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What new questions could ecophysiologists answer if physio-logging research was fully
reproducible?We argue that technical debt (computational hurdles resulting from prioritizing
short-term goals over long-term sustainability) stemming from insufficient cyberinfrastructure
(field-wide tools, standards, and norms for analyzing and sharing data) trapped physio-
logging in a scientific silo. This debt stifles comparative biological analyses and impedes
interdisciplinary research. Although physio-loggers (e.g., heart rate monitors and
accelerometers) opened new avenues of research, the explosion of complex datasets
exceeded ecophysiology’s informatics capacity. Like many other scientific fields facing a
deluge of complex data, ecophysiologists now struggle to share their data and tools.
Adapting to this new era requires a change in mindset, from “data as a noun” (e.g., traits,
counts) to “data as a sentence”, where measurements (nouns) are associate with
transformations (verbs), parameters (adverbs), and metadata (adjectives). Computational
reproducibility provides a framework for capturing the entire sentence. Though usually
framed in terms of scientific integrity, reproducibility offers immediate benefits by promoting
collaboration between individuals, groups, and entire fields. Rather than a tax on our
productivity that benefits some nebulous greater good, reproducibility can accelerate the
pace of discovery by removing obstacles and inviting a greater diversity of perspectives to
advance science and society. In this article, we 1) describe the computational challenges
facing physio-logging scientists and connect them to the concepts of technical debt and
cyberinfrastructure, 2) demonstrate how other scientific fields overcame similar challenges
by embracing computational reproducibility, and 3) present a framework to promote
computational reproducibility in physio-logging, and bio-logging more generally.
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INTRODUCTION

Ecophysiology, like many other scientific disciplines, is undergoing a technological revolution fueled
by advances in both hardware and software. One technology dramatically advancing the research
boundary is physio-logging, which enabled observations of animals’ physiology in the field using
animal-borne sensors (Fahlman et al., 2021; Hawkes et al., 2021). Ecophysiologists suddenly find
themselves with far more data, of increasing complexity, than ever before. Although these new data
led to breakthroughs in answering individual questions, the lack of field-wide standards and tools
largely siloed research groups, stifling collaboration and synthesis.
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In this article, we introduce the concepts of cyberinfrastructure
and technical debt (Table 1) as they apply to physio-logging
research using a trio of researcher personas and the scientific
challenges they face. Then, we describe how other scientific
disciplines, such as astronomy, neuroscience, and molecular
biology, have addressed these issues by embracing
reproducibility as a guiding principle. Finally, we propose
physio-logging cyberinfrastructure that promotes
reproducibility and reduces barriers to collaboration.

Barriers to Collaboration and Synthesis
In the following vignettes, three physio-logging researcher
personas encounter common scientific challenges stemming
from accumulated technical debt and insufficient
cyberinfrastructure. We expect these challenges will be familiar
to the reader and help connect their own experiences to the
concepts in this article.

Person A is a graduate student studying ecophysiology. They
have their own physio-logging data and a second dataset
contributed by a collaborating lab. Before conducting any
meaningful analysis, Person A spends multiple weeks
corresponding with another grad student in the collaborating
lab to figure out how to merge the datasets due to mismatched
variable names and units. Later in the analysis, Person A discovers
that their own data recorded time in Coordinated universal Time
and the collaborating lab used local time, requiring them to spend
more time correcting the input data and re-running earlier steps.
The analysis is not ready in time for their next committee meeting.

Person B is the Principal Investigator of a comparative physiology
lab. The lab recently completed a field season and the trainees are
working hard to process all the new physio-logging data. Meanwhile,
Person B wants to know how their study system fits into the broader
phylogenetic and morphological space, so they ask comparable
physio-logging data from other labs. Despite a rich literature on
this subject, only a small number of labs have the bandwidth and/or
interest to contribute data for a synthesis study. As a result, Person B
writes a paper with limited comparative power and they struggle to
find funding for the next field season.

Person C is a data scientist at a government agency developing a
new deep learning method for time series classification. They meet
Person A at a café on campus and realize their physio-logging data

would be a perfect case study for the new method. Unfortunately,
the dataset is not large enough on its own, so Person A promises to
contact their collaborators to get more data. The data management
issues encountered earlier by Person A present such substantial
barriers to collating a sufficiently large dataset that both Persons
lose interest and move on to other projects. Person C’s method
contributes to breakthrough advances in bio-medical research, but
they never think about physio-logging again.

The challenges encountered by the researcher personas
illustrate how technical debt prevents collaboration and
innovation. Person A is the early career researcher who works
hands-on with bio-logging data, navigating a fragile
computational ecosystem of inconsistently formatted data and
poorly documented scripts. Person B is further along in their
career and delegates computational tasks to achieve their
scientific goals. Person C represents scientists in other fields
who could make important contributions to physio-logging if
they were given access and resources. The obstacles facing each
persona are unique to their perspective and experience, but they
all have the same consequence: narrowing the scope of scientific
inquiry.

Cyberinfrastructure and Technical Debt
Cyberinfrastructure is a layer in the technological stack driving
modern science, situated between data production and discipline-
specific analysis practices (Atkins et al., 2003). Translated into the
physio-logging domain, “data production” includes electronic
tags deployed on animals in the field. “Analysis practices”
refers to both technical (e.g., statistical methods and packages)
and social (e.g., norms about sharing data and code) aspects of
physio-logging science. Cyberinfrastructure is the oft invisible
middle layer that interfaces between data production and analysis
practices. Efforts towards cyberinfrastructure in bio-logging
generally include, for example, universal data standards
(Campbell et al., 2016; Sequeira et al., 2021) and repositories
with interfacing software (Kranstauber et al., 2011; Kays et al.,
2022). The purpose of cyberinfrastructure is to “provide an
effective and efficient platform for the empowerment of
specific communities of researchers to innovate and eventually
revolutionize what they do, how they do it, and who participates”
(Atkins et al., 2003, p. 5).

TABLE 1 | Glossary of terms.

Term Definition References

Cyberinfrastructure The collective interface between data collection and data analysis for a scientific field, including
software, hardware, personnel, and shared practices

Atkins et al. (2003)

Technical debt Short-term, sub-optimal choices in data and code that hamper future development without
refactoring, such as missing documentation and bug-prone code

(Hinsen, 2015; Codabux et al., 2021; Vidoni,
2021)

Heterogeneous data Combinations of data collected at different temporal scales and/or with different properties, for
example multivariate time series (e.g., acceleration) with intermittent geospatial locations
(e.g., GPS)

(Leinfelder et al., 2011; Michener and Jones,
2012)

Literate
programming

A programming technique that combines code itself with descriptive text and outputs (figures,
tables). R Markdown is an implementation of literate programming

(Knuth, 1984; Baumer and Udwin, 2015; Kery
et al., 2018)

Data provenance A record of the origin and processing steps that produced the data Michener and Jones, (2012)
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In the absence of cyberinfrastructure, scientists are
incentivized by funding, hiring, and promotion structures to
choose rapid data collection and analysis over long-term
technical sustainability. Technical debt is the lingering bug, the
missing documentation, the “I swear it works on my machine”
left behind in pursuit of scientific output (Hinsen, 2015). Up to a
point, technical debt is not a problem; rather, it is the natural side
effect of important scientific tasks like exploratory analyses and
prototyping tools. But eventually technical debt creates obstacles
for future work (Codabux et al., 2021; Vidoni, 2021). Removing
those obstacles requires either 1) resources allocated specifically
to auditing and fixing data and code (i.e., refactoring Adorf et al.
(2019)) or 2) cyberinfrastructure that promotes best practices
from the start. The first approach is unlikely to work at scale
because existing incentive structures (funding, publications,
hiring and promotion) do not prioritize refactoring existing
data and code. Other scientific fields embraced the second
approach, improved cyberinfrastructure, to address the same
issues facing physio-logging. But before we investigate those
efforts, we first describe in greater detail the technical debts in
physio-logging.

Where Did Our Technical Debt Come From
The underlying cause of the obstacles to collaboration and
synthesis is a field-wide, collective technical debt incurred
when an empirical/theoretical science (ecophysiology)
embraced a data-intensive method (physio-logging) without
simultaneously developing cyberinfrastructure. What was it
about physio-logging that triggered ecophysiology’s technical
debt?

Physio-logging changed the nature of ecophysiological data
from simple, small tables to dense, heterogeneous (Table 1)
mixtures of physiological, geospatial, and biomechanical time
series (Harrison, 2021). Major developments in ecophysiology
during the 20th and early 21st centuries were fueled by
comparative analyses across morphology, phylogeny,
geography, and other biological dimensions. Critically, these
comparative studies were only possible because data could be
combined from multiple individual studies. Consider the
Metabolic Theory of Ecology, which emerged from scaling
approaches that connected patterns and processes across the
many levels of biological organization, from molecules to
ecosystems (Brown et al., 2004). Three Persons A (Gilooly,
Allen, and Savage–post-doctoral scholars at the time) and a
Person B (Brown–an established biologist) assembled a
synthetic dataset from dozens of earlier publications. In
collaboration with a Person C (West–a theoretical physicist),
the group articulated a theoretical framework for ecology from
first principles. Though controversial, the Metabolic Theory of
Ecology inspired a wave of innovative research (Lafferty et al.,
2008; Burton et al., 2011; Gardner et al., 2011; Locey and Lennon,
2016) and amounted to a major advance in biological theory.
Coincidentally, while Brown et al. were analyzing “simple”
ecophysiological data, physio-logging data were growing in
size and complexity. No longer simple recorders that
measured individual data points (Kooyman, 1966; Goldbogen
and Meir, 2014), by 2004 bio-loggers had evolved into high-

resolution, multisensory devices collecting gigabytes of
heterogeneous data (Wilmers et al., 2015). A scientific
community accustomed to simple, small datasets was suddenly
presented with a profound informatics challenge–largely without
the training, resources, and incentives to properly meet it. We
have yet to develop adequate cyberinfrastructure, leaving a
growing technical debt that impedes Persons A-C’s progress
and limits discoveries using physio-logging tools.

Reproducible Research Repays Technical
Debt
As biologists, we are trained to think of data as observations. In
other words, data are nouns: a cow’s mass, a salmon’s heart rate, a
bird’s body temperature. However, physio-loggers record such
vast quantities of complex, heterogeneous data that their
interpretation cannot be separated from the computational
methods used to process and analyze them. For example,
consider a table of 50 Hz tri-axial accelerometer and
magnetometer data. Even when visualized graphically, these
data are largely meaningless to a human interpreter. But if we
correct for the orientation of the tag relative to the animal’s body
and account for the declination and inclination of the local
magnetic field, then we can transform acceleration and
magnetism into pitch, roll, and heading (Johnson and Tyack,
2003). Now the human interpreter can meaningfully visualize the
animal’s fine-scale movements to identify physiologically relevant
behaviors such as exercise (Williams et al., 2020), rest (Mitani
et al., 2010), and escape (Williams et al., 2017). Physio-logging
“data” are more than the final numbers; they are also the
computational pipeline that transforms raw measurements into
useful information. When it comes to physio-logging, data are
not nouns; they are whole sentences composed of verbs
(transformations), adjectives (metadata), and adverbs
(parameters).

Computational reproducibility is the practice of writing the
data’s entire sentence so that anyone can read it. Sharing our data
this way accomplishes both “global” and “local” goals (Feinberg
et al., 2020). The “global” goal is satisfying the scientific norm of
reproducibility, providing transparency and integrity for our
entire field. These ideals are the focus of the widely reported
“reproducibility crisis” (Peng, 2015; Fanelli, 2018). But other
data-intensive fields have embraced a “local” goal for
computational reproducibility by reframing it in terms of
collaboration and knowledge transfer. In this context,
reproducibility is accomplished through computational best
practices, such as re-usable code and proper documentation.
This framing contains tangible solutions to the challenges
experienced by Persons A-C. Sharing data as reproducible
workflows (Cohen-Boulakia et al., 2017; Grüning et al., 2018;
Wratten et al., 2021) solves the incompatibility issues that
distracted Person A from doing good science and promotes
collaboration within (Person B) and between (Person C)
scientific disciplines. More importantly, it removes technical
obstacles preventing broad, equitable access to our science. But
a “data as a sentence”, reproducibility-focused mindset is too
much to expect of individual ecophysiologists without adequate
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cyberinfrastructure to support them. How have other fields
provided tools, education, and other resources to their scientists?

Cyberinfrastructure Examples From Other
Fields
Most scientific fields are facing similar informatics challenges as
ecophysiology; a few have developed cyberinfrastructure to
promote sharing “data as a sentence”. What physio-logging is
to ecophysiology, sky imaging is to astronomy, brain imaging is to
neuroscience, and high-throughput sequencing is to molecular
biology. The quantity and complexity of image and sequence data
created technical debts in those fields as well, which were
addressed through the coordinated development of
cyberinfrastructure. Saliently, these fields used the “local” goal
of computational reproducibility (collaboration and knowledge
transfer) to motivate adoption of their respective
cyberinfrastructures.

Astronomy’s cyberinfrastructure is represented by the aptly
named Virtual Observatory (VO) (Quinn et al., 2004). There are
currently 22 VOs around the world, such as the National Virtual
Observatory in the United States and the Virtual Observatory of
India. Each VO provides open access to sky imagery and other
astronomical data in standardized formats agreed upon by the
International Virtual Observatory Alliance (IVOA). In addition
to data sharing, VOs provide open processing and analysis
workflows, providing astronomers with invaluable tools for the
“data as a sentence” mindset (Cui et al., 2020). The VO
framework fuels innovative breakthroughs in astronomy,
including the discovery of galaxies (Chilingarian et al., 2009).

In neuroscience, the proliferation of brain image data led to ad
hoc, incompatible data curation practices, inspiring a
standardization effort: the Brain Imaging Data Structure (BIDS).
BIDS was developed to solve a problem familiar to physio-logging
scientists: “Lack of consensus leads to misunderstanding and time
wasted on rearranging data or rewriting scripts that expect
particular file formats and organization, as well as a possible
cause for errors.” (Gorgolewski et al., 2016, p. 2). In addition to
a standardized data format, BIDS includes a software ecosystem for
importing, validating, and processing imaging data (Gorgolewski
et al., 2017). Like VOs, BIDS integrates data and code, facilitating
“data as a sentence”.

The Human Genome Project published a draft of the human
genome in 2001, representative of molecular biology’s pivot to big
data (Lander et al., 2001). Three years later, Bioconductor
emerged as a provider of data access, processing, and analysis
tools (Gentleman et al., 2004; Huber et al., 2015). Like the VOs
and BIDS, Bioconductor provides both data structures and
computational methods. From the beginning, it was designed
with reproducibility as an explicit goal, to promote collaboration
in both sharing data and developing methods. As important new
technologies emerge, such as high-throughput single-cell
sequencing, the cyberinfrastructure provided by Bioconductor
promotes collaborations between biologists, statisticians, and
computer scientists to rapidly develop new methods for
handling the influx of increasingly heterogeneous data
(Amezquita et al., 2020). In turn, the cultural norm of

reproducibility incentivizes best practices, such as software
documentation and validation, that facilitate adoption by
researchers across the discipline.

VOs, BIDS, and Bioconductor exemplify the “data as a
sentence” perspective by providing both data formats and
computational tools for handling large quantities of
heterogeneous data. Although there are data formats (Sequeira
et al., 2021; Kays et al., 2022) and computational tools (Joo et al.,
2020) for geospatial bio-logging data, the two sides have been
developed independently without shared interfaces. Physio-
logging lacks any such infrastructure.

INTRODUCING biologr

What would physio-logging cyberinfrastructure look like in
practice? Following the lessons of the Virtual Observatory,
BIDS, Bioconductor, and other successful efforts, it should
facilitate reproducibility by integrating data formats directly
with computational tools. Beginning with the data format, the
nc-eTAG specification provides an extensible and efficient
structure for storing bio-logging data (Tsontos et al., 2020).
But recall the data alone are only the nouns; we must also
capture the rest of the sentence. Existing workflows for
processing bio-logging data are typically ad hoc and
ephemeral, meaning they’re lost from the scientific record
after publication. As a result, the data shared in repositories,
whether they’re specialized for bio-logging like MoveBank or
general purpose like Zenodo, are missing much of the story.

We propose an R package, biologr, that advances the goal
of bio-logging cyberinfrastructure, supporting ecophysiologists
and our colleagues in the broader bio-logging space. biologr
interacts with the nc-eTAG data format and explicitly captures
the entire workflow. By archiving both raw and processed data
together with the workflow connecting them, biologr records
the data’s entire sentence: nouns, verbs, and all (Figure 1).

What minimum set of functionalities would biologr
require to make physio-logging data reproducible? In brief:
data standards, import/export, validation, and workflow. For
data standards, biologr relies on nc-eTAG for processed
data and a standardized directory structure that organizes
components for reproducibility. biologr needs both import
and export functions to get the raw data into the nc-eTAG format
and to populate the directory structure. Importantly, the export
function saves both the data and the computational workflow.
BIDS and other cyberinfrastructures have demonstrated that
another critical function is automated validation (Gorgolewski
et al., 2016). Computational reproducibility is built on standards,
and without validation standardization quickly falls apart. So
biologr’s automated validator checks both form (i.e., do the file
formats and directory structures adhere to the standard?) and
function (i.e., does the workflow reproducibly generate the
processed data from the raw?). Import/export and validation
both require a reproducible workflow, which is the component
most responsible for reproducibility.

biologr captures the physio-logging computational
workflow using literate programming (Table 1) (Knuth, 1984;
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Kery et al., 2018). Literate programming is a technique that
interweaves code, text, and output (e.g., figures and tables) - a
combination that captures computational workflows in both
human- and computer-readable formats. biologr provides an
R Markdown template, a literate programming implementation
with broad adoption in the scientific community (Baumer and
Udwin, 2015). Instead of an ad hoc, ephemeral script, the physio-
logging researcher authors their workflow in R Markdown. Not
only does this preserve computational details for automated
validation and re-use/modification by other researchers, the
output of the R Markdown file is itself a provenance report
(Table 1), explicitly recording the transformations and
interpretations in the data (Michener and Jones, 2012). This
workflow approach promotes reproducibility by serving as the
glue that binds together data standards, import/export, and
validation.

DISCUSSION

A Vision for the Future of Physio-Logging
The goal of this article is to invite the physio-logging community to
a conversation about the existing limitations, and potential
advances, in our work relating to cyberinfrastructure and

reproducibility. The International Virtual Observatory Alliance,
Brain Imaging Data Structure, and Bioconductor all have
governing bodies with working groups to design, develop, and
disseminate cyberinfrastructure for their fields. A working group
within the International Bio-logging Society (www.bio-logging.net)
could serve the same role for physio-logging, especially if
ecoinformaticians were included in the process (Michener et al.,
2012). The proposed biologr package provides a starting point
for those conversations. Below, we offer alternative vignettes to
describe how our researcher personas would benefit from
biologr.

Person A is a grad student studying ecophysiology. They have their
own physio-logging data and a second dataset contributed by a
collaborating lab. The two labs use slightly different methods to
process their data, but both use biologr for recording their
workflows. Person A edits their collaborator’s workflow to make the
two datasets compatible and kicks off the reproducible workflowwith a
single click. They leave for lunch and come back to the lab to find two
happily interoperable datasets. The analysis is done by the end of the
week and their committee congratulates them on their progress.

Person B is the Principal Investigator of a comparative physiology
lab. The lab recently completed a field season and the trainees are
working hard to process all the new physio-logging data. Meanwhile,
Person B wants to know how their study system fits into the broader

FIGURE 1 | The proposed biologr R package will provide physio-logging cyberinfrastructure. (A) From raw data to standardized, reproducible data. Import and
export functions ensure data standard compliance, e.g., file formats and directory structures. A validate function automatically verifies that the computational workflow
(see (B)) reproducibly generates the processed data. (B) biologr provides an R Markdown template (see section Introducing biologr) for recording the workflow.
The R Markdown knit command creates a report documenting data processing and interpretation, i.e., data provenance.
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phylogenetic and morphological picture. There is a rich literature on
this subject, so dozens of archived datasets are available through a
physio-logging data portal based on biologr. Person B downloads
the data, runs a phylogenetically-informed scaling analysis, and
writes a high-impact synthesis study. The publication opens exciting
lines of collaborative inquiry and leads to a new multi-million
dollar grant.

Person C is a post-doc in computer science developing a new
deep learning method for time series classification. They meet
Person A at a cafe on campus and realize their physio-logging
data would be a perfect case study for the new method. Person C
spends the afternoon reading biologr documentation and
assembles a large physio-logging dataset from multiple studies.
They demonstrate that their method accurately identifies
physiological states from behavioral data and publish the
method as a biologr-compatible R package, which is used
by several physio-logging labs in their research.

CONCLUSION

Physio-logging, and bio-logging more generally, gave
biologists new tools for observing animals in their natural
habitats with previously inconceivable detail. But concurrent
with this great leap forward, we accumulated a technical debt
that cost us the ability to easily share and synthesize our data.
Ecophysiology became a data-intensive science without
developing the cyberinfrastructure to handle large quantities
of complex, heterogeneous data. biologr illustrates how we
can develop tools to reproducibly process and archive physio-
logging data. By embracing reproducibility, we can repay our
technical debt and usher in a new era of collaboration while
fostering best practices in a diverse next generation of physio-
logging researchers. As individuals, labs, data repositories, and

other stakeholders adopt shared standards, the possibilities for
exploration and synthesis will grow exponentially.
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