm, 50 mm, and
300 mm. Such a choice of lens focal lengths covers (after its conversion, taking into account
the sensor size used in the application) the most frequently used focal length range. The
results presented in the article were obtained for images of resolution 1280× 1024, α = 1
(radial vignetting) and coordinates of optical center consistent with the coordinates of the
image geometric center.

Real vignetting image IV contains a noise; therefore, in the simulation vignetting
function, V is contaminated with a Gaussian mixture noise; the formula is as follows:

IV = κ

(
V
(

1 +N
(
0, σmulti

))
+N

(
0, σadd

))
, (A5)

where N
(
µ, σ

)
represents noise with a normal distribution, with mean µ and standard

deviation σ. The parameters σmulti and σadd are the standard deviations of, respectively,
multiplicative and additional component of mixture noise; the mean values of noise of both
components are equal to 0, and κ is a scaling factor that simulates exposure correction used
during the acquisition of real IV images to prevent saturation from occurring in captured
images. The test images were created for: σmulti = 10%, σadd = 5%, and κ = 0.8. The last
stage of creation of an IV image is a truncation of its values to the range [0, 255].
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