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In most skeletal muscles, force is generated by a combination of motor unit (MU)
recruitment and increases in the firing rate of previously active MUs. Two contrasting
patterns of firing rate organization have been reported. In the first pattern, the earliest
recruited MUs reach the highest firing rates as force is increased, and later recruited
MUs fire at lower rates. When firing rate of multiple MUs are superimposed, these rate
trajectories form a concentric layered profile termed “onion skin.” In the second pattern,
called “reverse onion skin,” later recruited MUs reach higher firing rates, and crossing
of firing rate trajectories for recorded MUs is common (although such trajectories are
assembled routinely from different trials). Our present study examined the firing rate
organization of concurrently active MUs of the first dorsal interosseous muscle during
serial, step-like increases in isometric abduction forces. We used a surface sensor array
coupled with MU discrimination algorithms to characterize MU firing patterns. Our objective
was to determine whether “onion skin” profiles are contingent upon the force trajectory of
the motor task, examined here using step-like increases of force output, and also whether
they are manifested at different force levels. Our results revealed that the overall “onion
skin” firing rate profile was retained as the force level increased with each force step up
to 15% MVC. However, the distribution of firing rates across MUs was compressed with
increasing force, and overlapping firing rate of units were observed.This rate compression
was largely due to rate saturation of the relatively high frequency discharging MUs. Our
results reflect flexible firing patterns across MUs at different levels of excitation drive. It is
also evident that many units did not follow all the step increases consistently. This failure
to track firing rate increases at higher forces could be due to an intrinsically mediated
saturation of firing rates for the low threshold MUs, or potentially to some form of inhibitory
interactions between active MUs as the level of excitation of the MU pool is progressively
increased.
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INTRODUCTION
Changes of voluntary muscle force are realized by adjustments of
both motor unit (MU) recruitment and MU firing rates for units
belonging to a given muscle. MU recruitment has been shown
to be organized in an orderly manner, in that smaller MUs are
recruited earlier and larger MUs are recruited later with increas-
ing excitation. This recruitment rank order is widely known as
the “size principle” (Henneman, 1957). Although there are also
systematic MU firing rate adjustments in relation to the thresh-
old of recruitment, the specific patterns of firing rate change
with increasing voluntary command remain controversial, largely
because of conflicting experimental observations.

One potential firing pattern is that earlier recruited units tend
to fire slowly, while later recruited MUs fire at higher rates. This
form of firing rate organization (termed here the “reverse onion
skin” property) shows intersecting rate trajectories with increasing
force, and has been reported in both cat (Kernell, 1965; Burke,
1968) and human muscles (Gydikov and Kosarov, 1974; Grimby
et al., 1979; Moritz et al., 2005; Oya et al., 2009). This organization

is intrinsically appealing because of the hypothetical match of MU
firing rate profiles with MU twitch properties. Specifically, earlier
recruited MUs tend to have smaller-sized but more prolonged
twitches (Milner-Brown et al., 1973), meaning that firing rates can
be slower while still maintaining partial fusion of MU forces during
repetitive activation.

Conversely, the twitch force profile for later recruited and larger
MUs tends to have a shorter duration, with a shorter rise time and
a faster decay, which would require a higher MU firing rate for
effective fusion of force twitches. Thus in this reverse onion skin
scheme, the firing rates would (in theory) be well-matched to
the contractile properties of the muscle fibers innervated by the
motoneuron, and force output would be maximized for a given
set of activated MUs. This strategy would also minimize the fluc-
tuations of muscle force especially at high force levels (Hu et al.,
2014b).

The assumption here is that the reverse onion skin pattern is
a design feature of the pool that maximizes efficiency and force
production, based on the assumed recruitment order of MUs.
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The firing rates of different MUs would then be expected to be a
function solely of the absolute recruitment threshold of the MUs,
regardless of the form of force trajectory. However, the firing rate
data in those studies reporting this reverse onion-skin pattern were
obtained using intramuscular recordings, which are highly selec-
tive, yielding few MUs in each trial. As a consequence, earlier
studies had to pool results from multiple recording sessions col-
lected at different force levels and even from multiple subjects.
This is potentially problematic when making inferences about the
MU pool properties.

In contrast, the other firing rate pattern that has been reported
is that later recruited MUs tend to fire at lower rates than do ear-
lier recruited MUs, generating a layering effect of the firing rate
trajectories over time (termed the “onion skin” property). This
scheme has also been reported in both cat (Hoffer et al., 1987)
and human muscles (Tanji and Kato, 1973; Freund et al., 1975;
De Luca et al., 1982; De Luca and Hostage, 2010) during volun-
tary contractions. The issue regarding this paradigm is that the
later recruited units potentially discharge at an unfused frequency,
potentially producing force in an inefficient and fluctuating fash-
ion. One functional benefit regarding this firing organization is
that later recruited MUs are more fatigable (Burke, 1967); thus
a lower firing rate for these larger MUs could limit fatigue and
help maintain a sustained muscle contraction, and could also help
fine control of muscle force. Additionally, the lower firing rates in
later recruited larger MUs could allow for greater force reserves
when needed (De Luca and Hostage, 2010; De Luca and Contessa,
2012).

A majority of the studies that have shown the “onion skin” fir-
ing pattern used a ramp-hold task, in which voluntary force is
increased slowly followed by a steady hold of the force. However,
it is possible that the observed lower firing rates of the higher
threshold units recruited close to the end of the ramp force were
due to a smaller effective excitation drive, since motor commands
necessarily should diminish before the required force transition
can take place. However, with further increases of excitatory drive,
the initially plateaued firing rate of the later recruited MUs might
well increase to a higher rate and potentially surpass the firing
rates of the earlier recruited units. In this case, the onion skin
pattern is potentially a manifestation of the drive to the motoneu-
ron pool during the single ramp-hold task, and not necessarily
a predetermined firing paradigm based on the properties of the
motoneuron pool, although the size principle would still deter-
mine the order and thus the relative drive to each motoneuron in
the pool.

To test this hypothesis, we examined the firing rate organiza-
tion of concurrently active MUs of the first dorsal interosseous
(FDI) muscle during serial, step-like increases of isometric forces.
With sequential increases of force levels (excitation drive), we were
able to follow the firing rate patterns of the same MUs and quan-
tify the consistency of specific firing patterns at different force
levels.

To discriminate MUs, we used a surface electromyogram
(sEMG) sensor array coupled with a high-yield MU decomposi-
tion algorithm to characterize MU firing patterns. We then relate
these firing patterns to recruitment threshold for each unit. The
accuracy of the decomposition results for this approach has been

assessed previously, and is described in more detail in the Materials
and Methods section.

The results reveal that the firing rates of earlier recruited MUs
indeed increased further with force level or excitatory drive. How-
ever, the overall “onion skin” profile was retained as the force level
increased in sequential steps. We also found that the layering pat-
tern was less distinct as muscle force increased, due to a saturation
of firing rate of the earlier recruited MUs. Our findings indi-
cate that the “onion skin” profile was retained during different
types of isometric contractions including incremental step-like
force increases addressed in the current study, as well as for trape-
zoidal force trajectories examined in earlier studies. The different
patterns of firing rate modulation across MUs reflect a flexible
firing organization with an increase of the excitation drive to
the pool.

MATERIALS AND METHODS
PARTICIPANTS
Six right-dominant neurologically intact individuals (three male,
three female) volunteered to participate in this study. All par-
ticipants gave informed consent via protocols approved by the
Institutional Review Board under the Office for the Protection of
Human Subjects at Northwestern University.

EXPERIMENTAL SETUP
Participants were seated upright in a Biodex chair with their upper
arm comfortably resting on a support. To standardize hand posi-
tion and to minimize contributions of unrecorded muscles, the
forearm was immobilized with a cast and placed in a ring mount
interface attached to a forearm rest. The forearm was placed in
full pronation and the wrist was held neutral with respect to flex-
ion/extension. The little, ring, and middle fingers were extended
away from the index finger and strapped to the support surface.
The thumb was secured at an approximately 60 degree angle to
the index finger. The index finger was placed in line with the
second metacarpal and the long axis of the forearm creating a 0
degree or neutral metacarpophalangial joint angle (Figure 1A).
The proximal phalanx of the index finger was fixed to a ring–
mount interface attached to a six degrees-of-freedom load cell
(ATI, Inc.). The recorded forces from the abduction-adduction
direction were low pass filtered (cutoff = 200 Hz) and digitized
at a sampling frequency of 2 kHz. The subjects were instructed to
produce required abduction forces while minimizing the off-axis
forces.

EMG recordings
The subject’s skin was sterilized with alcohol pads to ensure proper
electric contact and low baseline noise. sEMG was recorded from
the FDI using a surface sensor array (Delsys, Inc.) as shown in
Figure 1B that consists of five cylindrical probes (0.5 mm diam-
eter). The probes are located at the corners and at the center of a
5 × 5 mm square. Pairwise differentiation of the five electrodes
yields four channels of sEMG signals (Figure 1C). The sEMG sen-
sor and a reference electrode were connected to four channels of a
Delsys Bagnoli sEMG system. The signals were sampled at 20 kHz
and were amplified and filtered (Butterworth) with a bandwidth
of 20 Hz to 2 kHz.
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FIGURE 1 | Experimental setup, force, and EMG signals.

(A) Experimental setup with surface EMG and force signal recordings.
(B) The five-pin surface EMG sensor array. (C) Force trajectory with three
force steps, and four channels of surface EMG signals.

PROCEDURES
Prior to the main testing session, subjects were asked to perform
maximal voluntary contractions (MVCs) for 3 s. This maximum
contraction was repeated three times in total, with 60 s rest between
trials. The largest value of the three trials was designated as the
MVC. The rest of the session consisted of a series of isometric vol-
untary contractions during which the subject was asked to follow
step-like force trajectories displayed on a computer screen. The
force output in one exemplar trial is shown in Figure 1C. The
force trajectory contains four segments: a 3-s quiescent period for
baseline noise calculation, a 5% MVC force step (a 0.5-s up-ramp
increased at 10% MVC/s, a 9.5-s constant force at 5% MVC), a 10%
MVC step (a 0.5-s up-ramp increased at a rate of 10% MVC/s, a
9.5-s constant force at 10% MVC), and a 15% MVC step (a 0.5-s
up-ramp increased at 10% MVC/s, a 9.5-s constant force at 15%
MVC). Given that the decomposition algorithm is template based
and the algorithm works the best in a trapezoid force profile where
the action potential template shape is relatively stable. To comply
with the algorithm and ensure reliable decomposition results, we
limited the force at low levels, such that the force increment at
each step is relatively small (i.e., 5% MVC increase per step) and
the template shape change is minimal, and meanwhile, the force
increment is still large enough to induce measurable changes in fir-
ing rate and recruitment of MUs. To ensure that the subjects could
follow the force target trajectory closely, they practiced a minimum
of five trials of the force steps before the main experiment. For the
main part of the experiment, the subjects performed 30 trials with
a 60-s rest period between repetitions in order to minimize fatigue.

DATA ANALYSIS
Data processing
The sEMG and force trials were selected for further analysis based
on the following criteria:

(a) there was no sudden change (i.e., larger than 20% MVC/s) in
the up-ramp force,

(b) the force variability during each steady step was low
(within ± 2 standard deviation of background force level),
and

(c) the signal to noise ratio >5. The signal to noise ratio was
calculated based on the peak–peak amplitude of the baseline
noise and peak–peak amplitude of the EMG signal at steady
state contractions.

These criteria were based on the suggestions for robust MU
discrimination using the dEMG decomposition system (De Luca
et al., 2006; Nawab et al., 2010). For each subject, based on the
preceding criteria, approximately 10–15 trials were selected for
further analysis. The dEMG decomposition algorithm was used to
extract single MUs from the EMG data.

For each identified MU, the output from this algorithm
consisted of the firing times and four normalized action poten-
tial templates from each of the four recorded sEMG channels.
Our confidence in this approach is based on prior observations
affirming the decomposition accuracy, which has been validated
using simulation approaches (Hu et al., 2013a) and a two-source
cross-validation method (Hu et al., 2014a). Specifically, in the
simulation, we injected random errors to the decomposed spike
timing and randomly shuffled the decomposed spike trains as well
as action potential templates through a surrogate analysis. We
found that the perturbed decomposition did not resemble either
the action potential templates or the original EMG, suggesting
that the original decomposition results were reliable. In the two-
source validation, simultaneous intramuscular and surface EMG
signals were recorded, and both signals were decomposed inde-
pendently using separate decomposition algorithms. We found
that the decomposition accuracy was 95% on average, based on
approximately 120 commonly identified MU pairs from the two
types of recordings.

The timing accuracy of the identified MU action potential
train was assessed using a spike triggered averaging technique (Hu
et al., 2013b), and the validity of the spike triggered averaging has
been previously assessed using simulated sEMG signals (Hu et al.,
2013c). Specifically, the spike triggered averaging was performed
on each of the four channels of the sEMG signals, resulting in
four action potential estimates for each MU. The identified firing
times for each MU were then used as triggering events for the
spike triggered averaging calculation. To ensure reliable estimate
of firing rate, we then performed two separate tests to determine
which MUs would be retained for further analysis. These tests were
designed to assess the stability of the waveform over the trial dura-
tion and the degree of match with the decomposition estimated
templates.

MU recruitment and firing rate estimation
To estimate the recruitment threshold, the threshold force of the
selected MU was calculated from the averaged isometric force data

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 721 | 3

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Hu et al. Motor unit control in step-force generation

FIGURE 2 | Exemplar firing rate and force output profiles. (A) Each thin
trace represents the firing rate over time of one exemplar trial. Different
colors represent different motor units (MU). The mean firing rate (FR) of a
4-s window as marked by the dashed lines at each force step was
calculated as the mean firing rate for each step. The thick black trace
represents the force output. PPS represents pulses per second. (B) Firing
rate and force traces of a second exemplar trial. Additional MUs were also
recruited with step increase of force.

over an interval (−50 to 150 ms relative to the onset of the first
firing event with an inter-spike interval smaller than 300 ms, which
was the minimal discharge rate at recruitment). An averaged force
was calculated to reduce the influence of force fluctuations reg-
istered at the load cell. The window was asymmetric relative to
the firing time because of the electromechanical delay (ranging
from 30 to 100 ms) between the occurrence of an action poten-
tial and a registered force increment (Cavanagh and Komi, 1979;
Ce et al., 2013a,b). The mean firing rate was calculated using a
2 s moving window with a step of 0.5 s. The firing rate profiles
of individual MUs with overlaid force output from two exem-
plar trials are shown in Figure 2. The mean firing rate (FR1,
FR2, and FR3) for each force step was then calculated from a 4-s
window as marked by the dashed lines. The middle 4-s window
at each step was used because the force was relatively constant
at the steady state muscle contraction and the firing rate was
relatively stable. In order to track the change of firing rate organi-
zation, only the MUs recruited during the first step was used for
analysis.

STATISTICAL ANALYSIS
The organization of MU firing properties as a function of the
recruitment threshold was examined at each step increase of force
output. A least-squared linear regression between the mean firing
rate and the threshold force was performed on the concurrently
active MUs at each step. The goodness of fit and the regres-
sion slope were compared between the three steps. Given that
the regression slope varied considerably between subjects due
to different MVC values across subjects, the change of regres-
sion slope was compared; specifically, the slope at the first step
was used as a reference, and the relative difference between the

step 1 and step 2 as well as between step 1 and step 3 were
calculated:

Change of slope = Slopei − Slope1

Slope1
× 100% (1)

where Slopei represents the regression slope at step 2 or step 3, and
Slope1 represents the regression slope at step 1. A negative change
of slope value means that the regression at step 2 or 3 was shallower
than the reference step 1, given that Slope1 was negative as shown
in the Results section.

The mean firing rate and the coefficient of variation (CV; stan-
dard deviation normalized by the mean) of firing rate across the
concurrently active MUs were also compared cross the three force
steps. A one-way repeated measures analysis of variance (ANOVA)
was used to test whether the goodness of fit, the change of regres-
sion slope, the mean firing rate, and the CV of firing rate differs
between force steps. When necessary, post hoc pairwise multi-
ple comparisons with Bonferroni’s correction method were used.
P < 0.05 was considered as statistical significance.

RESULTS
We recorded surface EMG from the FDI using the array sensor in
six intact right-handed subjects. Each trial consisted of a series of
step-like increases in voluntary isometric abduction force. Each
step sequence provided a substantial body of data, generating typ-
ically 10–20 MU recordings that were followed successfully over
the step sequence. In total we were able to track several hundreds
of units over six subjects.

The firing rate profiles of individual MUs from two exemplar
trials are shown in Figure 2. Different MUs are represented in
different colors, and the force trajectory is also plotted in thick
lines. At force step 1, the earlier recruited MU discharge faster
and the later recruited discharged slower, forming an “onion skin”
pattern. As force increased to higher levels, the initially plateau
in firing rate was interrupted, and firing rates increased fur-
ther. Furthermore, this rate increment was more evident in the
later recruited units (e.g., the yellow traces in both panels). As
a result, the range of firing rate across units was compressed.
Meanwhile, additional MUs were also recruited, and the firing
rate of these newly recruited MUs also followed the force steps
more closely than the earlier recruited units at step 1. Across
the three force steps, the overall “onion skin” layering pattern
was retained, although occasional firing rate crossovers were
observed.

FIRING RATE IN RELATION TO THRESHOLD FORCE
The firing rate profiles in relation to threshold force at each force
step are shown in Figure 3 for one representative subject. Each
symbol represents one MU and the symbols with the same color
represent concurrently active MUs from a single trial. When the
force was increased voluntarily in sequential steps, the overall firing
rate of the recorded MUs increased accordingly. This increment
of firing rate was especially evident in later recruited MUs with
initially low firing rate. An inverse relation between firing rate and
threshold force (i.e., an “onion skin” pattern) was observed con-
sistently across the three force steps. However, as force increased,
the rate increments narrowed, and as a result, the regression slope
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FIGURE 3 | Mean firing rate as a function of threshold force at each step from one exemplar subject. (A) Mean firing rate at step 1. Each symbol
represents one motor unit, and different colors represent different trials. The linear regression line was also plotted for each trial. (B) Mean firing rate at step 2.
(C) Mean firing rate at step 3.

(between firing rate and threshold force) became shallower, largely
due to increased firing rates of the later recruited MUs.

The goodness of fit (R2) plots across the three force steps are
summarized in Figure 4A. The ANOVA results revealed a signifi-
cant reduction of R2 with an increment of force steps (p < 0.05)
across the whole data set. The R2 was 0.68 ± 0.03 in step 1, and
reduce to 0.55 ± 0.06 in step 2 and 0.41 ± 0.05 in step 3. The reduc-
tion of R2 was significant from step 1 to step 2 and 3 (p < 0.05)
and was also significant from step 2 to step 3 (p < 0.05). Regard-
ing the change of slope (Figure 4B), a negative value represents a
shallower slope than the reference step 1 [calculated from Equa-
tion (1)]. The value at step 1 was strictly zero. The results showed

FIGURE 4 | (A) Goodness of fit (R2) at each step of all the subjects. Error
bars represent standard errors across subjects. (B) Change of regression
slope in reference to the first step. The values at step 1 are strictly zero. A
negative value here means a shallower slope in step 2 and 3 than in step 1.

that the regression slope was significantly shallower in step 2 and
3 compared with step 1 (p < 0.05). The regression slope in step 3
was also significantly shallower than in step 2 (p < 0.05).

MEAN FIRING RATE AND CV OF FIRING RATE ACROSS MUs
The mean firing rate of the MUs at the three force steps from one
exemplar contraction is shown in Figure 5A. Each dot represents
one MU and the same MU across the three steps is connected
by solid lines. The red lines represent the group average from
one representative trial. The firing rate increased from step 1 to
step 2 consistently across the identified MUs; however, such a rate
increment was not evident in most of the MUs with initially high
firing rate in the step 1 and 2, and the degree of rate increment in
the initially low firing rate MUs was also reduced.

To quantify the compressed range of firing rate with increas-
ing force during a contraction, the CV of mean firing rate across
the identified MUs in a single contraction was calculated at each
force step (Figure 5B). One dot represents the CV from one trial,
and the CV from the same trial is connected by solid lines. The
red lines represent the group average of one particular subject. As
shown in Figure 5B, the CV reduced substantially with an incre-
ment of force level, especially from step 1 to step 2. However, the
CV reduction was not evident from step 2 to step 3 in certain
trials.

The averaged firing rate and CV across subjects are summarized
in Figure 6. The ANOVA results revealed that there was signifi-
cant increase of firing rate in step 2 (15.19 ± 1.24 pps) and step
3 (16.05 ± 1.23 pps) compared with step 1 (12.69 ± 1.22 pps;
p < 0.05); and the firing rates in step 2 and 3 were not signifi-
cantly different (p > 0.05). Regarding the CV of firing rate, the CV
reduced from 0.26 ± 0.02 in step 1 to 0.18 ± 0.01 in step 2 and
0.14 ± 0.01 in step 3. The reduction of CV was significant from
step 1 to step 2 and 3 (p < 0.05) as well as from step 2 to step 3
(p < 0.05).
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FIGURE 5 | Firing rate and coefficient of variation (CV) of firing rate at

each step. (A) Mean firing rate at each step of individual motor units in one
exemplar trial. The group average is shown as red square. (B) CV of firing
rate at each step of individual trials from one exemplar subject. One dot
represents one trial and the red square represents the group average.

DISCUSSION
This study examined the firing rate organization in relation to
recruitment threshold of concurrently active MUs of the FDI
muscle during step-like increases of isometric force. We used a
sEMG sensor array together with a high-yield MU decomposi-
tion algorithm to characterize MU firing patterns in relation to
recruitment threshold. The results showed that the “onion skin”
firing pattern was retained as the force level was increased in
sequential steps and no systematic firing rate crossovers were
evident. We did find that the initial plateau in firing rate can
be exceeded with these serial steps, and that firing rates of the
units can be driven higher with increase of excitatory drive.
The further increase of the initial firing rate plateau suggests
that the observed onion skin is, at least in part, a consequence
of the variation in effective drive to the MUs as a function of
motoneuron recruitment threshold. Namely, the earlier recruited
MUs received higher effective drive than the later recruited units
leading to a higher firing rate observed in the lower threshold
units.

FIGURE 6 | Mean firing rate and CV of firing rate at each step from all

the subjects. (A) Mean firing rate at each step of all the subjects. Error
bars represent standard errors across subjects. (B) CV of firing rate of all
the subjects.

We also found the “onion skin” layering pattern was less promi-
nent (i.e., a worse goodness of fit and shallower regression slope) as
muscle force increased. The weaker “onion skin” profiles at higher
forces was largely due to a compressed range of firing rate in con-
currently active MUs (i.e., a reduced CV of firing rate across MUs,
due to an increase of firing rate of the later recruited MUs and a
minimal increase of firing rate of the earlier recruited MUs). The
sequential force steps allowed us to track the firing organization
in the same group of active units at different force levels. With
an increase of the excitatory drive, the initial plateau in firing rate
indeed increased to higher levels. Although the rate increment of
the later recruited units was larger, the increment was not large
enough to cause systematic crossing of rate trajectories on our
rate-time plots.

Given that the force levels tested were up to 15% MVC in the
current study (due to the recommended force profiles as described
in the Materials and Methods section), more rate crossovers might
well be expected at higher force levels, if the excitatory drive is
increased to even higher levels. However, we believe this outcome
is relatively unlikely, because earlier studies have tested force levels
close to maximum effort (De Luca and Hostage, 2010), and a
strong “onion skin” firing pattern was still evident.

Two different mechanisms might lead to such a lack of system-
atic crossovers. First, additional MUs are being recruited during
the force ramp, and these newly recruited MUs typically discharge
at a low rate, therefore, maintaining the overall layering pattern.
Second, as the force ramp is further increased, the later recruited
units might eventually plateau at their peak firing rates. In order
to confirm the second mechanism, it will be necessary to use a dif-
ferent MU recording technique that is capable of tracking firings
from a MU pool over a larger force range than the one currently
used in our study.

“ONION SKIN” vs. “REVERSE ONION SKIN”
Our findings are consistent with earlier reports that have shown
concentric “onion skin” firing patterns in either concurrently
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active MUs (De Luca et al., 1996; McGill et al., 2005; De Luca
and Hostage, 2010; De Luca and Contessa, 2012) or in pooled
MUs from multiple contractions (Tanji and Kato, 1973). Pre-
vious studies have also reported a weaker layering pattern with
increasing force. For example, Monster and Chan (1977) showed
that there is a consistent concentric layering pattern in steady fir-
ing rates from multiple intramuscular recordings, and that the
firing rates of later recruited MUs rises at a steeper rate with
increasing force, and do eventually catch up and discharge at a
rate comparable to the earlier recruited MUs. However, it should
be noted that the weaker concentric layering patterns observed
in these earlier studies were assessed between different contrac-
tions, and thus presumably with different MUs. Our current
study was able to extend these findings by tracking the firings
of the same active MUs at different force levels during a single
contraction. Similarly, with increasing force, a shallower regres-
sion slope between firing rate and recruitment threshold has also
been reported (De Luca and Hostage, 2010), although again, the
degree of change of slope does decline at high force levels (∼50%
MVC), which is outside the force range tested in the current
study.

Conversely, our current results did not reveal any recordings
conforming with the general “reverse onion skin” profile at any
force level, although occasional firing rate profile crossings (a key
marker of “reverse onion skin” rate profiles) were observed as the
force step increased (Figures 2 and 5). This “reverse onion skin”
firing pattern has been reported in decerebrate animal models, in
which motoneurons were activated by tonic muscle stretch, and
firing rate profile crossings between MUs were observed (Eccles
et al., 1958; Burke, 1968). Similar firing patterns have also been
reported during voluntary contractions in different human mus-
cles at different age groups (Moritz et al., 2005; Barry et al., 2007;
Oya et al., 2009; Jesunathadas et al., 2012). One common feature
of these firing patterns, regardless of the experimental condi-
tions, is that the later recruited MUs tend to show a steeper rise
of firing rate as excitation level increases and the rate eventu-
ally bypasses the firing rate of the earlier recruited MUs, as the
firing rate of the earlier units saturates at rates lower than rates
achieved by later units. Whereas in the “onion skin” firing pat-
tern, the firing rate of the later recruited MUs tend to increase in
the same or even slower rate compared with the earlier recruited
ones.

It is also possible that the two different firing patterns arise
from the differences in the MU composition (slow vs. fast) of the
muscle; however, both firing patterns have been observed in a large
range of muscles with different range of MU types. Specifically, the
“onion skin” firing pattern has been observed in the FDI, biceps
brachialis, deltoid, tibialis anterior, and vastus lateralis muscles,
and the “reverse onion skin” pattern has been observed in FDI,
soleus, and tibialis anterior muscles. Therefore, it is unlikely that
the range of MU types in a muscle is responsible for to the two
different firing patterns.

MECHANISMS OF LESS DISTINCT “ONION SKIN” LAYERING EFFECT
When the force was increased in sequential steps, the “onion skin”
profile became less evident; namely, a poorer goodness of fit and
a shallower slope of the linear regression were found at higher

forces. The weaker layering effect is largely due to a narrowing of
the distribution (i.e., a reduced CV) of the firing rate across MUs.
Such a compression of firing rate can arise from a rate satura-
tion of earlier recruited MUs and a relatively large rate increment
of later recruited MUs. With increasing force output, presum-
ably an increasing excitatory current input, the later recruited
MUs with initially low firing rate have firing profiles followed the
force trajectory. This rate increment primarily reduces the range
of firing rate across MUs. This large rate increment also leads
occasionally to firing rate profile crossovers as shown in Figures 2
and 5, which adversely affect the goodness of fit in the linear
regression.

Unlike high threshold MUs, the firing rate of many low thresh-
old MUs did not follow all the step increases consistently, especially
from step 2 to step 3. This reduced rate modulation could be due
to an intrinsically mediated saturation of discharge rates for the
low threshold units (e.g., perhaps via persistent inward current
(PIC) mechanisms). The PIC is a persistent depolarizing current
that amplifies synaptic input. It can trigger an initial steep increase
of firing rate, but can also limit the subsequent rate increase due
to PIC saturation (Heckman et al., 2005). The reduced rate mod-
ulation could also be due to inhibitory interconnections between
MUs. Typically, an isolated motoneuron will discharge faster with
increasing excitatory current input. However, the recurrent inhi-
bition circuits formed between Renshaw cells, motoneurons, and
interneurons generate inhibitory current and can modulate the
effectiveness of excitatory current increment (Burke et al., 1971;
Hultborn et al., 1979).

In this case, with an increase of excitatory input, the inhibitory
input also potentially increases disproportionally, leading to a
reduced or unchanged net increase, and therefore rate saturation.
Additionally, the high threshold motoneurons are likely to con-
tribute more to the activation of Renshaw cells (Hultborn et al.,
1988b) and the amount of inhibitory current received is higher in
slower twitch units (Hultborn et al., 1988a). These scaled differ-
ences between slow and fast units can contribute to early saturation
of firing rate, primarily in the low threshold units.

ACCURACY OF THE DECOMPOSITION RESULTS
Given that the sEMG decomposition approach is developed
recently, it is important to ensure that the decomposed MU results
are reliable and that they do reflect physiological properties of
the MU pool. Previous studies have evaluated the decomposition
accuracy using both simulation approaches (Hu et al., 2013a) and
a two-source validation method. Specifically, in the simulation,
we introduced random timing noise/errors to the decomposed
spike timing and randomly shuffled the decomposed spike trains
as well as action potential templates through a surrogate analysis.
We found that the perturbed decomposition does not resemble
the action potential templates or the original EMG signal, when
the waveform of action potentials and EMG signals were recon-
structed using the perturbed decomposition results, suggesting
that the original decomposition results were reliable, at least in
the tested force levels up to 50% MVC. We also acknowledge
that the simulation approach cannot detest missed firings (false
negatives), and the goal of the simulation was to assess the gen-
eral validity of the dEMG algorithm, rather than assessing the

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 721 | 7

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Hu et al. Motor unit control in step-force generation

explicit accuracy of particular spike timings. In the two-source
validation, concurrent intramuscular and surface EMG signals
were recorded, and both signals were decomposed independently
using separate decomposition algorithms. We found that the
decomposition accuracy was 95% on average in the 119 (10.4%)
common MUs out of 1143 identified MUs from the sEMG sig-
nals. The two-source method provided critical assessment of the
spike timing accuracy detecting both spurious and missed firings;
however, the force levels were tested up to 15% MVC. The maxi-
mal force level in our current study was also limited at 15% MVC;
therefore, the decomposed MU firings are reliable at these force
levels.

In addition to the accuracy assessment described above, we per-
formed a spike triggered averaging technique (Hu et al., 2013a)
to filter potentially unreliable MU spike trains in the current
study. Specifically, we evaluated the stability of the action poten-
tial waveform over the trial duration and the degree of match with
the decomposition estimated templates, to ensure that decom-
posed firing train was accurate. However, the dEMG algorithm
was developed originally based on a single trapezoid force pro-
file, and a steady state contraction was required to perform the
template matching process. It is possible that the series of force
steps may induce decomposition errors due to action potential
shape changes between force steps, which can provide erroneous
firing spike trains. However, this possibility is unlikely because
the template tracking algorithm allows a certain degree of pro-
gressive change of the action potential shape as in the case of
a ramp-up state from 0% up to 90% MVC, and the current
study only induced a 5% MVC force change. In fact, our cur-
rent study shows that the algorithm can detect the increase of
MU firing rate with step-increase of force output, indicating that
the algorithm does not provide artificially pre-conditioned firing
patterns.

CONCLUSION
In this study, we examined the firing rate patterns of a large num-
ber of concurrently active MUs at different force levels during a
series of force steps. We found that the initially plateau in fir-
ing rate of lower threshold units increased further as excitatory
drive is increased; however, the rate increment of discharge in
later-recruited units was not strong enough to induce system-
atic crossings between firing rate profiles. Most importantly, we
observed“onion skin”firing profiles across different force levels up
to 15% MVC (although the layering pattern was compressed with
increasing force). Further study is necessary to examine whether
systematic cross-overs between MU firings can occur when higher
force levels are tested.
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