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Abstract

Previous studies have found that genes which are differentially expressed within the developing human brain dispro-
portionately neighbor conserved noncoding sequences (CNSs) that have an elevated substitution rate in humans and in
other species. One explanation for this general association of differential expression with accelerated CNSs is that genes
with pre-existing patterns of differential expression have been preferentially targeted by species-specific regulatory
changes. Here we provide support for an alternative explanation: genes that neighbor a greater number of CNSs have
a higher probability of differential expression and a higher probability of neighboring a CNS with lineage-specific accel-
eration. Thus, neighboring an accelerated element from any species signals that a gene likely neighbors many CNSs. We
extend the analyses beyond the prenatal time points considered in previous studies to demonstrate that this association
persists across developmental and adult periods. Examining differential expression between non-neural tissues suggests
that the relationship between the number of CNSs a gene neighbors and its differential expression status may be
particularly strong for expression differences among brain regions. In addition, by considering this relationship, we
highlight a recently defined set of putative human-specific gain-of-function sequences that, even after adjusting for
the number of CNSs neighbored by genes, shows a positive relationship with upregulation in the brain compared with
other tissues examined.
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Introduction
Noncoding regulatory elements play a central role in the
spatiotemporal control of gene expression, and variation in
regulatory sequences can underlie the evolution of species-
specific phenotypes (Shapiro et al. 2004; Wray 2007; Carroll
2008; Linnen et al. 2013; Shibata et al. 2015; Indjeian et al.
2016). Using conservation as an indicator of putative regula-
tory elements, studies have searched for conserved noncod-
ing sequences (CNSs) that harbor an excess of substitutions in
humans (Pollard et al. 2006a, 2006b; Prabhakar et al. 2006a;
Bird et al. 2007; Kim and Pritchard 2007; Lindblad-Toh et al.
2011), identifying accelerated CNSs (ACNSs) that are candi-
dates for being regulators of species-specific changes in gene
expression. In vivo enhancer assays have provided information
on a number of human-accelerated CNSs (HACNSs). For ex-
ample, human-specific mutations in one HACNS are capable
of driving (Prabhakar et al. 2008), or perhaps derepressing
(Sumiyama and Saitou 2011), the expression of a reporter
gene in the developing limb. Other enhancer assays have
identified HACNSs that produce expression patterns in the
nervous system which are different or absent compared with

the patterns directed by non-accelerated counterparts from
other species (Capra et al. 2013; Kamm et al. 2013a, 2013b;
Boyd et al. 2015). Following up on a reporter gene assay, Boyd
et al. (2015) provided evidence that a human-accelerated
regulatory enhancer HARE5, regulates the expression of
FZD8. Through comparison of transgenic mouse lines in
which mouse Fzd8 was driven by either HARE5 or the chim-
panzee counterpart, they demonstrated that Fzd8 driven by
HARE5 leads to an increase in neural progenitor proliferation
and a larger neocortex.

At a more global and correlative level, analyses of genes
that neighbor (i.e., are the nearest gene to) CNSs suggest that
many HACNSs, and accelerated noncoding sequences in gen-
eral, may influence expression in the brain. Gene ontology
(GO) analysis indicates that genes neighboring HACNSs, com-
pared with those neighboring CNSs as a whole, are dispro-
portionately involved in neuronal adhesion (Prabhakar et al.
2006a). A meta-analysis that combined HACNSs with two
other noncoding sets, human-accelerated regions (HARs)
(Pollard et al. 2006a) and human-accelerated promoters
(Haygood et al. 2007), found that genes neighboring these
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sequences, in contrast to genes whose coding regions exhibit
acceleration, were enriched for neural development-related
functions and had a higher tendency for elevated expression
in the brain (Haygood et al. 2010). On the other hand, com-
parison of putative regulatory elements identified by ChIP-seq
profiling of promoter and enhancer marks during early cor-
tical neurogenesis in humans, rhesus macaques, and mice
(Reilly et al. 2015)—as well as profiling in adult human, chim-
panzee, and macaque brains (Vermunt et al. 2016)—did not
find any enrichment of human-accelerated sequences in
peaks that were unique to the human samples.

Focusing on spatial differential expression within the hu-
man brain, a handful of studies have examined the frequency
at which differentially expressed (DEX) genes are the nearest
gene to a HACNS (Johnson et al. 2009; Lambert et al. 2011;
Miller et al. 2014). An analysis of multiple regions from the
mid-fetal human brain found that, of genes nearest to CNSs,
those that are DEX among brain regions are more likely than
non-DEX genes to be the nearest gene to a HACNS (Johnson
et al. 2009). An independent study of gene expression in two
cortical regions during fetal development also found an asso-
ciation between differential expression and accelerated
noncoding sequences (Lambert et al. 2011). Importantly,
the authors note that this pattern does not appear to be
specific to human-accelerated sequences, as genes neighbor-
ing CNSs with elevated substitution rates in other species are
also more likely to be DEX between the two human brain
regions studied. Thus, species-specific regulatory changes, at
least as represented by ACNSs and in the context of nervous
system development, may have preferentially operated within
the set of genes that had pre-existing differential expression
patterns.

Here we re-examine the relationship between differential
expression and ACNSs. We demonstrate that when a gene
neighbors an ACNS it often neighbors a high number of
non-ACNSs. Accounting for this relationship reveals that
genes neighboring ACNSs are DEX within the brain at a
rate that is consistent with what is expected given the num-
ber of CNSs to which each gene is nearest (referred to as
“adjacent” CNSs). The positive relationship between differ-
ential expression in the brain and the number of adjacent
CNSs exists across time periods and is also present in most
pairwise expression comparisons between non-neural adult
tissues. Finally, by adjusting for the number of adjacent
CNSs, we provide support for the hypothesis that the regu-
latory evolution captured by a recently defined set of puta-
tive human-specific elements has disproportionately
targeted genes that are upregulated in the human brain.

Results

Genes Neighboring ACNSs Tend to be near More CNSs
To test whether genes that are DEX among brain regions
neighbor accelerated regions more frequently than non-
DEX genes do, previous studies (Johnson et al. 2009;
Lambert et al. 2011) have focused on genes that are nearest
to at least one CNS. From this subset, the proportion of genes
that were nearest to an accelerated element was compared

between DEX and non-DEX genes. We first took a similar
approach in order to verify that we obtained consistent
results using our processing steps and differential expression
classification.

We classified a gene as DEX among brain regions based on
differential expression between at least two brain regions,
performing separate classifications with the Johnson et al.
(2009), Lambert et al. (2011), and Kang et al. (2011) data
sets (supplementary table S1, Supplementary Material
online). For the Johnson et al. and Kang et al. studies, which
profiled expression in both neocortical and non-neocortical
samples, we considered either differential expression among
brain regions, with neocortical areas treated as a single brain
region, or differential expression among neocortical areas. The
Kang et al. data set was restricted to samples from time pe-
riod 6 (supplementary table S2, Supplementary Material on-
line), a late mid-fetal period that is crucial for the formation of
neuronal circuits (see Silbereis et al. 2016) and that overlaps
with the time points analyzed in the previous studies.
HACNSs, chimpanzee-accelerated CNSs (CACNSs), and
mouse-accelerated CNSs (MACNSs), as identified by
Prabhakar et al. (2006a), were intersected with gene coordi-
nates to determine whether a gene (more specifically, either
bound of its longest transcript) was the nearest gene to any
sequence in each group of ACNSs. To compare these sets of
genes with the larger set of genes nearest to any CNS, we
generated a superset of CNSs (182,682 in total), of which
HACNSs, CACNSs, and MACNSs make up a small proportion
(0.5%, 0.6%, and 2.5%, respectively), by filtering 8-way verte-
brate phastCons elements (Siepel et al. 2005) to those that
reside in noncoding sequences and have a conservation score
of at least 400.

Following earlier studies, we intersected the nearest gene
and differential expression classifications to assess whether
DEX genes disproportionately neighbor ACNSs. When CNS-
neighboring genes were restricted to DEX genes, the propor-
tion of genes neighboring a HACNS was greater in this subset
than in the overall set of CNS-neighboring genes (supplemen
tary table S3, Supplementary Material online). As noted pre-
viously (Lambert et al. 2011), DEX genes within the mid-fetal
human brain showed a similar enrichment for neighboring
sets with acceleration in other species, represented here by
CACNSs and MACNSs. Thus, despite not attempting to
closely match details of previous analyses (see “Materials
and Methods” section), we find that this approach for exam-
ining the relationship between differential expression and
neighboring an ACNS yields results that are consistent with
previous findings and that hold across mid-fetal brain samples
from independent studies.

A limitation of the above method, however, is that it only
considers whether a gene neighbors at least one CNS, which
loses a substantial amount of information because the num-
ber of adjacent CNSs displays a wide range. Of genes that are
nearest to at least one non-ACNS (which we will refer to as
OCNSs for “other” CNSs), over three quarters neighbor more
than one OCNS (fig. 1A and supplementary fig. S1A,
Supplementary Material online). For each ACNS type, the
proportion of genes that neighbor more than one element
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is lower but still above a quarter (supplementary fig. S1B,
Supplementary Material online). Importantly, if a gene is
the nearest gene to a HACNS, it is likely that it is also the
nearest gene to many OCNSs (fig. 1B). This relationship with
OCNSs is also present for genes nearest to CACNSs (fig. 1C)
and MACNSs (supplementary fig. S2A, Supplementary
Material online).

Genes Neighboring More CNSs Are More Likely to be
DEX in the Brain
The increased tendency for ACNS-neighboring genes to
neighbor a large number of OCNSs raises the possibility
that the number of adjacent OCNSs is responsible, at least
in part, for the positive correlation between neighboring an
ACNS and differential expression. In order for this to be the
case, the number of adjacent OCNSs must show a positive
relationship with differential expression. Indeed, grouping
genes by the number of adjacent OCNSs suggests that genes
neighboring more OCNSs are more frequently DEX. For ex-
ample, of genes that are nearest to at least ten OCNSs (18% of
the analyzed genes), 33% were classified as DEX among brain
regions in period 6 of the Kang et al. data set, while only 9% of
genes nearest to fewer than ten OCNSs were DEX. In general,
binning genes by the number of adjacent OCNSs reveals that
the proportion of DEX genes tends to increase for bins con-
taining genes that are nearest to more OCNSs (supplemen
tary fig. S3, Supplementary Material online).

The positive relationship between the number of adjacent
OCNSs and differential expression, together with the covari-
ation between the number of adjacent ACNSs and the num-
ber of adjacent OCNSs, motivates the development of a
model to assess whether the rate of differential expression
for genes neighboring ACNSs exceeds what is expected given
the number of OCNSs that each gene neighbors. For this
purpose, we constructed a probit regression model, taking
differential expression status as the binary response variable
and incorporating counts of OCNSs and of each type of
ACNS that a gene neighbors as predictors (see “Materials
and Methods” section). In this generalized linear model
(GLM) variant, each predictor contributes to an overall linear
predictor, which represents a z-score. To link the continuous
z-score to a dichotomous response variable, the z-score is

mapped, via the standard cumulative normal distribution,
onto probability space. The coefficient for each predictor,
conditioned on the other predictors of the model, is the
predictor’s per unit contribution to the z-score. Thus, a pos-
itive coefficient reflects an increase in probability, though the
extent of the increase depends on the initial z-score value.
Consequently, examining the change in marginal probability
for a coefficient, with other parameters at reasonable values, is
useful for interpreting the coefficient.

We first fit this model with differential expression status
among mid-fetal brain regions, classified from period 6 of the
Kang et al. data set, as the binary response variable. For each
set of elements (OCNSs, HACNSs, CACNSs, and MACNSs),
the predictors included the log-transformed count of the
number of elements that a gene neighbors. The probit coef-
ficient for the OCNS predictor was 0.30–0.34 (95% credible
interval [CI]), corresponding to the marginal probability of
differential expression increasing by 14–16 percentage points
for a gene neighboring ten OCNSs (fig. 2A). Genes nearest to
more OCNSs also had a higher probability of being DEX
among neocortical areas (fig. 2A; probit coefficient of 0.26–
0.34, 95% CI), which, starting at the lower base rate of differ-
ential expression among neocortical areas, maps to a marginal
probability increase of 2–3 percentage points.

Due to our procedure for assigning genes as targets of
CNSs, we were concerned that much of the relationship be-
tween the number of adjacent CNSs and differential expres-
sion may reflect variation in locus length, in a manner similar
to the annotation bias described by Taher and Ovcharenko
(2009). Specifically, a gene with more intergenic space and
longer introns, all else being equal, will be assigned as the
nearest gene to more CNSs by chance, and the locus length
of a gene may be positively correlated with whether a gene is
DEX. We assessed the influence of locus length by considering
one of two predictors. First, we considered the log-
transformed locus length of each gene. This predictor had a
positive relationship with differential expression among brain
regions, but the coefficient for the OCNS count predictor
remained well above zero (0.19–0.26, 95% CI). Second, we
generated nearest gene counts for 15 sets of random noncod-
ing coordinates (which were similar to the CNS set in terms of
length and number) and summarized across these sets to

A B C

FIG. 1. Number of OCNSs neighbored by genes. (A) The distribution of the number of OCNSs neighbored by all genes. (B–C) The distribution of the
number of OCNSs neighbored by genes that also neighbor at least one HACNS (B) or CACNS (C). The Spearman correlation coefficients for the
relationships shown in B and C are 0.50 and 0.47, respectively. Points are jittered along the y-axis.

CNSs and Differential Gene Expression in the Human Brain . doi:10.1093/molbev/msx076 MBE

1219

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx076/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx076/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx076/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx076/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx076/-/DC1
Deleted Text: b
Deleted Text: B
Deleted Text: Differentially Expressed
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx076/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx076/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx076/-/DC1
Deleted Text:  to 
Deleted Text: percentage 
Deleted Text:  to 
Deleted Text:  to 
Deleted Text: percentage 
Deleted Text:  to 


form an aggregate predictor. When compared with the locus
length predictor, this random analog of the OCNS count
predictor, which we refer to as the “target size” predictor,
provides a more direct measure of the probability that a
gene is assigned as a nearest gene for a set of random noncod-
ing regions. The probit coefficient for the target size covariate
was positive (0.16–0.24, 95% CI), but, as with the locus length
predictor, the coefficient for the OCNS count predictor re-
mained positive (0.17–0.23, 95% CI), with an increase of 8–11
percentage points in the marginal probability of differential
expression when the target size predictor is set to its mean
value. These results suggest both that target size is important
to consider as a covariate and that the OCNS association is
not simply a consequence of target size.

The OCNS count predictor, as a whole, carries information
beyond what is captured in a random target size predictor,
but the impact of the target size adjustment may depend on
the location of the OCNSs. We categorized OCNSs into three
groups: 1) located in the intron of a gene, 2) located<100 kb
from the nearest gene, or 3) located 100 kb or more from the
nearest gene. Predictors formed from these sets were substi-
tuted for the single OCNS count predictor. Ignoring the target
size predictor, all groups showed a positive correlation with
differential expression, with intronic OCNSs showing a stron-
ger relationship (supplementary fig. S4, Supplementary

Material online; probit coefficient of 0.23–0.28, 95% CI)
than both OCNSs at <100 kb (0.15–0.22, 95% CI) and those
at or beyond 100 kb (0.05–0.11, 95% CI). When the target size
predictor was also considered, the coefficients of predictors
for OCNSs within introns and within 100 kb survived adjust-
ment (0.14–0.19 and 0.09–0.16, respectively, 95% CIs), while
the coefficient of the predictor for OCNSs at 100 kb or farther
no longer supported a positive relationship with differential
expression status (�0.04 to 0.02, 95% CI).

To check the sensitivity of these estimates to the phastCons
conservation score threshold used to define CNSs, we varied
this cutoff, which was initially set to 400 to match the criteria
used in the identification of HACNSs (Prabhakar et al. 2006a).
From a score of 150, which captures the lowest score included
in this phastCons set, the OCNS coefficient retained a rela-
tively steady value up to a threshold of 400, where the OCNS
coefficient began to drop with increasing thresholds, indicat-
ing that information relevant for the association is lost at these
higher thresholds (supplementary fig. S5, Supplementary
Material online). At the lower end, the number of adjacent
elements is strongly correlated across sets with different score
thresholds. For example, if we define the nearest gene count
predictors from one of two groups, either CNSs that have
scores above 150 but below 300 or those that have scores
above 300 but below 400, the Spearman correlation coefficient
between these predictors is 0.90.

Because the response vector encodes whether each gene
was classified as DEX in at least one of six regions, it is possible
that one region is primarily contributing to the correlation
between differential expression and the number of adjacent
OCNSs. However, constructing alternative response vectors
where a single region is dropped suggests that the signal does
not depend on any one region (supplementary fig. S6,
Supplementary Material online).

Differential Expression of Genes Neighboring ACNSs
The model described earlier allows us to estimate the extent
to which genes neighboring HACNSs show a higher tendency
of being DEX than expected for the number of adjacent
OCNSs. Returning to the first model reported—where differ-
ential expression was classified using samples from period 6 of
the Kang et al. data set and nearest gene count predictors
were included for OCNSs, HACNSs, CACNSs, and MACNSs—
estimates of the association between the number of adjacent
HACNSs and differential expression among brain regions
(probit coefficient of �0.30 to �0.01, 95% CI) and among
neocortical areas (�0.01 to 0.38, 95% CI) showed wide inter-
vals that do not provide clear evidence of a positive associa-
tion (fig. 2B). A similar pattern was also observed for the
CACNS and MACNS predictors (fig. 2B). In contrast, when
predictors for all elements except HACNSs (i.e., OCNSs,
CACNSs, and MACNSs) were dropped, the HACNS coeffi-
cient showed a strong positive relationship with the differen-
tial expression response variable for brain regions (0.81–1.05,
95% CI) and for neocortical areas (0.76–1.06, 95% CI), as the
HACNS predictor then conveyed indirect information about
the number of adjacent OCNSs.

A

B

FIG. 2. Differential expression in the mid-fetal human brain of genes
neighboring CNSs. (A) The probability of differential expression
among brain regions (blue) or among neocortical areas (brown),
given the number of adjacent OCNSs, was calculated using a probit
regression model with predictors that indicated the number of ele-
ments (log-transformed) in each category—OCNSs, HACNSs,
CACNSs, or MACNSs—that a gene neighbors. Separate models
were run for the neocortical and regional response variables. Each
set of lines represents 100 randomly selected realizations from the
posterior distribution. The x-axis is restricted to the range of OCNSs
for which a gene was observed to neighbor at least one OCNS but not
any ACNS. (B) The probit regression coefficients for each CNS pre-
dictor. Intervals represent 95% CIs.
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The OCNS count predictor also appears to be relevant
for the relationship reported between HARs and differen-
tial expression (Lambert et al. 2011). A log-transformed
count predictor of the number of adjacent HARs showed
a positive relationship with regional (probit coefficient of
0.77–1.12, 95% CI) and neocortical differential expression
(0.78–1.21, 95% CI) when the OCNS count predictor was
not included. However, as with genes neighboring ACNSs,
genes neighboring HARs tend to be nearest to many
OCNSs (supplementary fig. S2B, Supplementary Material
online). When we adjusted for the number of adjacent
OCNSs, filtered to those that do not overlap with a HAR,
we obtained wide coefficient estimates that are consis-
tent with no association (regional differential expression
status: �0.33 to 0.02, neocortical differential expression
status: �0.11 to 0.36, 95% CIs), similar to what was ob-
served for HACNSs.

Although the coefficient estimates are inherently tied to
the chosen predictor transformation, the general pattern
does not depend on a specific representation of the ACNS
predictors (e.g., being a count rather than binary predictor or
being log-transformed), provided that some form of a count
predictor for OCNSs is incorporated into the model (supple
mentary table S4, Supplementary Material online). The
results also do not appear to be sensitive to the method
used to call differential expression, nor specific to the Kang
et al. data set (supplementary fig. S7, Supplementary
Material online).

Association between Regional Differential Expression
and CNSs Persists across Time
The results described to this point have focused on differen-
tial expression during a mid-fetal time period that overlaps
with the time periods from previous studies. Expanding the
analyses to consider samples from all the time periods of the
Kang et al. data set (supplementary table S2, Supplementary
Material online), we found that the strength of the associa-
tion between regional differential expression and the OCNS
count predictor varied across time periods but remained pos-
itive (fig. 3; for all periods, the lowest 95% CI bound of any
OCNS coefficient was 0.12). The largest drop in the value of
the OCNS coefficients occurred between prenatal periods 1
and 2, coinciding with the largest increase in the number of
DEX genes (from 282 to 1,428) between any consecutive time
periods.

Because a gene that is DEX in one time period is predictive
of whether that gene is DEX in the next period, the associa-
tion in later time periods may be driven by DEX genes from
earlier time periods. To test this, we reran the regression for
each time period with a predictor that indicated the differ-
ential expression status for the previous time period. The
association decreased, as expected, but persisted in most
time periods (fig. 3). Together, these analyses suggest that,
while the OCNS coefficients do show notable variation across
time periods, the tendency for DEX genes to neighbor a
higher number of OCNSs is not exclusive to any time period
or group of time periods.

Association of CNSs with Human Inter-Tissue
Differential Expression
To assess whether the relationship between the number of
adjacent OCNSs and differential expression that we observed
within the brain is also present for differential expression
between tissues, we used a subset of tissues available in the
GTEx expression data set (The GTEx Consortium 2015),
grouping the samples according to the adult Kang et al.
time periods (supplementary table S2, Supplementary
Material online).

Using the nearest gene count predictors described earlier,
we performed separate regressions for each pairwise tissue
comparison, where the response variable was an indicator
vector that represented whether a gene was upregulated in a
given tissue compared with another (fig. 4). Nearly three
quarters of the pairwise comparisons showed a positive re-
lationship with the number of adjacent OCNSs, the overall
average coefficient being 0.07 (0.17 for contrasts with upre-
gulation in the cerebral cortex or cerebellum, 0.04 for
others). The patterns of OCNS coefficient values appear to
be consistent across these adult time periods (supplemen
tary fig. S8, Supplementary Material online) and do not seem
to simply mirror the number of upregulated genes (supple
mentary fig. S9, Supplementary Material online). Although
comparing the coefficients directly is complicated by the
dependence among the response vectors, OCNS coefficients
for comparisons where the upregulated member is the ce-
rebral cortex or cerebellum comprised some of the highest
values for all GTEx tissues examined. In contrast to OCNSs, a
consistent positive relationship was not observed for the
HACNS, CACNS, or MACNS predictors (supplementary
figs. S10 and S11, Supplementary Material online).

In addition to gene expression data, we used ChIP-seq data
from the Roadmap Epigenomics Mapping Consortium to
examine H3K4me1 and H3K4me3 signals in 26 tissues, com-
paring OCNSs to ACNSs, as well as OCNSs and ACNSs to the
target size predictor (i.e., random noncoding sequences). In 24
out of 26 of the tissues, we observed that H3K4me1 signals, a
correlate of enhancer activity, were shifted toward higher

FIG. 3. Relationship of OCNSs and differential expression among hu-
man brain regions across time. The coefficients for the OCNS count
predictor were estimated with a probit regression model. The ad-
justed coefficients (blue) were generated from an extended model
that also included an indicator of whether each gene was DEX in the
last time period. Intervals represent 95% CIs.
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values in OCNSs relative to HACNSs, as indicated by a
Mann-Whitney U test where a Bonferroni-adjusted P value
below 0.05 was classified as a positive result (supplemen
tary table S5 and supplementary fig. S12, Supplementary
Material online). A similar relationship was observed for
CACNSs but not MACNSs, as the H3K4me1 signal distri-
bution for OCNSs was found to be shifted rightward of the
distribution for MACNSs in only 5 out of 26 of the tissues
(supplementary table S5 and supplementary fig. S12,
Supplementary Material online). The factors resulting in
the elevated H3K4me1 signals in MACNSs relative to
HACNSs and CACNSs are unclear, although the larger
size of the MACNS set may be relevant. In contrast to
H3K4me1 signals, H3K4me3 signals, a correlate of pro-
moter activity, showed fewer differences between OCNSs
and ACNSs, with an increase in the signal in OCNSs com-
pared with HACNSs, CACNSs, or MACNSs being found in
7, 15, and 5 of the 26 tissues, respectively.

When compared with H3K4me1 signals in random
noncoding sequences, H3K4me1 signals in OCNSs,
HACNSs, CACNSs, and MACNSs were elevated in most
tissues (26, 21, 20, and 24 of 26 tissues, respectively; sup
plementary table S5, Supplementary Material online).
Similar results were also observed for H3K4me3 signals.
Thus, while the regulatory profiles of OCNSs, HACNSs,
CACNSs, and MACNSs appear to differ from each other,
all of these sets exhibit regulatory-associated ChIP-seq
signals beyond what would be expected for random
noncoding sequences.

Human-Specific Gain-of-Function Sequences Are
Associated with Upregulation in the Brain after OCNS
Adjustment
ACNSs, as well as HARs, are identified by lineage-specific di-
vergence in sequences that are generally conserved across a set
of species, a process that likely couples the distributions of
OCNSs and accelerated elements. To explore a case where this
coupling may be less pronounced, we analyzed two sets of
sequences that were recently defined with a machine learning
approach that classified segments of the genome as con-
strained or unconstrained using human population data
(Schrider and Kern 2015). By intersecting these sets with in-
terspecies conservation data, the authors identified sequences
that show conservation in other species but are unconstrained
in humans (referred to as losses-of-function or LOFs). With the
reverse logic, sequences that show constraint in humans but
not across other species were classified as gains-of-function
(GOFs). Because the definition of GOF depends on the ab-
sence rather than presence of a CNS, we reasoned that the
distribution of GOFs is more decoupled from CNSs as a whole.
Consistent with this idea, the median number of adjacent
OCNSs for genes nearest to at least one noncoding LOF
(ncLOF) is 57, while, for genes nearest to at least one noncod-
ing GOF (ncGOF), the median number of adjacent OCNSs is
16. For comparison, the median number of adjacent OCNSs
for genes nearest to at least one HACNS is 66.

Incorporating nearest gene count predictors for ncGOFs
and ncLOFs into the probit model described earlier, we found
that both ncGOFs and ncLOFs showed a positive relationship
with differential expression among brain regions across all
time periods when the number of adjacent OCNSs and the
target size predictor were ignored (fig. 5A). Following adjust-
ment for the OCNS and target size predictors, neither
ncGOFs nor ncLOFs showed a clear enrichment for being
neighbored by genes that are DEX within the brain (fig. 5A
and supplementary fig. S13, Supplementary Material online).
In contrast, when upregulation between tissues rather than
differential expression among brain regions was taken as the
response variable, the number of adjacent ncGOFs was asso-
ciated with a higher probability of upregulation in the brain
(fig. 5B and C and supplementary fig. S14, Supplementary
Material online). As an example, 30% of the 427 genes that
neighbor at least one ncGOF were classified as upregulated in
cerebral cortex samples compared with testis samples, an
increase of 2– 8 percentage points (95% CI) in the marginal
probability of upregulation beyond what is expected for genes
that do not neighbor an ncGOF.

LOFs and GOFs were defined based on intersection with
phastCons elements from the 100-way vertebrate data set,
whereas the CNSs considered here were generated from the
8-way vertebrate set to match the CNSs used to define
ACNSs. However, we do not expect this to substantially in-
fluence the results because, although the sets differ in the
number of elements, the nearest gene counts display a very
similar pattern (Spearman correlation coefficient of 0.91).
Indeed, when the OCNS predictor was generated from the
100-way set, ncGOFs showed a comparable positive

FIG. 4. Association of OCNSs with inter-tissue differential expression.
OCNS probit coefficients were estimated for pairwise upregulation
vectors generated with GTEx samples, restricted to a subset of tissues
and to samples that fall within period 13 of the Kang et al. data set.
(Heat maps for period 14 and period 15 samples are shown in supple
mentary fig. S8, Supplementary Material online) For each heat map
cell, the response vector indicated whether genes were upregulated in
the column tissue compared with the row tissue. The boxplots sum-
marize all values for a column, with the box covering the interquartile
range and the whiskers extending beyond the box with a length of 1.5
times the interquartile range. Ctx: cortex.
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correlation with upregulation in the brain (supplementary fig.
S15, Supplementary Material online).

In contrast to the association of ncGOFs with upregulation
in the brain, analysis of H3K4me1 and H3K4me3 signals did not
indicate that the regulatory activity of ncGOFs is more pro-
nounced in the brain. Although H3K4me1 and H3K4me3 sig-
nals were found to be consistently elevated in ncGOFs
compared with random noncoding sequences, neural tissues
do not seem to differ from other tissues in this regard, and a
similar pattern was observed for ncLOFs (supplementary table
S6 and supplementary fig. S16, Supplementary Material online).
It is also worth noting that in the majority of tissues examined,
ncLOFs displayed a higher H3K4me1 signal than ncGOFs did.

Schrider and Kern (2015) analyzed genes containing and
neighboring GOFs using GREAT (McLean et al. 2010), a tool
which adjusts for the bias introduced by locus length (Taher

and Ovcharenko 2009), and found that this set was enriched
for GO terms related to neurotransmission, particularly
GABAergic signaling. Given that upregulation in the brain
was the expression pattern for which we observed the highest
coefficients for the ncGOF count predictor, we expected to
recover the GABA-related enrichment if the analysis were
limited to brain-upregulated genes rather than all genes. To
verify this, we restricted the genes to the set of genes that
were upregulated in the cerebral cortex compared with
non-neural tissues, and, from this set, tested for biological
processes that were overrepresented in the set of genes
neighboring ncGOFs. As a crude method of accounting for
the number of adjacent OCNSs and locus length, we ran
parallel analyses with either genes nearest to at least ten
OCNSs or genes nearest to at least ten units of the target
size predictor. Terms enriched in these sets were removed

A

B

FIG. 5. Association of human-specific LOF and GOF candidates with differential expression. (A) Probit coefficients for the noncoding subset of
human-specific LOF and GOF candidates identified by Schrider and Kern (2015). For each time period, coefficients for ncLOF and ncGOF count
predictors (log-transformed) were generated from a model with differential expression status among brain regions as the response variable. In the
bottom panel, the OCNS count and target size predictors were included. (B) Probit coefficient values of ncGOF and ncLOF predictors for inter-
tissue expression comparisons. The pairwise upregulation vectors were generated with GTEx samples, as in figure 4. (C) Increase in the probability
of upregulation in the cerebral cortex compared with another selected tissue, given the number of ncGOFs a gene neighbors. The adjusted ncGOF
coefficients were used to calculate the probabilities, with other predictors set to zero. Intervals in A and C represent 95% CIs.
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from the terms obtained for ncGOF-neighboring genes.
Finally, the analyses were run separately for each adult time
period, and a GO term was taken as a hit only if it occurred in
at least two of the three periods. Following this procedure, we
found that genes neighboring an ncGOF are enriched for pro-
cesses related to adherens junction organization (GO:0034332,
mean P value 0.001), synaptic transmission (GO:0007268,
mean P value 0.001), cell junction assembly (GO:0034329, mean
P value 0.005), and GABAergic synaptic transmission
(GO:0051932, mean P value 0.007). When the same proce-
dure was performed for ncLOFs, no significant terms were
found that occurred in at least two of the time periods.

Discussion
Theanalyseshereweremotivatedbypreviousreportsthatgenes
which are DEX among human mid-fetal brain regions are more
likely than non-DEX genes to neighbor ACNSs. After adjusting
forthenumberofadjacentOCNSs,wedonotfindevidence that
genes nearest to HACNSs have a higher tendency to be
DEX. The results from the previous studies can be ex-
plained by the following relationship: when the predictor
for being the nearest gene to OCNSs is reduced to a binary
indicator, being the nearest gene to a HACNS indicates that
a gene is also likely nearest to many OCNSs. This relation-
ship extends to ACNSs in general and provides an alterna-
tive explanation for the observation that genes nearest to a
chimpanzee- or mouse-accelerated sequence are also over-
represented among genes that are DEX within the devel-
oping and adult human brain.

The above explanation consists of two claims: 1) that pre-
vious estimates of the association between accelerated se-
quences and differential expression are largely capturing the
association with CNSs in general, and 2) that ACNSs are not
associated with differential expression. The findings here pro-
vide weaker support for the second claim than for the first
claim for the following reasons. First, the coefficient estimates
for the ACNS predictors are relatively uncertain compared
with the estimates for the OCNS predictor, with some upper
bounds extending to large positive values. Second, while we
examined samples from various time points and tissues,
ACNSs (or a particular set of ACNSs) may show an associa-
tion in some other context.

We have used multiple data sets to demonstrate that a
positive relationship exists between the number of adjacent
CNSs and a gene being DEX among brain regions. This asso-
ciation persists across time periods, and pairwise comparisons
of a subset of adult tissues suggest that the strength of the
association between the number of adjacent OCNSs and upre-
gulation in the brain is at the high end of what is observed for
pairwise tissue comparisons in general. Our results comple-
ment a recent analysis which categorized genes into one of
four bins based on the number of adjacent CNSs and found
that genes nearest to a greater number of CNSs have more
conserved expression between human and mouse (Babarinde
and Saitou 2016). Together, these findings suggest that ac-
counting for the number of CNSs that a gene neighbors
may be necessary to detect a positive correlation between

ACNSs and interspecies differential expression. If this factor
is not considered, any association between ACNSs and diver-
gent expression between species would likely be masked by
the strong association of CNSs with conserved expression.

Finally, we show that genes neighboring a recently identi-
fied set of human-specific GOF regions are overrepresented
for genes that are upregulated in the human brain compared
with non-neural tissues, an association that survives the ad-
justment for the number of adjacent OCNSs. This observa-
tion lends support to the hypothesis that this group of
elements is involved in regulating genes with functions in
the nervous system (Schrider and Kern 2015). Inter-species
gene expression data sets will be useful for determining
whether genes nearby these elements do indeed exhibit
human-specific expression patterns. More generally, the ap-
proach described here may be useful for analyzing other sets
of noncoding sequences, including conserved sequences with
different levels of phylogenetic conservation, such as
Hominidae-specific CNSs (Saber et al. 2016).

What are the main factors contributing to the positive
correlation of the CNS count predictor and differential ex-
pression within the brain? In modeling this relationship, we
have made the common simplification of assigning the near-
est gene as the target of a CNS. However, we expect the cases
in which this classification is false to weaken, rather than
strengthen, the association. Beyond the issue of identifying
the target gene or genes, the gene expression data were from
tissue samples with heterogeneous cell populations, which
undoubtedly masks some cell-type-specific differential ex-
pression. Furthermore, the results here are observational
and do not provide direct evidence that any of these CNSs
are regulating expression within the brain. In addition to po-
tential technical confounding variables, the number of adja-
cent CNSs may vary with some unspecified genomic feature
that is contributing to the signal. In fact, this may be CNSs
with different depths of conservation. Because the nearest
gene count predictor is a gene-level aggregate predictor,
counts generated from sequences that are conserved across
distantly related species may correlate well with counts that
are generated from sequences that are only conserved across
more closely related species, in which case sequences that are
not as deeply conserved may contribute to the signal.

Previous findings on CNSs, however, provide support for a
regulatory role. Although studies have used various methods,
groups of species, and thresholds to identify CNSs, the dif-
ferent sets likely have a large degree of overlap in terms of
functional characteristics. For example, ultraconserved ele-
ments do not appear functionally distinct from the larger
blocks of CNSs within which they often reside (Visel et al.
2008). In general, genes neighboring CNSs, especially clusters
of CNSs, show enrichment for functions related to develop-
ment and transcriptional regulation (Bejerano et al. 2004;
Sandelin et al. 2004; Woolfe et al. 2004; Plessy et al. 2005;
Pennacchio et al. 2006; Babarinde and Saitou 2013), although
at least part of the development-related enrichment is ex-
pected due to a sampling bias related to locus length (Taher
and Ovcharenko 2009; McLean et al. 2010). Many studies
have provided functional evidence for the enhancer activity
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of specific CNSs by testing them with reporter gene assays in
zebrafish (e.g., Woolfe et al. 2004; Blader et al. 2004) or mice
(e.g., Pennacchio et al. 2006; Zerucha et al. 2000; Nobrega et al.
2003). A large proportion of characterized CNSs appear to
regulate expression in the nervous system (Pennacchio et al.
2006), including an element critical for controlling the identity
and connectivity of corticospinal neurons (Shim et al. 2012).
The density of nearby CNSs seems to be a good indicator of
whether a gene is developmentally regulated (Prabhakar et al.
2006b), as well as whether a gene is a target rather than
bystander gene (Kikuta et al. 2007). Based on gene expression
in human tissue samples, a bias for expression in the nervous
system has been reported for genes neighboring CNSs
(Babarinde and Saitou 2016), including a subset of paralogous
CNSs (Matsunami and Saitou 2013) and ultraconserved ele-
ments (Ovcharenko 2008). Beyond correlating differential
gene expression with adjacent CNSs, ChIP-seq experiments
have enabled a more direct investigation of the interplay be-
tween sequence conservation and putative regulatory ele-
ments that are active in a tissue of interest (Nord et al.
2013; Wenger et al. 2013; Babarinde and Saitou 2016; Emera
et al. 2016).

TheinterpretationoffindingsonCNSsdependsontheques-
tion of what underlies their conservation over large evolution-
arytimescales(Boffelli etal.2004;Harmstonetal.2013). Insome
cases, conservation at the sequence level seems decoupled
fromconservedregulatoryfunction.Thereareseveralexamples
of CNSs that possess different functional activity in different
species (Blader et al. 2004; Nelson and Wardle 2013). CNSs also
may acquire additional functions (Hiller et al. 2012; Wenger
et al. 2013), perhaps influenced by flanking, non-conserved
sequences (McEwen et al. 2009; Goode et al. 2011).
Moreover,ahighlevelofconservationfornoncodingregulatory
elements is unexpected given the degeneracy of transcription
factor-binding sites and flexibility of inter-module spacing,
which can lead to conserved regulatory function despite a
lack of sequence conservation (Fisher et al. 2006; Hare et al.
2008; Kalay and Wittkopp 2010; Villar et al. 2014). Several po-
tential mechanisms have been proposed to explain the ob-
served degree of sequence conservation, including a dense
overlap of transcription factor-binding sites (Poulin et al.
2005), the importance of these sequences in early developmen-
tal stages (Nelson and Wardle 2013), their multi-functional
nature (McEwen et al. 2009), and their interaction with each
other (Robyr et al. 2011; Dimitrieva and Bucher 2012), but it is
not clear that any of these are sufficient to explain why CNSs
exhibit such a high level of conservation (Harmston et al. 2013).

Regardless of the factors that are responsible for the con-
servation of CNSs or for the positive relationship between
CNSs and differential expression, our results demonstrate
the importance of considering the number of adjacent
CNSs when quantifying the relationship between noncoding
features and differential expression. More generally, covariates
that incorporate information about the number of CNSs sur-
rounding a gene may deserve greater attention when study-
ing gene-level variables other than differential expression,
such as the classification of genes as associated with a partic-
ular biological process or disease.

Materials and Methods
Code and build scripts for all analyses, including the down-
loading and preparation of the data sets, are available in a Git
repository at https://gitlab.com/kmeyer/cns-count-analyses.
In addition to specific tools referenced below, these analyses
relied on the R language (R Core Team 2016), Snakemake
(Köster and Rahmann 2012), and many components of the
SciPy stack, including Matplotlib (Hunter 2007).

Gene Expression Data
Gene expression levels were obtained from a microarray study
of brain regions throughout human development (supple
mentary tables S1 and S2, Supplementary Material online)
(Kang et al. 2011). The total data set consisted of 1,331 sam-
ples. Genes were filtered to protein-coding genes known to
Gencode 19. Normalized gene expression values were also
downloaded for the Johnson et al. (2009) and Lambert
et al. (2011) studies.

RNA-seq data for tissues from the GTEx project (The GTEx
Consortium 2015) were downloaded from the consortium’s
website (http://www.gtexportal.org; last accessed October 23,
2015). Analyses considered samples from 11 tissues: cerebel-
lum, cerebral cortex, heart (left ventricle), kidney (cortex),
liver, lung, skeletal muscle, ovary, pancreas, spleen, and testis
samples. For comparison, each sample was classified as be-
longing to one of the three adult stages from the Kang et al.
data set (supplementary table S2, Supplementary Material
online), and the genes analyzed were restricted to those pre-
sent in the microarray used in the Kang et al. study.

Identification of Candidate Regulatory Element Sets
The locations of HACNSs, CACNSs, and MACNSs were re-
trieved from the supporting online material of the
Prabhakar et al. (2006a) study. The set of CNSs was generated
according to the reported filtering criteria of the original anal-
ysis. Specifically, an element in the eight-way vertebrate
phastCons data set (retrieved from http://genome.ucsc.edu;
lastaccessedApril6,2015)wasretainedif ithadaconservation
score � 400 and if it did not overlap with human mRNAs,
human spliced ESTs, retroposed genes, or duplicated blocks.
Note that the CNS set in the original analysis was generated
with additional filtering steps based on non-human con-
straint and statistical power. We used the set of HARs gener-
ated by Lindblad-Toh et al. (2011) and filtered the coordinates
to those that did not overlap with exons. All coordinates were
converted to hg19 coordinates using UCSC Genome
Browser’s LiftOver executable.

Human-specific LOF and GOF sets (Schrider and Kern
2015) were downloaded from the popCons data repository
(http://www.github/kern-lab/popCons; last accessed April
14, 2016). Coordinates that overlapped with exons were re-
moved. An OCNS set was generated that did not contain
any LOF or GOF coordinates. A second set of OCNSs was
also generated from the 100-way vertebrate phastCons ele-
ments (retrieved from http://genome.ucsc.edu; last accessed
June 17, 2016), as phastCons elements from this species set,
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rather than the 8-way set, were used in the original filtering
of LOF and GOF candidates.

Determination of the Nearest Genes to CNSs
To find the nearest gene for each element, the coordinates
were intersected with the longest transcripts of protein-
coding genes from Gencode 19 using BEDTools (Quinlan
and Hall 2010). If an element’s coordinates were found within
the start and end coordinates of a transcript, the correspond-
ing gene was counted as a nearest gene. Otherwise, the gene
with the minimum distance to an element, based on either
bound of its largest transcript, was taken as the nearest gene.
These nearest gene assignments were then used to tally the
total number of times that each gene was the nearest gene to
any element from a given set.

Classification of Genes as DEX
Before classifying genes in the Kang et al. data set as DEX,
genes were filtered to those that had an average detection
above background P value across all samples of 0.01 or lower.
After filtering, two different linear models were constructed
using the limma package (Smyth 2004): one where the neo-
cortical areas were taken as a single region, resulting in 6 brain
regions, and another where only the 11 neocortical areas were
considered. With both these model structures, each brain
region or area was nested within its respective time period.
These models also included covariates for the sample individ-
ual, treated as a random effect, and the sample RNA integrity
number (RIN). Pairwise contrasts were formed for all region
factors within that period. To be classified as DEX among
brain regions, a gene was required to have a log2-fold change
above 1, tested in limma using the TREAT method (McCarthy
and Smyth 2009), and an FDR-adjusted P value at or below
0.01 for at least one contrast. A similar procedure was used to
classify genes in the Johnson et al. data set as DEX between
regions, but all samples were taken as belonging to a single time
period. For the Lambert et al. data set, which consisted of two
brain regions from two individuals, region and individual were
used as covariates, with the latter treated as a random effect.

As an alternative method, an ANOVA model was con-
structed that considered period 6 samples and included a
factor for either 6 brain regions or 11 neocortical areas,
with sample RIN as a covariate. Following the criteria of
Kang et al. (2011), a gene was called DEX if it had an FDR-
adjusted P value below 0.01, at least one sample with a log2-
transformed signal intensity above 6, and an average log2-fold
change above 1 between at least two regions.

To classify genes as DEX between tissues in the GTEx data
set, genes were first filtered to include only those that had a
minimum count of ten in at least three samples. The expres-
sion counts were transformed with the voom package (Law
et al. 2014) for modeling with limma. The sequencing batch,
individual, and RIN were included as covariates, with the in-
dividual taken as a random effect. Pairwise contrasts were
made between each tissue.

Esthe Probability of Regional Differential Expression
Probit regression was used to model the relationship between
the number of elements a gene neighbors and differential

expression. Let y be an N-length binary vector in which yi

indicates the differential expression status of the ith gene. The
value of the latent variable z determines the value of y:

yi ¼
1 if zi > 0

0 otherwise
for i ¼ 1; . . . ;N:

(

z follows a normal distribution with a standard deviation of
one,

zi � Nðb0 þ Xib; 1Þ;

where X is an N� K predictor matrix that includes a column
for each element type (e.g., OCNS, HACNS, CACNS, and
MACNS) indicating the number of elements to which a
gene was the nearest. For each gene i and CNS predictor k,
the count predictor was transformed as lnð1þ XikÞ. This
transformation compresses the large upper range of the
OCNS counts and reduced the correlation between the
binned residual value, calculated with R package arm
(Gelman and Su 2014), and the OCNS predictor value (sup
plementary fig. S17, Supplementary Material online). We also
examined several other transformations of CNS predictors
(supplementary table S4, Supplementary Material online).

The prior for the intercept term as well as all predictor
coefficients were modeled as normally distributed and cen-
tered at zero with a standard deviation of three. The model
parameters were estimated with Markov chain Monte Carlo
(MCMC) using the Stan modeling language (Stan
Development Team 2015). The autocorrelation of parameter
values across iterations, as well as the R̂ statistic across several
chains, were examined for each run to verify that there was no
indication of poor mixing. In addition to estimating param-
eters of the above model with MCMC, the parameters were
estimated with maximal likelihood where no prior informa-
tion was encoded. Both methods gave similar coefficient es-
timates (supplementary fig. S18, Supplementary Material
online), suggesting that the results are not sensitive to the
chosen priors.

The probability of differential expression was generated
using the posterior samples of the regression coefficients.
The linear predictor

gOCNS ¼ b0 þ xbOCNS

was calculated for different values of x that were evenly
spaced from zero to the highest observed OCNS count pre-
dictor value where all ACNS count predictors were zero.
gOCNS was transformed to probability space as
pOCNS ¼ UðgOCNSÞ, where U is the normal cumulative dis-
tribution function. The marginal probability difference for a
given value of x was then calculated as UðgOCNSÞ � Uðb0Þ.
Marginal probability differences reported for other predictors
were calculated similarly.

As an extension of the GLM described earlier, a generalized
additive model (GAM) was also fit using the R package mgcv
(Wood 2011). The GAM yielded results that were consistent
with the GLM findings (supplementary fig. S19,
Supplementary Material online). GAM estimates were also
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used to check that the relationship between the OCNS pre-
dictor and differential expression was not primarily driven by
the expression level of a gene. When the median expression of
each gene (standardized to be zero-centered and have a stan-
dard deviation of one) was included in the GAM, the esti-
mated relationship between the OCNS predictor and
differential expression remained similar (supplementary fig.
S20, Supplementary Material online).

Adjusting for Gene Target Size
We used one of two predictors to adjust for target size var-
iation across genes. The first method was to include the locus
length, as defined by Taher and Ovcharenko (2009), as a
predictor. After restricting the genes to non-overlapping
genes, the locus length for a gene was calculated by extending
the bounds of each gene halfway across the intergenic space,
where intergenic space was defined as the bases between the
longest transcripts of neighboring genes. The log-transformed
number of base pairs with these extended bounds was used
as the predictor.

The second method was to include a predictor that was
generated from mapping random noncoding sequences. We
selected a list of random coordinates in the genome so that,
after filtering on the same set of features used to generate
CNSs, the list was of comparable size. With these elements,
nearest gene counts were tallied using the method described
earlier. This process was repeated 15 times, resulting in 15
vectors of nearest gene counts. The predictor was formed by
taking the median of log-transformed counts for each gene.
When reporting the coefficient of this predictor, it was
unstandardized so that the value was comparable to
coefficients for the OCNS predictor. Otherwise, the predictor
was transformed to be centered and have a standard
deviation of one.

Estimating the Probability of Upregulation for Pairwise
Tissue Comparisons
For pairwise tissue comparisons, a single-response probit re-
gression was set up with similar predictors as described earlier.
A response variable was generated for each comparison that
indicated whether a gene was upregulated in one tissue com-
pared with another. A separate regression was run for each
response, with coefficients estimated by maximum likelihood.

ChIP-Seq Data Sets
H3K4me1 and H3K4me3 ChIP-seq data for 26 tissues were
downloaded from the NIH Roadmap Epigenomics Mapping
Consortium’s web portal (http://egg2.wustl.edu/roadmap;
last accessed November 17, 2016). Using the consolidated
epigenomes, the average signal fold-changes for coordinates
were calculated with UCSC Genome Browser’s
bigWigAverageOverBed executable.

GO Analyses of ncGOFs
GO analyses were performed with topGO (Alexa et al. 2006).
The statistical test and algorithm were left at their default
values of Fisher’s exact test and “weight01”, respectively, and
the minimum number of nodes was set to ten. Terms with a

P value below 0.01 were considered enriched. The P values for
each GO term were not adjusted for multiple testing because
the algorithm takes into account the graph structure, result-
ing in P value calculations that are not independent across
terms (Alexa et al. 2006).

The gene universe was restricted to genes that were called
as upregulated in the cerebral cortex in pairwise comparisons
with non-neural GTEx tissues. Enrichment analyses were per-
formed independently for three groups of GTEx samples that
were created by assigning samples to one of the three adult
periods of the Kang et al. data set. The same cerebral cortex-
upregulated genes were tested with respect to one of three
classifications: whether each gene neighbors 1) at least one
ncGOF, 2) at least ten OCNSs, or 3) at least ten elements of
the target size predictor. Results of these three sets were in-
tersected for each time period to identify terms that were
enriched in ncGOF-neighboring genes but not in genes from
the other two categories.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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