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Abstract: Virtual surgery planning is a non-invasive procedure, which uses digital clinical data for
diagnostic, procedure selection and treatment planning purposes, including the forecast of potential
outcomes. The technique begins with 3D data acquisition, using various methods, which may or
may not utilize ionizing radiation, such as 3D stereophotogrammetry, 3D cone-beam CT scans, etc.
Regardless of the imaging technique selected, landmark selection, whether it is manual or automated,
is the key to transforming clinical data into objects that can be interrogated in virtual space. As
a prerequisite, the data require alignment and correspondence such that pre- and post-operative
configurations can be compared in real and statistical shape space. In addition, these data permit
predictive modeling, using either model-based, data-based or hybrid modeling. These approaches
provide perspectives for the development of customized surgical procedures and medical devices
with accuracy, precision and intelligence. Therefore, this review briefly summarizes the current state
of virtual surgery planning.

Keywords: virtual surgery planning; landmark data; predictive modeling

1. Introduction

Virtual surgical planning (VSP) addresses operative procedures using digital data.
The primary objective of VSP is to improve the clinical workflow, but it may also help in
selecting/customizing a procedure for a specific patient. These objectives can be met in a
variety of ways since VSP can be used for pre-operative planning, decreasing surgery time
and visualization of potential post-operative outcomes. A common factor that allows for the
above functionalities is the ability of automating VSP without compromising accuracy. VSP
can be combined with other techniques such as 3D printing to create patient specific surgery
tools, implants, and virtual reality with or without haptics for training purposes. To achieve
these tasks, VSP requires robust techniques to interrogate pre-treatment data to predict
post-treatment configurations. Unlike 2D cephalometric techniques, the fundamentals of
VSP methods rely on industry standard imaging protocols (such as DICOM) to: permit
data integration from different sources; select the global reference frame and simulate
surgical movements prior to designing and fabricating surgical splints for craniofacial,
orthognathic and maxillofacial surgery inter alia.

2. Virtual Surgery Planning Procedure

Although the overall procedure of VSP is similar in most cases, it can be affected
if patient-specific tooling needs to be designed. Thus, various steps are necessary for
the proper implementation of VSP prior to any type of surgical procedure. The overall
schematic for steps in VSP is shown in Figure 1.
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1. Radiographs: Traditional 2D radiographs are an old but common method of visual-

izing the bony tissues to enable their comparison with adjacent soft tissues. Radio-
graphs provide the hard and soft tissue shape and size information in 2D, which can 
be used in conjunction with 2D photographs to visualize the planned surgical out-
come. However, providing only 2D information about shape and size is a significant 
limitation since VSP requires specific movements, and alignment from planar infor-
mation is a difficult task that requires skill and experience. Moreover, cephalometric 
2D data do not exist in 3D space and are considered by some to be inappropriate for 
clinical diagnosis and treatment planning [1,2]. 

2. Photographs: 2D photography is the easiest, least invasive and a low-cost source of 
collecting facial information. For cranio-maxillofacial surgery in the past, the follow-
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ners and intra-oral scanners. A disadvantage of using 3D scanners is that black-col-
ored surfaces, such as hair, are not easily scanned and are often neglected [4]. There-
fore, the 3D information can remain incomplete in certain situations. 

4. CT/CBCT/MRI scanning: Tomographic data from traditional CT scans or cone-beam 
(CB) CT scans or MRI scans are now the preferred methods for clinical imaging. 
These techniques provide a series of planar images that can be easily concatenated to 
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exposure to ionizing radiation that the patient must go through for the clinician to 
obtain relevant information. In this regard, CBCT scans are preferred over traditional 
CT scans due to their lower levels of radiation exposure [5,6]. However, although 
CBCT scanning is preferable, it can be less precise compared to traditional CT scan-
ning on account of image clarity. In contrast, MRI scans do not deploy ionizing radi-
ation. In some instances, particularly those where soft tissues are the primary concern 
[7], MRI scanning might be preferred; however, in some cases, it is difficult for a pa-
tient to hold steady for the duration of the scan. Nevertheless, some recommenda-
tions for CT/CBCT/MRI scanning for VSP are as follows: 
• Subject position: The patient should be standing or sitting in the natural head 

position, with the facial expression in repose. Currently, there are no guidelines 
on the stage of respiration [8], but chin rests and mouthpieces that affect the 
upper airway are best avoided for the sake of consistency. 

Figure 1. Schematic of virtual surgery planning procedure.

2.1. Data Acquisition

Data acquisition is the critical first stage of VSP, and standardization of image capture
is strongly suggested to provide consistent measures. The data include the shape and size
information of the tissues, but this can be influenced by patient positioning during data
capture. Information on the relative location and orientation of the surgical site might
be required in order to compare it to other tissues. In addition, since both 2D and 3D
data can be used for VSP, data can be acquired from one or more sources and combined
or integrated.

1. Radiographs: Traditional 2D radiographs are an old but common method of visualiz-
ing the bony tissues to enable their comparison with adjacent soft tissues. Radiographs
provide the hard and soft tissue shape and size information in 2D, which can be used
in conjunction with 2D photographs to visualize the planned surgical outcome. How-
ever, providing only 2D information about shape and size is a significant limitation
since VSP requires specific movements, and alignment from planar information is
a difficult task that requires skill and experience. Moreover, cephalometric 2D data
do not exist in 3D space and are considered by some to be inappropriate for clinical
diagnosis and treatment planning [1,2].

2. Photographs: 2D photography is the easiest, least invasive and a low-cost source of
collecting facial information. For cranio-maxillofacial surgery in the past, the follow-
ing parameters were suggested when collecting data using a series of photographs:

• The photographs should be in color.
• The photographs should include lateral profiles from both sides, 45◦ photographs

from both sides, and frontal photographs.
• The photographs should be taken in the natural head position.

Despite these suggestions for clinical treatment planning, 2D photography has largely
been superseded by 3D stereo-photogrammetry [3].

3. 3D scanning: 3D scanners can provide high resolution 3D data, including texture
and color information, if required. Two types of 3D scanners can be used, i.e., facial
scanners and intra-oral scanners. A disadvantage of using 3D scanners is that black-
colored surfaces, such as hair, are not easily scanned and are often neglected [4].
Therefore, the 3D information can remain incomplete in certain situations.

4. CT/CBCT/MRI scanning: Tomographic data from traditional CT scans or cone-beam
(CB) CT scans or MRI scans are now the preferred methods for clinical imaging. These
techniques provide a series of planar images that can be easily concatenated to create
a 3D object from digital data. One limitation of CT and CBCT imaging is the exposure
to ionizing radiation that the patient must go through for the clinician to obtain
relevant information. In this regard, CBCT scans are preferred over traditional CT
scans due to their lower levels of radiation exposure [5,6]. However, although CBCT
scanning is preferable, it can be less precise compared to traditional CT scanning on
account of image clarity. In contrast, MRI scans do not deploy ionizing radiation. In
some instances, particularly those where soft tissues are the primary concern [7], MRI
scanning might be preferred; however, in some cases, it is difficult for a patient to
hold steady for the duration of the scan. Nevertheless, some recommendations for
CT/CBCT/MRI scanning for VSP are as follows:

• Subject position: The patient should be standing or sitting in the natural head
position, with the facial expression in repose. Currently, there are no guidelines
on the stage of respiration [8], but chin rests and mouthpieces that affect the
upper airway are best avoided for the sake of consistency.
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• Setup: The field of view should extend at least 10 mm beyond the outermost
tissues in order to avoid distortions of any significant structures. The soft tissues
especially should not be altered due to equipment fixtures and/or attachments,
such as head stabilizers.

• Resolution: If patient-specific tooling is required, a maximum resolution of
0.3 mm in all axes is required; otherwise, a maximum resolution of 0.5 mm can
be used.

2.2. Segmentation and Visualization of the Virtual Model

Anatomical features in a CBCT scan can be visualized using segmentation (surface
rendering). For this process, specific thresholds in Hounsfield/grayscale units can be
used to create differentiated surfaces. Using edge detection algorithms, various organs,
such as the upper jaw (Figure 2), can be better visualized [9]. Segmentation can therefore
provide different anatomical features, which can be used for VSP. Segmentation can also
use Hounsfield unit information associated with each voxel to assign a specific color and
transparency. Because of this facility, segmentation is useful for visualization but cannot be
readily used for alignment; thus, homologous landmarks must also be identified (Figure 2).
Sometimes, either due to noise or low resolution of a CBCT scan, various anatomical
features cannot be accurately separated by simply using thresholds. In these cases, manual
or semi-automated methods are utilized.
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Figure 2. Segmentation of the midface with special attention on the maxilla and contiguous parts of
the palatine bone, showing some homologous landmarks (1–10).

2.3. Alignment and Integration

After the data are acquired, they are most often accessed in the format of 3D point
clouds, which have additional information associated with them. For example, 3D facial
scans can include eye, skin and lip color as well as texture information. Conversely, CBCT
scans can have density information. Regardless, these sources of information should be
aligned properly to have all the data readily available for VSP. Many algorithms exist
for the rigid alignment of point clouds. The most commonly used algorithm for point
cloud alignment is the Iterative Closest Point (ICP) technique. During ICP, the algorithm
computes the optimum translation and rotation of the objects repeatedly, to align a source
point cloud to a target point cloud till the fit is no longer improved. During this procedure,
the room mean square (RMS) distance of every point in the source object closest to its
point in the target object is calculated. The total RMS distance for the entire point cloud is
iteratively reduced by optimizing translation and rotation. These ICP techniques, such as
Procrustes superimposition, have been thoroughly tested for medical applications [10] and
have been found to be useful in this regard [11].
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2.4. Virtual Surgery Planning

After going through the steps noted above, the next stage is the actual 3D VSP. This
stage requires training in the use of the various planning and visualization tools (Figure 3)
encoded by the software being utilized. Therefore, a bioengineer or clinical technician is
often required to assist the medical practitioner. The major steps in VSP are as follows:

1. Virtual diagnosis: The first and most important step is proper diagnosis. Various
analytical tools are often available for the measurement of 3D data. These features
can be used to quantify the defect, deficiency or dysmorphology, which might not be
possible using traditional surgical planning methods. Note that Euclidean measure-
ments integrate size information, which may mask subtle shape changes associated
with clinical behavior.

2. Treatment planning: Once the differential diagnoses have been excluded and a work-
ing diagnosis has been achieved and quantified, optimum plan parameters can be
calculated. Craniofacial surgical plan parameters generally include, but are not lim-
ited to, an osteotomy location and angle. A virtual osteotomy can thus be simulated,
and the final alignment accuracy can be checked. While this approach is summarized
in Figure 3, the virtual osteotomy in this example is crucial yet sensitive to the exper-
tise of the technician, making it the weakest point of the VSP as it lacks automation
and relies on human decision making. Here, predictive modeling comes into play.
According to the spatial matrix hypothesis [12], historically speaking, there is a tacit
assertion that the craniofacial complex consists of a series of structural components
of genetically predetermined form. Generally, surgically induced changes of these
biologically active structures are simply perceived as differential movements. These
concepts do not permit the dynamic, biologic behavior of the craniofacial structures
to be taken into account, which constantly regress to homeostasis and perhaps lead
to relapse in some instances. Conversely, using a cohort of cases that have had the
same surgical intervention, it should be possible to compute the mean, underlying 3D
transformation for a sample of cases, using techniques derived from mathematical
modeling, including geometric morphometrics [13]. If this transformation can then be
applied to a naïve subject, a predictive model can be achieved, assuming the new sub-
ject behaves in the same way that the sample did on average. This novel data-driven
predictive modeling is unlike the animations that are used for arbitrary ‘morphing’
in some orthodontic software. Therefore, the use of mathematical modeling on 3D
digital data provides a promising avenue of research in terms of VSP.

3. Patient specific tool design: Using this approach, patient specific parameters, such as
bone thickness, nerve location etc., can be visualized (Figure 4a). If required, patient
specific tools and surgery guides can be designed using surgery plan parameters,
such as osteotomy location and screw placement.
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2.5. Manufacturing

Three-dimensional models can also be printed from digital data, such as the ones
illustrated in Figure 4b to inspect post-treatment outcomes. This process is often required
if patient-specific tools need to be produced in order to perform the operative procedure.
Patient-specific tooling can include either surgical tools, such as osteotomy guides and
screws, or patient models that can be used as templates, such as mesh plate bending,
or both. Either way, patient-specific tooling is manufactured using 3D printing directly
or indirectly. Based on the type of application, an optimum biocompatible material is
selected. A manufacturing technician usually plans the 3D printing parameters for every
component to be manufactured. The printing parameters are selected to improve model
strength, reduce the overall weight and manufacturing time. In addition, post-printing
processes, such as chemical etching for improved osseointegration, can also be deployed.
Therefore, communication between the surgical planner and the manufacturer is crucial,
and a checklist for proper communication can be proposed such that 3D models can be
printed, such as the ones illustrated in Figure 4.

3. Prediction Based Virtual Surgery Planning

A disadvantage of VSP’s current workflow is the significant learning curve associated
with the process. There are many potential sources of error in the entire procedure for
successful surgical planning, such as image processing, segmentation, alignment, selection
and use of visualizing algorithms for virtual diagnosis. The workflow must be designed
to make the overall procedure immune to such sources of errors. Traditional surgery
planning procedures are limited by the fact that they mostly utilize population specific
parameters. Conversely, current VSP methods are limited by the fact that they mostly
use patient-specific parameters. The use of population-specific parameters in addition
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to patient-specific parameters can enhance the planning process and improve the results.
Despite that, VSP is not preferable in cases of fast changing patient anatomies, such as
various tumors. Current VSP methods assume that the patient’s anatomy does not change
significantly between the time of planning and the time of surgery. This lead time can
sometimes be significant in more complicated cases, since both the planning time and
manufacturing time might be increased. Yet another limitation of VSP is that there is no
proper feedback mechanism for continuous improvement of the planning process. The
surgeons must rely on their experience and available literature to improve the planning.

The above limitations of VSP in its current form are being realized and new ap-
proaches to prediction-based surgery planning are beginning to emerge. The schematic for
prediction-based VSP is illustrated in Figure 5. The key difference of this scheme is that
it has a closed loop architecture instead of the open loop architecture used for traditional
VSP. Another major difference is that the decision for treatment selection, which is tradi-
tionally a part of the virtual diagnosis, and depends highly on the medical practitioner,
is now assisted by the results of a predicted output model. The process starts with the
acquisition of patient data from multiple sources. Similar to traditional VSP, these data
are aligned to obtain a full scope of patient anatomy. However, in addition to anatomical
information, non-anatomical data specific to the patient is also collected. The complete
data (anatomical and non-anatomical) is then used by the prediction model to forecast
the outcome of a selected treatment plan. Using this approach, patient-specific chances of
success and the risks of various treatment options can be compared, by using the prediction
model outcomes of alternative treatment plans. For fast-changing anatomies, prediction
models using Bayesian statistics and Monte Carlo simulations can be used to accommodate
changes in the anatomy associated with the time delay before surgery. In these cases,
VSP and the development and manufacturing of patient-specific tools is performed, as
performed traditionally. The final treatment outcome is then recorded and analyzed against
the predicted outcomes of the selected treatment prediction model. Deviations of the actual
outcome from the predicted model are calculated and recorded in a database. This database
is then used for continuous improvement of the prediction model (Figure 5).
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This novel methodology helps the clinical planner in selecting the most appropriate
treatment method and parameters for a particular patient. In addition, predictive models
help the patient by providing a range of realistic outputs of the various surgical procedures.
This approach is more apt because the predictive models use real life data, which includes
various sources of error, e.g., in planning, during surgical implementation and errors due to
patient response. Note that ‘errors’ here includes and refers to statistical variation associated
with distribution of normative data, unlike arbitrary pixel movements on a computer screen.
In addition, while some predictive techniques try to forecast non-definitive parameters,
such as possibility of success, risk associated with a particular treatment, survival rate,
possibility of a disease in the future, etc., in the current work, only shape and size prediction
methods are discussed. Various efforts have been made to predict the anatomical outcome
of a specific surgical intervention. These predictive methodologies can be categorized as:

1. Model-based prediction methods;
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2. Data-driven predictive modeling;
3. Hybrid prediction methods.

3.1. Model-Based Prediction

Model-based prediction methods forecast the shape change, with or without size scal-
ing, by using mathematical modeling predicated on physical sciences to solve for optimum
prediction. These allometric, model-based methods usually discretize the anatomy into
elements. The changes are predicted in every element individually and then combined to
give the overall prediction. The major advantages of using model-based prediction are:

1. A large database is not required to develop an accurate model. Therefore, the methods
are directly applicable for procedures in which data are not easily available.

2. Properties quantified and/or measured in ideal conditions (such as tissue density,
elasticity, stiffness, etc.) can be directly used.

3. Both population and individual parameters are taken into account for prediction. The
underlying mathematical model considers population-specific parameters, and the
discretized anatomy considers the individual parameters.

The limitations of model-based prediction methods are:

1. Solving non-linear models is time-consuming.
2. Developing and using model-based methods is difficult.
3. The method cannot be used in conditions where the parameters of the underlying

mathematical model are unknown.
4. Changes unaccounted for in the mathematical model cannot be predicted.

Some commonly used model-based prediction methods are:

• Finite element method (FEM): FEM is an old but reliable method. This technique
finds extensive use in bioengineering since FEM can be used to solve any set of partial
differential equations on the nodes of the discretized model. For observing the change
in shape, structural equilibrium equations are used (Equation (1)). Here, σ and τ are
the normal and shear stresses in an element under consideration, F is the force, and x,
y, z are the directions in Cartesian coordinate systems. σxx τxy τxz

τyx σyy τyz
τyz τzy σzz

 ∂/∂x
∂/∂y
∂/∂z

+

 Fx
Fy
Fz

 = 0 (1)

Tissues can be modeled considering linearity and elasticity models [14]. Therefore, for
realizing the relation between stress and strain, Hook’s law is used, and both linear
and non-linear behavior can easily be modeled using FEM. Since FEM can simulate
details of the non-linear behavior of tissue structures, it has been used for prediction
of lip [15,16] and facial soft tissue changes [17].

• Probabilistic FEM [18,19]: Often, the exact material properties are not known. How-
ever, the material properties vary within a known range. In such a situation, the use
of probabilistic FEM is preferred. In this method, the equations used for simple FEM
are solved over a defined interval instead of a defined constant value. This approach
is often regarded as a subclass of FEM.

• Mass spring model (MSM): This model consists of discrete mass nodes distributed
throughout an object and interconnected via a network of springs and dampers.
Therefore, the solutions of MSM are considered linear in nature. MSM is suitable for
modeling objects with complex material properties, such as non-linearity and vis-
coelasticity and has been utilized extensity in the literature [20–23], but the challenge
with MSM is always the correct approximation of spring constants.

• Mass tensor model (MTM) [24,25]: This model tries to combine the advantages of FEA
and MSM and provides quasi-linear solutions. For example, it can be used to simulate
soft tissue displacement after bone deformation. It uses tetrahedral or triangular
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elements to approximate the shape, making it fast, but also placing an upper limit
on the complexity that MTM can handle [26]. Table 1 compares the advantages and
limitations of commonly used model-based prediction methods.

Table 1. Comparison of FEM, MSM and MTM model-based prediction methods.

Technique Advantages Limitations

Model based techniques
• Does not need huge amounts of data
• Usually have a biomechanical or

biochemical foundation

• Difficult to create the model
• Different models might be required for

different populations i.e., a single model
cannot capture the entire population

Mass spring model • Simple architecture
• Low computation cost

• No real biomechanical foundation
• Requires significant pre-computation
• Does not have full dynamic behavior

Mass tensor model
• Is quasi-linear, thus is highly

accurate for small deformations
• Supports only tetrahedral elements; thus,

model complexity is limited.
• Requires pre-computation

Finite element model

• Accurate
• Strong biomechanical foundation
• Well-developed technique even for

complex situations such as ruptures

• High computational cost
• Difficult architecture

3.2. Data-Based Prediction

Data-based prediction methods do not require a mathematical model to forecast the
outcome of a surgical procedure. The prediction uses only the constraints of the data
from previous instances. The predictive model can be based on statistical methods or
using advanced, artificial intelligence (AI) techniques. The advantages of using data-based
predictive models are:

1. Applicable in most cases and do not require a specific mathematical model for de-
fined conditions.

2. Easier to learn, develop and implement as compared to model-based methods.
3. Can provide complex results relatively rapidly.
4. When using machine-learning algorithms, the accuracy improves with every prediction.

The major limitations of using data-based algorithms are:

1. They require a large database, which might not be readily available.
2. The precision of even highly accurate models is limited by their training database.

Thus, a patient-type or procedure-type that is not extensively referenced in the training
database cannot be assured to produce an accurate prediction.

Other techniques use tools from statistical mathematics to find a predicted model.
Commonly used statistical methods for creating a predictive model are as follows.

• Principal components analysis (PCA): PCA finds its origins as a model reduction
technique. PCA provides new components that are a linear combination of the orig-
inal components of data. The new components are formed to capture most of the
variation in the data, using the least number of components. PCA is, therefore, a
useful technique for data analysis and outlier detection. Using this approach, the
underlying behavior of the data can be identified and described in statistical shape
space as a series of eigenvalues. Thereafter, eigenvectors can be applied to a new
dataset to visualize possible outcomes. Thus, PCA is particularly useful as a data
pre-processing technique in predictive modeling and is the most commonly used
data-based method [27].
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• Euclidian distance matrix analysis (EDMA): Since some are of the opinion that princi-
pal components analysis (PCA) methods, based on superimposition, can lead to an
incorrect estimation of form and variance–covariance structures, EDMA has been ad-
vocated as an alternative [28]. Euclidean distance is one of the most used metrics, and
EDMA is a space ratio method, providing a coordinate-free approach to the analysis
of form using landmark data, which may provide another approach to data-driven
predictive modeling.

• Principal Shape Analysis (PSA): A common limitation in PCA is the difficulty in
relating the components modes with the intuitive shape descriptions used by clinical
practitioners. Aguirre et al. [29] proposed the use of PSA to counter this problem.
PSA models covariance between variables rather than the total covariance in the data.
Hence, PSA provides better interpretation by proving the components that can account
for the variance in the entire dataset.

The statistical prediction models map the input anatomy and other treatment variables
to an output anatomy. The input–output relationship is then approximated using regression.
Many types of regression such as principal least squares (PSL), gradient boost and random
forest (RF) can be used. The selection of the regression model depends on the accuracy
required by the given dataset. Machine learning (ML) methods can also be used instead of
regression; however, AI methods have been proven to outperform simple regression, by
accommodating many other parameters. Nevertheless, these AI methods, especially those
using supervised learning algorithms, require large datasets and proper labeling of data.
Recently, machine learning was used for both diagnosis and prediction of facial surgery
outcomes [30]. Such ability to perform multiple tasks in a single step is a crucial advantage
in the use of machine learning. Table 2 summarizes the advantages and limitations of these
various prediction methods.

Table 2. Comparison of data-based prediction methods.

Method Advantages Limitations

Data based methods

• Easy and quick implementation
• Low computation cost implementation
• All contribution factors are already captured in

real data

• Requires huge amounts of data
• Population specific models need to be created
• No clear biomechanical foundation

Statistical methods • Strong mathematical foundation
• Cannot capture highly non-linear relations
• Usually based on model reduction techniques

such as PCA; thus, some data are lost

ML/AI methods
• Can handle complex non-linearities
• A single model can model a variety

of population
• Accuracy is algorithm specific

3.3. Hybrid Prediction

As discussed previously, both model-based and data-based methods have their inher-
ent advantages and disadvantages. In order to overcome these flaws, a combination of
model-based and data-based techniques can be used. Previously, Zolfagharnasab et al. [31]
created a hybrid prediction model to forecast breast shape after breast correction surgery.
The slow speed of purely model-based prediction was overcome by training a data-based
model to mimic the results from a model-based prediction method. In addition, the un-
availability of data for purely data-based modeling was overcome by accurate simulation,
using a model-based prediction method. Liao and Köttig [32] discussed possible hybrid
combinations for failure predictions in systems engineering, where hybrid models are
extensively used. For surgery prediction, similar hybrid models can be also used, in the
following possible settings.
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• Model + Model: Two or more models can be used to make predictions. For example,
combination of a biochemical model for wound healing with a biomechanical tissue
deformation model was used for surgical prediction by Vavourakis et al. [33].

• Data + Data: Two data-driven models can also be used for improving the overall
accuracy of the prediction. For example, different regions of the same anatomy can be
analyzed separately to create separate prediction models. The results from all the mod-
els can be combined to have an overall prediction. Bayesian-based, patient-specific
growth models for anatomical changes associated with fast changing anatomies have
shown promising results.

• Model + Data: This is probably the most powerful hybrid model with many possible
applications. Model-based methods and data-based methods can be combined to
perform the following tasks:

1. A data-driven method can be trained to mimic the results and behavior of
the model-based method. The faster data-driven model can then replace the
slower mode-based method [34,35].

2. A model-based method can be used to simulate and fill in the gaps in the database
used for data-based prediction method. Jiang et al. [36] and Vavourakis et al. [33]
utilized such techniques for predicting changes in abdominal aortic aneurysms
and breast tissue deformation, respectively.

3. Data-driven techniques can be used to create population-specific parameters
required by model-based methods [37].

4. A data-driven method can be used to predict the boundary conditions required
for model-based method. The model-based method can then make accurate
predictions [38].

5. Both data-based methods and model-based methods can make individual
predictions, which can be fused to provide a highly accurate, final prediction.

4. Selection of Prediction Method

For the proposed prediction-based workflow, selection of the most appropriate pre-
diction method is necessary. There are no specific guidelines for this selection; however, a
scheme for this decision making is shown in Figure 6. For example, if data from previous
procedures are not available, then a model-based method is required. For low amounts
of data, using a single data-based method can be unreliable; therefore, a hybrid method
should be used either by combining a data-based method with a model-based method or by
integration of multiple data-based models created from the available data. If large amounts
of data are available, data-based methods should be preferred over model-based methods.

When model-based methods need to be developed, both the model complexity and
requirement of real-time prediction should be considered. If the procedure requires real-
time prediction (e.g., for robotic surgery), then it is unnecessary to create different prediction
models because the final results will be governed by the real time prediction method
utilized. In such a situation, the solving speed should be prioritized over accuracy such
that the procedure does not malfunction mid-procedure due to a slow solving speed.
Therefore, for highly complex modeling, MSM is used because of its simplicity. For low
complexity prediction models, MTM is more beneficial, as it can provide better accuracy
without depleting the system resources.

If the model-based method does not need to be solved in real time, then accuracy can
be given priority over solving time. Therefore, for complex models the highly accurate
FEM should be preferred. For low complexity, if the accuracy of MTM is comparable
to that of FEM, MTM should be used to save VSP time. In addition, when considering
data-based models, the final model selection depends on the type of data available. If only
pre- and post-operative shape information is available, it is suggested to use statistical
shape analyses, such as PCA and PSA. Furthermore, if the data contain other treatment-
and/or patient-specific information, then a more complex mapping model, such as ma-
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chine learning or artificial intelligence, can be used. These approaches are summarized
in Figure 6.
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5. Prediction Analysis

Analyzing the accuracy of a predicted model’s outcome is important to avoid making
erroneous assumptions regarding clinical tissue behavior. The accuracy and precision
of predicted models need continuous improvement over time. Therefore, proper and
ongoing analyses of predictive modeling techniques are necessary. A predicted model can
be analyzed by comparing the predicted outcome in terms of shape, size and positional
information to the actual outputs. Therefore, a visual 3D model of the patient’s post-
treatment configuration is necessary. The prediction analysis process can be understood
using Figure 7. To compare the predicted and actual post-treatment configurations, both
objects must be aligned, using homologous landmarks. This process brings both objects
into comparable special coordinates. The region of interest is then selected, and semi-
landmarks [39] are populated in both objects. Semi-landmark are points that correspond
to each other at anatomical locations. They differ from homologous landmarks since
they are calculated in specific, but not in generic, morphologies. Thus, corresponding
semi-landmarks are compared.

Assessment of precision of any predictive method may entail some variations in steps,
as follows.
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5.1. Landmark Selection

The anatomical object is represented mathematically, using a point-cloud. The points
in the point-cloud are joined together using edges. Subsequently, the edges are collected to
represent a surface. Landmarks need to be placed on the surface to analyze it and also to
compare it to other surfaces. These landmarks can be derived directly from the homologous
landmarks in the point-cloud or created, using mathematical functions. Three types of
landmarks are used:

1. Anatomical landmarks: These are called homologous landmarks, which are agreed
by experts to represent various anatomical features.

2. Mathematical landmarks: These are the points on the surface located according to a
specific geometric property, such as maxima or minima of high curvature.

3. Pseudo-landmarks: These are also called semi-landmarks and are points that are
constructed using other types of landmarks and mathematical logic.

For assessment of accuracy of a predictive model, a 3D point-cloud representing
the size and shape of the anatomic structure of the predictive model is accessed as an
initial input. The prediction algorithm transforms this point-cloud to form a data-driven
predictive model. This predictive model is then compared to the final shape, size and
positional data post-treatment to test the goodness of fit and test how closely the predictive
model matches the actual outcome. Therefore, the comparison is centered on point-clouds
based on the original anatomical, homologous landmarks after alignment (say, using
Procrustes superimposition), calculated landmarks (or semi-landmarks, Figure 8) or those
established through dense correspondence [4]. To assess the level of precision and accuracy,
differences can then be quantified using, say, RMS, EDMA, or absolute Euclidian distance.
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5.2. Automated Landmark Detection

The prediction analysis process is highly dependent on landmarks and requires their
placement at every stage. Traditionally, cephalometric analysis was performed on ra-
diographs, which are 2D projections of craniofacial anatomy. For this analysis, manual
landmark placement is preferred for accuracy and reliability even today. However, analysis
of 3D images has some challenges. First, currently there is no consensus for 3D land-
marks; thus, for 3D analyses, the equivalent counterparts of recognized 2D landmarks
are selected [40]. Second, accurate manual landmark placement on 3D objects is a time-
consuming process and requires high levels of experience. For example, the time for
manual placement was observed to be up to 14 min. for a single case [41]. Hence, to create
a large database required for prediction, automated landmark detection might be advis-
able. Automated landmark placement methods can be categorized into three types [40],
as follows:

a. Knowledge based [42]: These methods use mathematical definitions such as curvature,
maxima, minima, etc. to locate the landmark on an anatomical contour of the 3D
object or surface.

b. Atlas based [43]: In these methods, before automatic placement begins, a reference
atlas is created using a manual landmarking process. The reference atlas is assumed to
be accurate and inclusive. For automatic placement, the subject under consideration
is matched with the reference elements in the atlas. The closest matching reference is
used to transfer the landmarks from the selected reference to the subject.

c. Learning based: These methods rely on learning algorithms and available datasets
to automatically locate landmarks. The learning methods employed can either be
statistical or based entirely on machine learning.

• Statistical learning methods correlate the object with either deformation modes
called active shape models [44] or a graphical representation called elastic bunch
graph matching [45] extracted from the available dataset.

• Machine learning based methods either create a categorization method called the
random forest method [46] or directly approximate the landmark location using
deep-learning architecture [47]. The methods of automatic landmark placement
are compared in Table 3.

Other points to consider when selecting an automated landmark placement method
are the robustness of the technique to image noise, anatomical variations, accuracy of the
final placement and time consumed.
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Table 3. Comparison of automated landmark placement methods.

Method Advantages Limitations

Knowledge-based

• Conforms to agreed mathematical
and anatomical definitions

• Does not require high
computational power

• Contour detection is prone to errors
• Landmarks can be difficult to locate on curved surfaces
• Not robust for severe deformities
• Sensitive to image noise

Atlas-based • Easy to customize and improve
• Requires small database

• Atlas must be accurate and inclusive (age, sex, ethnicity,
physical features)

• Performance depends on point registration technique used

Learning-based
• Less sensitive to image noise
• Can accommodate large variations

in coordinates

• Requires a large database
• Not all techniques are applicable in 3D space
• Training parameters need to be determined empirically

5.3. Alignment

After landmarks placement, the anatomical surfaces are aligned to permit comparisons.
Therefore, it is necessary to assure accuracy and precision in the alignment of the structures
under consideration. Alignment can be done for quantifying the changes for the same
patient post-surgery or for comparing the post-surgery changes among different patients.

• For analysis of morphology of the same patient, usually the non-morphing configura-
tions are used as the reference. Homologous landmarks are placed on locations that
do not change due to the treatment. The pre-treatment and post-treatment objects are
then translated and rotated iteratively for optimal alignment. Note that scaling is not
performed in this technique unless natural growth needs to be accommodated.

• When analyzing and comparing configurations from different patients or if an unaf-
fected reference is are not available, generalized Procrustes analysis (GPA) is used
to align homologous landmarks as close as possible. The Procrustes mean is then
calculated. The configurations are then aligned to the mean using thin plate spline
(TPS), explicitly minimizing the bending energy [39].

5.4. Region of Interest (ROI)

After alignment is established, the region of interest for analysis is selected. Statistical
analysis is then required to create a population-level predictive model. In the literature, the
following ROIs are usually considered:

• Total anatomy: The entire geometry for which point correspondence is available can
be considered. The advantage of such ROIs is that it is easier to implement. The
disadvantage is that the change due to treatment is localized, therefore, tracking the
actual change becomes difficult as the numeric values are dominated by unchanged
parts of the anatomy. When the entire anatomy is analyzed, it is also important to
adjust for outliers. Two methods have been employed in the literature for handling
outliers. First, the absolute distance between the points from the two objects is ordered
in decreasing magnitude. Instead of using all the points, only a certain lower percentile
is used, traditionally the 90th percentile. An alternate method is to use a fixed tolerance
where points that lie outside the tolerance are neglected from analysis; traditionally, a
2 mm tolerance is accepted.

• Local area: In this case, instead of using the entire geometry, only a local area is
selected. The advantage is that changes are easier to track. The disadvantage is that
an additional step (manual, automatic or semi-automatic) is often required to segment
the local ROI. For analysis of a local ROI, semi-landmarks can preferably be used.

• Local curve: Sometimes instead of using a local ROI, a local curve is considered. This
can be useful in certain applications such as prediction of the facial midline, shape of
the spine, etc. For generation of curves, mathematical landmarks are used.
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5.5. Correspondence

Implementing correspondence between point clouds is usually the most time-consuming
step in the analysis. For correspondence between the same ROI from different sources (either
from the same or different patient) the ICP algorithm can be used. One of the point clouds is
designated as the source or target and the other is designated as the reference. The reference
point cloud is then iteratively rotated such that both point clouds align optimally. ICP has
been found to be highly accurate for medical applications [48].

5.6. Difference Quantification

Finally, after establishing correspondence, the difference between the predicted and
actual outcome can be quantified. The difference can be considered for only size or both
shape and size. For difference in size, distances between corresponding points in the
ROI are calculated. The point-to-point distances can be Euclidian distance, RMS distance,
or absolute Euclidian distance. Euclidian distance gives the signed difference between
the corresponding points; therefore, an increase or decrease in size can be differentiated.
However, the signed difference is not suitable for calculation of parameters such as mean
or median change. For calculation of such parameters, the unsigned values of change
are required. A common unsigned difference is the RMS change. The limitation of using
RMS change is that due to the square operation, an excessive emphasis is given to large
differences in points. Therefore, the absolute Euclidian distance is often used whenever an
unsigned distance is required.

For shape and size quantification, Finite element analysis (FEA) is commonly used.
This should not be confused with the FEM used for prediction. Both approaches share
a similar name because both can use an approximate, simple configuration to analyze a
complicated anatomical object. Finite elements used for shape and size change quantifica-
tion usually consist of polygons created using anatomical landmarks. The lengths of the
sides of the polygons and the associated angles can be used to observe the change in both
size, shape and directionality simultaneously. Concentrated data, where a large number of
homologous landmarks are clustered compared to distant ones, is a potential disadvantage
of FEA. Therefore, another possible method for shape and size quantification is to calculate
the cartesian components of the point-to-point differences.

6. Discussion

The need for robust surgical outcome prediction is increasing since surgical options are
coming under further scrutiny, while the plethora of techniques is proliferating. Therefore,
it is becoming more essential to select the most appropriate surgical procedure for a
particular patient. In this regard, Gracia-Abuter et al. [49] are of the view that 3D image
acquisition using CBCT scans permits the construction of dynamic and interactive 3D
visual models, which in turn allow accurate or predictable VSP and efficient surgical
procedures for patients with complex craniofacial issues.

Borba et al. [50] studied mean discrepancies for measured parameters between pre-
dicted models obtained with VSP and those obtained clinically for orthognathic cases. They
reported values of <2.0 mm ± 2.0 (standard deviation) for most maxillo-mandibular land-
marks, after manual superimposition. In addition, the accuracy of the surgical movements
predicted were not significantly different for most landmarks, regardless of gender and
type of deformity. In a small study, Quereshy et al. [51] also concluded that VSP is useful for
orthognathic surgery since it can yield favorable and accurate outcomes. Later, in a sample
of over 60 patients, Kwon et al. [52] investigated discrepancies between actual and planned
movements in segmental maxillary osteotomies. On average, there was a 0.96 mm ± 0.69
discrepancy transversely, 1.23 mm ± 0.83 vertically, and 1.16 mm ± 0.80 antero-posteriorly
between clinical and VSP movements. Similarly, Qadry et al. [53] compared pre-operative,
planned and post-operative results among various craniofacial treatment groups. Their re-
sults revealed that the differences between pre-operative and post-operative measures were
statistically significant (p < 0.05), as expected, and the differences between pre-operative
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measures and the planned configuration were also statistically significant. However,
differences between the planned configuration and the post-operative measures were
non-significant (p > 0.05), suggesting that VSP using patient-specific splints and cutting
guides designed for accurate transfer of placement might be reliable. However, these broad
approaches do not aid in selecting which surgical technique best suits an individual patient.

In clinical practice, it is essential to localize the site and severity of the dysmorphol-
ogy, if at all possible. Taking an empirical approach to this complex question, Tecuta-
Busoi et al. [54] were able to identify diminution of the posterior cranial base in patients
diagnosed with Turner syndrome. Here, precise localization of the anomaly as well as
quantification of the deficiency was not fully achieved since 2D cephalometry was the anal-
ysis of choice. Nevertheless, these types of studies provide valuable baseline information in
the development of 3D data-driven predictive modeling since historical data are a crucial
starting point to test the robustness of any novel routines. Conversely, Park et al. [55]
compared the efficacy of conventional surgical planning with VSP. They found a 41% to
62% reduction in time when deploying VSP compared to traditional methods, but there
was no direct reduction in costs, which were attributed to indirect cost saving because of
the reduced labor cost due to reduced time. These types of findings are useful since the
time, effort and expense of VSP should not be onerous if widespread adoption is foreseen
in the future. As existing manual technologies change to robotic approaches, the use of
VSP may permit data integration into smart devices and hardware that includes wireless,
miniaturized, implantable components, encapsulated by biocompatible materials, as wear-
able technologies that overcome analogue disadvantages of existing clinical standards.
For example, in OSA, after VSP, customized bioresorbable airways stents could be pro-
duced by 3D printing [56] and further applications in orthognathic surgery and oncologic
reconstruction are envisioned. While these approaches provide promising perspectives for
manufacturing customized medical devices with accuracy, precision and intelligence, for
clinical practice, it is concluded that VSP might become an essential tool in selecting the
most appropriate surgical procedure for a particular patient.
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