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Abstract

Giardia lamblia is a flagellated protozoan enteroparasite transmitted as an environmentally resistant cyst. Trophozoites
attach to the small intestine of vertebrate hosts and proliferate by binary fission. They access nutrients directly via uptake of
bulk fluid phase material into specialized endocytic organelles termed peripheral vesicles (PVs), mainly on the exposed
dorsal side. When trophozoites reach the G2/M restriction point in the cell cycle they can begin another round of cell
division or encyst if they encounter specific environmental cues. They induce neogenesis of Golgi-like organelles,
encystation-specific vesicles (ESVs), for regulated secretion of cyst wall material. PVs and ESVs are highly simplified and thus
evolutionary diverged endocytic and exocytic organelle systems with key roles in proliferation and transmission to a new
host, respectively. Both organelle systems physically and functionally intersect at the endoplasmic reticulum (ER) which has
catabolic as well as anabolic functions. However, the unusually high degree of sequence divergence in Giardia rapidly
exhausts phylogenomic strategies to identify and characterize the molecular underpinnings of these streamlined organelles.
To define the first proteome of ESVs and PVs we used a novel strategy combining flow cytometry-based organelle sorting
with in silico filtration of mass spectrometry data. From the limited size datasets we retrieved many hypothetical but also
known organelle-specific factors. In contrast to PVs, ESVs appear to maintain a strong physical and functional link to the ER
including recruitment of ribosomes to organelle membranes. Overall the data provide further evidence for the formation of
a cyst extracellular matrix with minimal complexity. The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium with the dataset identifier PXD000694.
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Introduction

As the leading cause for protozoal diarrhea worldwide, the small

intestinal parasite Giardia lamblia (syn. G. duodenalis, G. intestinalis) is

an important pathogen of humans and animals causing significant

morbidity and economic loss [1]. The Giardia life cycle is simple

and consists of trophozoites, which multiply by binary fission in the

gut of animal and human hosts, and an infectious cyst stage.

Trophozoites attach actively to the epithelium of the small

intestine and exhibit antigenic variation of variant surface proteins

(VSPs) in their protein surface coat [2,3]. Triggered by environ-

mental cues (e.g. bile concentration, bioavailability of lipids, pH)

trophozoites undergo a complex stage-differentiation process and

transform to environmentally resistant cyst forms. The complete

life-cycle, including cyst formation and excystation, can be

reproduced in vitro.

Giardia belongs to the phylum Diplomonadida, unicellular

eukaryotes that have undergone considerable reductive evolution

resulting in minimization or even loss of most cellular systems such

as mitochondria, peroxisomes, a Golgi apparatus, and a classical

endo-lysosomal system. Despite this unusual organization 3

giardial organelle systems are clearly discernible: the endplasmic

reticulum (ER) which extends bilaterally through the cell body [4],

relic mitochondria (mitosomes), localized at the cell center but also

dispersed in the cytoplasm [5,6], and peripheral vesicles (PVs). PVs

are ,150 nm compartments with a fixed localization underlying

the plasma membrane on the dorsal side and are also present in a

specialized region of the ventral disk [7,8]. PVs have been dubbed

endosomal-lysosomal compartments based on localization of

hydrolase activity [7,9–11], their ability to acidify [10,12,13],

and to take up exogenous ferritin as well as fluid phase markers

[12,14–16]. While in classical eukaryotic systems endosomes

undergo organelle maturation, a similar process is not observed

for PVs in Giardia. A selective pathway sorting proteins from the

plasma membrane to PVs has been demonstrated [13,17–19], and

there is experimental evidence for a direct but selective

connectivity between PVs and the ER [8]. PVs are thought to

be the major route of nutrient uptake by the parasite, but the

range of their functions, their morphogenesis and propagation

remain unclear. Additional open questions concern the exact

mechanism of bulk fluid uptake into the organelles and how

endocytic cargo is sorted and trafficked to the ER.

Constitutive secretion of giardial proteins does not require a

Golgi apparatus. As a consequence, secreted proteins are

exported directly from the ER to target organelles such as PVs

or the plasma membrane [20]. Organelles with Golgi properties
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(encystation-specific vesicles, ESVs) are generated de novo exclu-

sively for regulated export of the cyst wall biopolymer consisting of

three paralogous cyst wall proteins (CWP1–3) [21–23], and a

unique b(1–3)-GalNAc homopolymer glycan [24,25]. ESV

formation is induced by COPII-dependent export of cyst wall

proteins from ER exit sites [26,27]. CWPs partition into two

biophysically distinct phases before being sorted and secreted

sequentially to build the two layers of the composite cyst wall

polymer as an extracellular matrix 20–24 h post induction (p.i.)

in vitro [28]. Although current data strongly support the hypothesis

that ESVs are Golgi-derived organelles, the molecular underpin-

nings of ESV neogenesis and their identity as post-ER organelles

remain controversial.

As with most systems and molecular machineries in diplomo-

nads, PV and ESV organelles can be classified in terms of function

but are highly divergent, i.e. there is some experimental evidence

for their respective roles in the cell, but the paucity of molecular

and morphological landmarks for organelle structure and function

has prevented a systematic and detailed characterization. Never-

theless both organelle systems are essential and as such represent

potentially vulnerable structures of this highly adapted parasite.

The significant reductive evolution and sequence divergence in

Giardia also means that strategies using homology-based identi-

fication and functional analysis of PV and ESV proteins [29–31]

are biased towards few identifiable factors. The aim of this study

was to identify novel factors that are specifically associated with

these organelles and that may help characterize their nature, range

of function, and evolutionary history in the context of the giardial

ecological niche. To address these questions we developed a

conceptually new approach to generate enriched organelle

proteome datasets in two steps: (i) simultaneous flow cytometry-

based sorting of a mixed microsome fraction containing green

fluorescent ESV organelles with CWP3-GFP (green fluorescent

protein) in condensed cores and red labeled peripheral vesicles

(PV); (ii) mass spectrometry analysis and subtraction of overlapping

hits to increase identification of organelle-specific candidates.

Detailed analysis of the datasets and localization of selected

candidate proteins suggests a close association of ESVs with the

ER and no evidence for additional cargo or organelle-specific

factors involved in their genesis and maturation. Conversely,

although direct connections with the ER have been demonstrated,

PVs appear to have a discrete compartment identity with a specific

set of organelle proteins.

Results

Giardia has an extensive ER [4] which stretches almost

throughout the entire cytoplasm and to the cell periphery.

Giardial organelle preparations for proteomic analysis are

uniformly contaminated with membrane and membrane associ-

ated ER proteins [32,33]. To overcome this we developed and

implemented a new strategy to investigate the proteome of two

organelle sets which are known to be in close proximity to and

even in direct contact with the ER: ESV organelles [26,27] and

PV organelles [8]. After cell disruption we simultaneously enriched

differentially labeled ESV and PV organelles by fluorescence-

assisted organelle sorting (FAOS) from a mixed microsome

fraction. We reasoned that the simultaneously sorted vesicle

fractions would contain comparable amounts of mostly cytoplas-

mic and ER-derived unspecific proteins, and that this overlap

could be subtracted from the respective mass spectrometry (MS)

datasets in silico to reveal organelle-specific proteins.

Enrichment and Separation of Fluorescently Labeled
Organelles by Flow Cytometry

We used flow cytometry to sort differentially labeled ESVs and

PVs simultaneously from a mixed microsome fraction. The

organelle fraction for sorting was prepared by mixing two

microsome fractions derived from trophozoites with labelled PVs

(Dextran-AlexaFluor647, AF647) and transgenic encysting cells

with labelled ESVs (CWP3-GFP). Cell labeling, harvesting, and

disruption were performed in three completely independent

experiments (biological replicates). The sorts were performed on

a BD FACSAriaIII flow cytometer using a sort precision mode of

0/32/0 to obtain maximal purity. Three gates were set: a very

broad parent gate P3 in the SSC (side scatter) vs. FSC (forward

scatter) plot that excluded the readily apparent measurement

noise, and gates P1 and P2 in a bivariate dot plot to define the

GFP-positive and AF647-positive events, respectively (Figure 1A).

The target events in the mixed microsome fraction were 4.3%

GFP-positives and 4.7% AF647-positives, corresponding to ESV

and PV organelles, respectively.

Post-sort quality control by flow cytometry showed more than

eight-fold increase of both, GFP-positive events (39.6%, Figure 1B,

top) and AF647-positive events (42%, Figure 1B, bottom). In the

post sort analysis 104 events of the AF647-enriched fraction

contained no GFP-positive events, i.e. ESV organelles (Figure 1B,

bottom, gate P1). Likewise, analysis of 104 events of the GFP-

enriched fraction contained no AF647-positive events, i.e. PV

organelles, with a scatter profile corresponding to that of the pre-

sort sample (Figure 1B, top, gate P2); the cluster of events

extending diagonally and between the GFP and AF647 fraction

was apparent in all samples analyzed, both pre- and post-sort.

Comparisons of normal buffer preparations (used across all

experiments) with more meticulously prepared sample buffers

and sheath fluid (manually filtered through liquid filters with a

pore size of 220 nm) led us to conclude that these events do not

correspond to ESV or PV target organelles, but instead

predominantly represent particulates of very small size. Taken

together, GFP- and AF647-positive events were completely

separable, and we achieved a 100% relative enrichment using

this approach.

To confirm the separation of labeled organelles, we detected

GFP in post-sort precipitates (Figure 1C) using Western blot

analysis. Using an anti-GFP antibody, a band between 40 and

55 kDa corresponding to the predicted CWP3-GFP fusion protein

(53 kDa) was detected in the ESV-enriched fraction but not in the

PV-enriched fraction. An additional GFP-signal was detected in

the high molecular weight area in the ESV-enriched fraction,

presumably corresponding to insoluble CWP3-GFP aggregates

from condensed cores of ESVs or covalently linked homo-

multimers. Taken together with the data obtained by post sort

flow cytometry, we concluded that the two organelles could be

quantitatively separated which was a prerequisite for the

subsequent subtractive analysis.

Mass Spectrometry Analysis of Organelle-enriched
Fractions

Sorted organelle-enriched fractions were analyzed by mass

spectrometry using a shotgun approach combining 1D–SDS-

PAGE and LC ESI-MS/MS (liquid chromatography electrospray

ionization - tandem mass spectrometry). With a Mascot ion cut-off

score of 20 for peptide-spectrum matches, a minimum of 2 unique

peptides, and a protein probability of 80%, a total of 1281 proteins

were identified in the combined triplicate ESV and PV fractions.

After subtraction of environmental contaminations, e.g. keratins,
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PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e94089



1213 G. lamblia proteins remained. A false discovery rate (FDR) of

0.0% for peptides and 0.5% for proteins was calculated by

Scaffold. In the unified ESV fractions (E1+E2+E3) a total of 1129

proteins were identified; 750 (66%) thereof were detected in all

three samples and 933 (83%) in at least 2 of 3 samples (Figure 2A,

top). Comparable numbers were found for PV organelles: of 1140

proteins identified in total (P1+P2+P3), 708 (62%) were detected in

all three samples and 923 (81%) in at least 2 of 3 samples

(Figure 2A, bottom). The large overlaps of the P and E datasets,

respectively, demonstrated high reproducibility between replicate

experiments. For a detailed compilation of identified proteins see

Table S1. All mass spectrometry proteomic datasets have been

deposited to the ProteomeXchange consortium (http://

proteomecentral.proteomexchange.org) and are accessible with

the dataset identifier PXD000694 and DOI 10.6019/

PXD000694.

Subtractive Analysis Eliminates Many Predominantly
Translation-associated and ER-derived Contaminants

Simultaneous sorting of two differentially labeled organelles

(ESVs and PVs) from a mixed microsome fraction allows

subtracting the unspecific background of unlabeled soluble

proteins as well as small cell debris contained within the positively

sorted droplets which are generated by the vibrating nozzle of the

cell sorter. The premise was that by eliminating all proteins

common to the ESV and PV datasets (intersection) the organelle-

specificity of each dataset would increase significantly. In

particular, the occurrence of ER-derived contaminants, which

have been a severe problem in all previous attempts to enrich

Giardia organelles, should be strongly reduced.

The total 1213 hits in all replicate mass spectrometry datasets

contained 1059 putative contaminants, defined by the E1-E3 and P1-

P3 data intersection, whilst 72 proteins were considered ESV-specific

and 82 PV-specific (Figure 2B, top). A detailed description of the

workflow and the in silico identification of the data intersect can be

found in the Figures S1 and S2. This relatively high ratio of

contaminants to organelle-specific proteins was not surprising consid-

ering the results of previous cell fractionation experiments and the

analysis of organelle fractions by SDS-PAGE in this study (not shown).

Analysis of the Eliminated ESV and PV Dataset
Intersection

A more detailed analysis of the two organelle-specific and the

large intersecting datasets was performed using the DAVID

bioinformatics tool [34]. From 1059 proteins in the dataset

intersection we removed an additional 28 with obsolete gene

models. Of the 1031 remaining proteins 903 could be assigned to

14 different DAVID clusters (enrichment score .1), while 128

proteins could not be clustered. 4 of the 14 DAVID clusters

showed an enrichment score of .3 (Figure 2B, bottom). The top

ranking clusters were ‘‘ribosomal proteins’’ (enrichment score

16.12, 701 proteins), ‘‘protein biosynthesis’’ (enrichment score

5.33, 305 proteins), ‘‘chaperones/protein folding’’ (enrichment

score 3.38, 101 proteins) and ‘‘carbohydrate metabolism’’

(enrichment score 3.02, 176 proteins). A corresponding genome-

wide analysis as a reference using a total of 5150 validated genes

yielded on average 79 clusters per 39000 gene models, with the

Figure 1. Flow cytometry based organelle sorting. A) Pre-sort flow cytometry analysis: 10e5 events of a mixed microsome fraction containing
4.3% GFP-positive events (ESV organelles) and 4.7% AF647-positive events (PV organelles). SSC/FSC scatter plot: P3, parent gate (organelle
population); P1 (red) GFP-positive-, and P2 (blue) AF647-positive events. P4 and P5 (controls) were set to randomly collect additional material for later
protein precipitation test runs. B) Post sort analysis shows enrichment of GFP-positive events (39.6%; B, top) and AF647-positive events (42.0%; B,
bottom). C) Western blot analysis of enriched organelle fractions (post-sort precipitates) detecting GFP shows a distinct band for CWP3-GFP (53 kDA,
arrow) in the ESV post sort fraction, but not the PV post sort fraction. M: protein size ladder (kDa); pos, neg: Positive and negative controls from an
ESV-fraction and a non-ESV-fraction (control) of a sucrose density gradient centrifugation experiment performed with 13h encysting Giardia cells
expressing CWP3-GFP [28].
doi:10.1371/journal.pone.0094089.g001
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vast majority of enrichment scores ,1 and none .2. See also

supplementary data (Text S2 and S3) for a detailed description of

all DAVID analyses results. Taken together, this demonstrates the

relative enrichment for translation-associated and ER-derived

factors in the data intersection, supporting the idea that

subtraction of these hits will increase the specificity of organelle

datasets. Conversely no obvious clusters were detected in the

control datasets representing a genome-wide sampling.

Parsing and Manual Annotation of ESV and PV Organelle
Specific Proteins

The large majority of gene models and protein annotations in

the Giardia Genome Database (GiardiaDB) are based on

automated predictions. For a manual annotation of organelle-

specific datasets we used function and homology prediction

programs (PSORTII, TMHMM, SMART, pBLAST and

HHPred) to identify putative signal peptides, transmembrane

domains, protein functional domains and homologies (Table 1 and

Table S2). In total we suggest re-annotation of 29 genes (listed in

Table S2). For parsing, 17 categories were used (Figure 3) based on

predicted function or localization according to the criteria

described in this study or in previous reports [30].

Figure 3 shows a graphical representation of the parsed ESV

proteins in 15 categories with 29 hypothetical proteins remaining.

Eleven of those (15.3%) have predicted homologs in other species,

whereas 18 (25.0%) are considered Giardia-specific. The 82 PV

proteins were parsed into 14 categories, with 32 candidates

designated as hypothetical proteins and 26 thereof (31.7%)

considered Giardia-specific. Direct comparison of the ESV and

PV datasets (Figure 3) revealed a similar proportion of proteins with

no functional prediction, i.e. hypothetical proteins (40.3% and

39.0%, respectively). Parsing of the data revealed clear differences in

categories, with 3 and 2 groups appearing exclusively in the ESV

and PV datasets, respectively (Figure 3). Within the shared groups,

the most striking differences were the overrepresentation of factors

involved in protein translation (ESV: 11.1% versus PV: 2.4%) in the

ESV dataset, or the enrichment of flagella/cytoskeleton proteins

(ESV: 4.2% versus PVs: 20.7%) in the PV dataset.

Detection of Known Organelle Proteins in ESV and PV
Datasets

Fewer than 20 factors are known to associate to ESVs at any

given point during ESV neogenesis and maturation

[10,16,26,29,32,35–39]. Only 3 localize exclusively to ESVs at

Figure 2. Reproducibility of biological triplicates and annotation clustering of intersection. A) VENN diagrams for ESV (E1, E2, E3) and PV
(P1, P2, P3) mass spectrometry datasets (total n = 1281). ESV datasets (A, top) n = 1129 with overlaps. 750 proteins (66%) were detected in all three
datasets. PV datasets (A, bottom) n = 1140 with overlaps. 708 proteins (62%) were detected in all three datasets. B) Clustering analysis of 1059
proteins defined by the E1-E3 and P1-P3 data intersection (see Figures S1 and S2) using the DAVID bioinformatics tool [34]. X-axis: functional clusters
with an enrichment score above 3; y-axis: number of proteins; value in bold on top of column: enrichment score. A detailed summary of all 14 clusters
can be found in the Text S2 and S3.
doi:10.1371/journal.pone.0094089.g002
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Table 1. ESV and PV candidate list.

ESV candidates (n = 72) PV candidates (n = 82)

Cat. GeneID Product description Loc. Cat. GeneID Product description Loc.

HGS Gl2014 Hypothetical protein HGS Gl13651 Hypothetical protein

HGS Gl7350 Hypothetical protein cy HGS Gl15918 Hypothetical protein

HGS Gl9007 Hypothetical protein HGS Gl16811* Hypothetical protein

HGS Gl9157 Hypothetical protein cy HGS Gl17468 Hypothetical protein

HGS Gl10221 Hypothetical protein er HGS Gl29119 Hypothetical protein

HGS Gl10568 Hypothetical protein HGS Gl6535 Hypothetical protein

HGS Gl14235 Hypothetical protein HGS Gl9573 Hypothetical protein

HGS Gl14458 Hypothetical protein pe, ex, es HGS Gl13774 Hypothetical protein

HGS Gl16522 Hypothetical protein HGS Gl13783 Hypothetical protein

HGS Gl22136 Hypothetical protein er HGS Gl16926 Hypothetical protein

HGS Gl24453 Hypothetical protein HGS Gl17330 Hypothetical protein

HGS Gl25205 Hypothetical protein er, es HGS Gl17571* Hypothetical protein

HGS Gl32419 Hypothetical protein er, ex, es HGS Gl24451 Hypothetical protein

HGS Gl87926 Hypothetical protein vd HGS Gl3920 Hypothetical protein

HGS Gl90434 Hypothetical protein HGS Gl4852 Hypothetical protein

HGS Gl113722 Hypothetical protein HGS Gl5890 Hypothetical protein

HGS Gl137705 Hypothetical protein HGS Gl6334 Hypothetical protein

HGS Gl137712 Hypothetical protein HGS Gl10181 Hypothetical protein

HNS Gl5568 Hypothetical protein HGS Gl10524 Hypothetical protein

HNS Gl8799 Hypothetical protein HGS Gl10608 Hypothetical protein

HNS Gl11246 Hypothetical protein HGS Gl112893 Hypothetical protein

HNS Gl13262 Hypothetical protein HGS Gl14971 Hypothetical protein

HNS Gl14345 Coiled-coil protein HGS Gl16543 Hypothetical protein

HNS Gl14877 Hypothetical protein HGS Gl4018 Hypothetical protein

HNS Gl15956 WD-40 repeat protein er HGS Gl4270 Hypothetical protein pm, cy, pv?

HNS Gl22806 Hypothetical protein HGS Gl17347 Hypothetical protein

HNS Gl23357* Hypothetical protein HNS Gl91354* Hypothetical protein

HNS Gl88581 Synaptic glycoprotein SC2 er HNS Gl10522 Hypothetical protein

HNS Gl94654 Hypothetical protein HNS Gl16237 Hypothetical protein

MET Gl4059 Methylthioadenosine/S
adenosylhomocysteine nucleosidase

HNS Gl16367 Hypothetical protein

MET Gl4507 CTP synthase/UTP-ammonia lyase HNS Gl16998 Hypothetical protein

MET Gl6757* Isochorismatase HNS Gl7778 Hypothetical protein

PRO Gl7896 26S proteasome non-ATPase
regulatory subunit 7

R/T Gl11287 Ribosomal protein L7Ae

PRO Gl16823 Non ATPase subunit MPR1 of 26S
proteasome

R/T Gl14869 Ribosomal protein L24

NUC Gl7474 DNA-directed RNA polymerase RPB3 SUG Gl104031 Glycogen synthase, putative

R/T Gl9899* putative eIF2A NUA Gl16328* Pseudouridine synthase

R/T Gl10341* putative 50S ribosomal protein L1 MOT Gl13825 Kinesin-1

R/T Gl10780 Ribosomal protein S27 TPO Gl40224 Multi drug resistance (MDR)
protein-like protein

er, pe

R/T Gl11319 U3 snRNP IMP3, putative ER Gl14856 Signal recognition particle
(SRP) receptor

R/T Gl11755* 30S ribosomal protein S8E MIS Gl3095* Cyclin_N domain containing
protein

R/T Gl15156 Signal recognition particle 54 kDa
(SRP54) GTPase

cy, er, es MIS Gl8394* RdX-domain containing
protein

R/T Gl15546* putative eIF3 MIS Gl32697* Methyltransferase-domain
containing protein
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Table 1. Cont.

ESV candidates (n = 72) PV candidates (n = 82)

Cat. GeneID Product description Loc. Cat. GeneID Product description Loc.

R/T Gl40521* putative eIF2A MIS Gl24979* Thioredoxin domain
containing protein

SUG Gl8382* Putative UDP-GlcNAc-49-epimerase
(GALE)

er MIS Gl2013 Glutaredoxin-related
protein

SUG Gl10324 Ribulose-phosphate 3-epimerase MIS Gl2933 Programmed cell death
protein-like protein

SUG Gl11595* Glycosyl transferase family 8
protein

cy MIS Gl5871 Developmentally regulated
GTP-binding protein 1

SUG Gl15483* UDP-GlcNAc transporter er, pe, es MIS Gl8559 V-type ATPase, 16 kDa
proteolipid subunit

er, pe

NUA Gl16887 ATP-dependent RNA helicase HAS1,
putative

TRA Gl16521 Alpha-SNAP pv

NUA Gl113365 59-39 exoribonuclease 2 TRA Gl15104 Sec1, putative pv

MOT Gl101138 Dynein heavy chain TRA Gl15339 Adaptor protein (AP) complex
large chain subunit BetaA

er

MOT Gl111950 Dynein heavy chain TRA Gl96994* Qa3-SNARE pv

TPO Gl11299 Amino acid transporter, putative er TRA Gl15472* Vacuolar protein sorting
(VPS) 46a

cy, pm? pv?

ER Gl101339 FKBP-type peptidyl-prolyl cis-trans
isomerase

P/K Gl11554 Kinase, NEK

MIS Gl6185* Nucleoside triphosphatase
(NTPase)

P/K Gl15935 Kinase, NEK

MIS Gl7207* Calcium-binding protein cy P/K Gl17231 Kinase, NEK

MIS Gl8524* AAA (ATPases Associated with
diverse cellular Activities) ATPase

P/K Gl2661 Cyclin-dependent kinase
(CdK) regulatory subunit

MIS Gl9594 Hsp70 binding protein P/K Gl17069 Kinase, NEK

MIS Gl14277 N-acetyltransferase-like protein P/K Gl2053 Ser/Thr protein phosphatase 4

MIS Gl14604* Cytosolic Fe-S cluster assembling
factor NBP35

P/K Gl17556 Kinase, CAMK, CAMKL

MIS Gl32838* Nitrogen fixation protein NifU P/K Gl9894 Protein phosphatase 2A (PP2A)
regulatory subunit, putative

MIS Gl113143 Lipopolysaccharide-responsive and
beige-like anchor protein

F/C Gl11164 Protein 21.1

MIS Gl9058* Putative Type 2A phosphatase-
associated protein 42 (TAP42)

F/C Gl11165 Protein 21.1

TRA Gl8049* Putative importin alpha F/C Gl113622 Protein 21.1

TRA Gl15204 ERP3 F/C Gl16532 Protein 21.1

TRA Gl17109 Vacuolar protein sorting 11 (VPS11) F/C Gl17046 Protein 21.1

TRA Gl137698 Sec13 F/C Gl23492 Protein 21.1

P/K Gl14545* putative Ser/Thr-protein
phosphatase 2A (PP2A)

F/C Gl6744 Centrin

P/K Gl14661* Ser/Thr protein kinase F/C Gl95192 Protein 21.1

P/K Gl32312 Protein phosphatase 2C (PP2C) F/C Gl9750 Intraflagellar transport protein
component IFT74/72

F/C Gl4026 Alpha-19 giardin F/C Gl10038 Alpha-18 giardin

F/C Gl15587 Protein 21.1 F/C Gl10219 Protein 21.1

F/C Gl24009 Protein 21.1 F/C Gl103807 Protein 21.1

F/C Gl13766 Protein 21.1

F/C Gl14926 Protein 21.1

F/C Gl16220 Protein 21.1

F/C Gl14745 Protein 21.1

F/C Gl15428 IFT complex B

VSP Gl33279 VSP

VSP Gl13194 VSP AS8

Organelle Proteomics in Giardia lamblia
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13h post induction (p.i.): CWP1 and the large fragment of the

proteolytically processed CWP2 in the fluid phase fraction, and

CWP3 together with the small fragment of CWP2 in the

condensed core [28]. CWP-derived tryptic peptides are detected

very inefficiently in MS most likely due to the well-documented

extensive intra- and intermolecular cross-linking by disulfide and

isopeptide bonds [40,41]. The proportion of DTT (dithiothreitol)-

resistant high molecular weight complexes of CWP3-GFP can be

estimated in the Western blot in Figure 1C (ESV). Nevertheless,

peptides derived from the organelle marker CWP3-GFP or

endogenous CWP3 were detected exclusively in ESV-enriched

samples by MS (average quantitative value of 2.7) albeit only at a

stringency of 1 unique peptide and 50% protein probability. GFP-

derived peptides were detected in all 3 ESV-enriched samples with

an average quantitative value of 1.7.

Of the 72 proteins in the ESV dataset, 4 are either known or

predicted to associate to ESV organelles. In particular, we

identified two COPII-coat components Sec13 (Gl137698) and

Erp3 (Gl15204) (trafficking proteins, Figure 3, Table 1). The

association of other COPII-components with ESVs, such as

GlSar1 and GlSec31, during early development was observed

previously [26,29]. Additional ESV-associated factors are repre-

sented by 2 proteasome proteins (Figure 3, Table 1). Proteasome

complexes are recruited to ESV membranes during early

encystation, perhaps in connection with post-ER quality control

and associated degradation processes [32]. It is important to note

that with the exception of CWP1–3, all other previously described

ESV-associated factors are also expressed in trophozoites. Since

their expression is not strictly stage-specific and they are recruited

to ESV organelles from other subcellular localizations during

encystation, their absence in the ESV-specific dataset but detection

in the data intersection instead is not surprising.

The 15 PV proteins which have been identified in trophozoites

and encysting cells thus far include soluble N-ethylmaleimide-

sensitive-factor attachment receptors (SNAREs), components of

the clathrin/adaptor protein (AP)-mediated trafficking machinery,

Rab11, an acidic phosphatase and an encystation-specific protease

termed ESCP [13,16–18,29,42,43]. Since most of these PV-

associated proteins are involved in vesicle trafficking, they have

secondary localizations, i.e. the cytoplasm, the plasma membrane,

the ER or ESVs. Not surprisingly, we recovered the majority

of these trafficking proteins in the data intersect. However,

the Qa3-SNARE homolog syntaxin1 (Gl96994) [29,43] was

specifically included in the PV dataset. In addition to this

membrane trafficking factor we recovered 3 previously described

PV-associated proteins including two VSPs (Gl33279, Gl13194)

[44,45] and, when lowering the stringency to 1 unique peptide, the

encystation-specific cysteine protease ESCP (Gl14566) [13].

Taken together, we detected 5 known ESV-associated proteins,

including our organelle marker CWP3-GFP, in the ESV dataset,

whereas 4 known PV-associated factors were contained in the PV

dataset. Because of their extensive cross-linking and post

translational modifications CWP1 and CWP2, comprising the

fluid component of the cyst wall material (CWM) in ESVs at 13

hours p.i., were detected only with relaxed stringency.

Subcellular Localization of Candidate PV Proteins
As a first partial validation of the PV-derived dataset and to

determine whether novel PV proteins are contained within the

dataset, we expressed 8 proteins as C-terminally hemagglutinin

(HA)-tagged variants in G. lamblia (Table 1, Figure 4b). In addition

to proteins involved in membrane traffic, we focused on additional

predicted transmembrane or membrane interacting proteins. We

localized 3 tagged candidates involved in SNARE-mediated

membrane fusion: (i) a Qa3-SNARE (Gl96994) homologous to

syntaxin 1a [29,43] (ii) a putative Sec1 protein (Gl15104) which

forms heterodimers with syntaxin 1a [46] and (iii) a putative alpha-

soluble N-ethylmaleimide-sensitive factor attachment protein

(alpha-SNAP) (Gl16521). All 3 reporters localized predominantly

to the cortical area of trophozoites, consistent with an association

to PVs (Figure 5A–C and Figure S5). Our localization data of the

Giardia Qa3-SNARE are in agreement with previous studies

localizing this protein to PVs [43].

We localized two proteins with a predicted function in

endocytic/endosomal transport: the adaptor protein (AP) large

chain subunit BetaA (Gl15339) and a VPS (vacuolar protein

sorting) 46a homolog (Gl15472), a putative component of a

giardial endosomal sorting complex required for transport

(ESCRT) III complex [47]. Localization of the tagged AP large

chain subunit revealed a distribution consistent with the Giardia

ER (Figure 5D). This result is partially consistent with earlier

studies detecting an AP1-subunit in PVs and the ER, and the AP2-

subunit u2 in PVs and the plasma membrane [17,18]. The tagged

giardial VPS46a homolog was detected in the cytoplasm, and

probably localizes also to the plasma membrane and/or to PVs

(Figure 5E).

Subcellular localization studies on the vacuolar ATP synthase

subunit (Gl8559, Figure 5F) and the multidrug resistance (MDR)-

like protein (Gl40224, Figure 5G) showed perinuclear staining and

distribution typical of the Giardia ER. One hypothetical protein

Table 1. Cont.

ESV candidates (n = 72) PV candidates (n = 82)

Cat. GeneID Product description Loc. Cat. GeneID Product description Loc.

HCM Gl15317 HCMP Group 1

HCM Gl24880 HCMP Group 2

HCM Gl103454 HCMP Group 1

72 ESV and 82 PV candidate lists. The subcellular localization of 16 (ESV) and 8 (PV) candidates determined in this study are indicated. Additional information including
GenBank accession numbers can be found in Table S2. Cat: category; GeneID: Gene accession number according to the G. lamblia genome database; Loc: localization
determined in this study; n: number; er: endoplasmic reticulum; pe: perinuclear ER; ex: ER exit sites; es: encystation-specific vesicles; cy cytoplasm; vd: ventral disc; pv:
peripheral vesicles; pm: plasma membrane. HGS: hypothetical protein Giardia-specific; HNS: hypothetical protein not Giardia-specific; MET: metabolism; PRO:
proteasome; NUC: nuclei; R/T: ribosome/translation; SUG: sugar metabolism; NUA: nucleic acid metabolism; MOT: motor proteins; TPO: transporter; ER: endoplasmic
reticulum; MIS: miscellaneous; TRA: trafficking; P/K: phosphatases/kinases; F/C: flagella/cytoskeleton; VSP: variant-specific surface protein; HCM, HCMP: high-cysteine
membrane protein, eIF: eukaryotic initiation factor; snRNP: small nuclear ribonucleoprotein; SNAP: soluble N-ethylmaleimide-sensitive-factor (NSF) attachment protein;
SNARE: soluble N-ethylmaleimide-sensitive-factor (NSF) attachment receptor; GlcNAc: N-Acetylglucosamin; NEK: NimA related kinase; *: re-annotated.
doi:10.1371/journal.pone.0094089.t001
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(Gl4270, Figure 5H) was detected in vesicle-like structures at the

plasma membrane and in the cytoplasm. Whether these structures

correspond indeed to PVs will require further investigation.

Subcellular Localization of Candidate ESV Proteins
To validate the ESV-organelle dataset, 16 proteins were chosen

for ectopic expression as C-terminally HA-tagged variants in

G. lamblia (Table 1, Figure 4a) based on the following criteria: (a)

Giardia-specific hypothetical proteins since they are unique to

Giardia and might associate with ESVs; (b) proteins whose

mRNAs were significantly upregulated during encystation [48],

representing putative key factors in differentiation; and (c) proteins

with predicted transmembrane domains and/or signal peptides, as

they may be trafficked to ESVs. In addition, we wanted to localize

proteins involved in (d) sugar metabolism or (e) sugar transport as

these may represent key factors required for cyst wall glycan

synthesis. Another category (f) was composed of predicted

transporters which may be involved in direct import of substrates

into ESV organelles from the cytoplasm. We also determined the

subcellular localization of (g) a newly identified calcium-binding

protein. Finally, we selected (h) a signal recognition particle

component to test for recruitment of complexes for co-transla-

tional insertion of proteins across the ER and ESV membranes, as

suggested by the electron microscopy data (see below in ‘‘Factors

for co-translational protein insertion’’).

Subcellular localization studies of 16 ESV candidate proteins

revealed 11 candidates which had a distribution consistent with

ER localization; 6 were detected exclusively in the ER while 5 also

localized to ESVs. Four tagged candidates showed cytoplasmic

localization and one candidate localized to the ventral disc

(Table 1, Figure 4A).

A) Novel ESV proteins. Only two ER-resident proteins are

known to reach ESVs without being secreted to the surface of the

cell: heat shock protein (Hsp) 70/Binding protein (BiP), which

cycles between the ER and ESVs [32] and a subtilisin-like

proprotein convertase termed gSPC [39]. Here we identify 3

additional hypothetical proteins that localize to the ER and ESVs

during encystation: (i) At 13 h p.i., the 202 amino acid-long HA-

tagged Gl14458 product was detected in the perinuclear ER, in

ER-associated punctate structures reminiscent of ER exit sites

(ERES), and overlapping with emerging ESVs in the cytoplasm

(Figure 6B). Transgenic cells expressing Gl14458-HA showed a

significant delay or, in most cells, a block of CWP1 export from the

ER and a reduction in the number of ESVs compared with wild

type cells (Figure 6A, B) or transgenic cells expressing unrelated

HA-tagged products (data not shown). (ii) ORF Gl32419 is stage-

specifically upregulated [49] and codes for a 564 amino acid

protein of unknown function (Table S2) whose HA-tagged variant

localizes in the ER, including structures reminiscent of ERES [27]

as well as with maturing ESVs (Figure 6C, D). In cells with mature

ESVs containing condensed cores the protein localized to ER

membranes, in particular to those adjacent to ESVs (Figure 6C–

E). (iii) The predicted Gl25205 product is a hypothetical Giardia-

specific multipass membrane protein of 1246 amino acids with 14

hydrophobic domains. An epitope-tagged variant localized to the

ER and in many cases also to morphologically normal ESVs at 13

hours p.i. (Figure 6F).

B) Factors involved in cyst wall glycan synthesis. ORF

Gl15483 codes for an UDP-N-acetylglucosamine (UDP-GlcNAc)

sugar transporter [50] with a reported localization at the

perinuclear ER and at peripheral vesicles distinct from PVs [51].

This observation is only partially consistent with our localization of

an HA-tagged variant in the ER but not to other organelles in

encysting trophozoites at 13h p.i. (Figure 7A, 7B). In dual labeling

experiments, signal overlap of 15483-HA and CWP1 in the

perinuclear ER and in areas corresponding to punctate peripheral

ER regions or emerging ESVs was observed (Figure 7A, arrows).

When mature ESVs were present, the overlap of the two proteins

Figure 3. Categorization of the 72 ESV and 82 PV candidates. 17 categories based on predicted function were used. The percentage of
candidates in each group is indicated at the end of the columns. ESV candidates (green) and PV candidates (red) fall into 15 and 14 groups,
respectively. ER: endoplasmic reticulum; VSPs: variant surface proteins; HCMPs: high cysteine membrane proteins. Detailed information on the
candidates in each category can be found in the Table S2.
doi:10.1371/journal.pone.0094089.g003
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was restricted mostly to the perinuclear ER (Figure 7B). Notably,

Gl15483-HA-expressing cells showed delay of CWP1 export from

the ER and accumulation in the perinuclear ER at 13h p.i.

(Figure 7A, 7B).

ORF Gl8382 codes for a putative UDP-GlcNAc-49-epimerase

(GALE) homolog in Giardia with an N-terminal signal sequence.

Manual protein sequence analysis revealed that the giardial

protein harbors all conserved motifs required for the enzyme’s

function [52] (Figure S3). An HA-tagged variant localized to the

ER (Figure 7C). These transgenic cells retained CWP1 in the ER

at 13h p.i. and no mature ESVs were formed. The correlation, if

any, between this phenotype and the predicted function of the

protein, i.e. conversion of UDP-GlcNAc into the UDP-N-

acetylgalactosamine (UDP-GalNAc) monomer of the cyst wall

glycan [53] in the ER lumen, remains to be determined.

C) Factors for co-translational protein insertion. The

panel of candidate ESV proteins contains a substantial number (8,

11.1%) of ribosomal or ribosome-associated proteins (Figure 3,

Table 1) whereas the PV dataset only contained 2 of these

potential contaminants. Interestingly, in transmission electron

microscopy (TEM) images we found that, in addition to decorating

rough ER membranes, ribosomes distinctly associated with ESV

membranes (Figure 8A, inset). Taken together with the identifi-

cation of a component of the signal recognition particle, SRP54

(Gl15156) in the ESV dataset, this suggests that ESV cargo

proteins could be inserted co-translationally directly into the ESV

lumen. Since transgenic cells expressing epitope-tagged ribosomal

subunits were not viable, we tested this hypothesis indirectly by

expression of an epitope-tagged SRP54 variant (Table 1). The

tagged product localized in a punctate, distributed pattern and

signal overlap with CWP1 was detected predominantly in smaller

ESVs (Figure 8B, arrows). The possibility that proteins, presum-

ably CWPs, are co-translationally inserted directly into ESVs is

intriguing but requires additional experimental testing.

In summary (see Table 1) our localization studies uncovered 5

ESV-associated proteins including 3 Giardia-specific proteins

(Gl32419, Gl14458, Gl25205), the signal recognition particle

subunit SRP54 (Gl15156), and an UDP-GlcNAc transporter

(Gl15483). Six tagged candidates localized exclusively to the ER.

Among these were an UDP-GlcNAc-49-epimerase (GALE) even-

tually involved in synthesis of the CW glycan, two hypothetical

proteins (Gl10221, Gl22136), a predicted synaptic protein SC2

(Gl88581) and a WD40 repeat protein (Gl15956) both of unknown

function, and an amino acid transporter (Gl11299). Four tagged

candidates showed cytoplasmic localization: two Giardia-specific

hypothetical proteins (Gl7350, Gl9157), a calcium-binding protein

(Gl7207), and a glycosyl transferase family 8 protein (Gl11595).

Finally, a Giardia-specific protein of unknown function (Gl87926)

was detected at the ventral disc. Taken together, this preliminary

analysis suggests that i) abundant novel ESV cargo proteins are not

present in mature ESVs, and ii) while large amounts of ER-derived

contaminants can be eliminated by subtraction, many ER proteins

remain in the dataset. The most likely explanation for this is the

intimate physical contact and direct connections between the ER

and ESVs as illustrated in Figure 8A, which survive cell disruption

and organelle preparation.

Discussion

ESV organelles are inducible Golgi-like membrane compart-

ments for accumulation, processing, sorting, and export of the

Giardia cyst wall material during differentiation of trophozoites

into cysts [26,28,29]. Their de novo genesis and maturation to

secretion-competent organelles is only partially understood: Fewer

than 20 ESV-associated factors (among them the 3 CWPs) have

been identified or characterized [10,16,26,29,32,35–39]. Howev-

er, no defining ESV-specific, peripherally associated or mem-

brane-bound factor has been identified. Previous attempts to

generate an ESV proteome using cell fractionation and density

gradient centrifugation yielded datasets which revealed additional

ESV factors but also contained very high levels of contaminating

proteins [32] (Hehl A.B., unpublished). Here, we tested a

conceptually new approach to generate highly enriched organelle

proteome datasets for ESVs and PVs resulting in identification of a

candidate set of 72 ESV- and 82 PV-associated proteins.

The ER and ESVs Maintain a Broad Range of Interactions
Partial validation of the ‘‘ESV-specific’’ protein dataset (72

candidates) by subcellular localization studies of 16 selected ESV

candidate proteins revealed 5 proteins which localized to ESVs,

but also many ER proteins: 11 candidates had a distribution

consistent with ER localization; 6 thereof were detected exclusively

in the ER. This suggests that elements of ER organelles remain

physically linked to and are co-sorted with labeled ESVs, but not

PVs.

ESVs are closely associated with the ER during their neogenesis

and nucleated from ERES in a COPII-dependent process [26,27].

Although light microscopy data suggests that ESVs become

physically distinct from the ER after neogenesis [27,28] previously

published electron microscopy (EM) data [20,42,54] and data in

Figure 4. Subcellular localization of selected ESV and PV candidates. 16 (ESV candidates) and 8 (PV candidates) HA-tagged variants were
localized by immunofluorescence analysis in transgenic cells. A) Subcellular localization of 16 ESV candidates in trophozoites at 13 hours p.i. B)
Subcellular localization of 8 PV candidates. Detailed information on the respective candidates can be found in Table 1 and Table S2. ER: endoplasmic
reticulum; ESVs: encystation-specific vesicles; CYT: cytoplasm; VD: ventral disc; PVs: peripheral vesicles; PM; plasma membrane.
doi:10.1371/journal.pone.0094089.g004
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the present study (Figure 8A) clearly show membrane continuities

between the organelle systems. The imaging data is supported by

evidence for cycling of ER-resident proteins such as Hsp70/BiP

between the two organelles [32]. An extensive network of tubular

membrane connections mediating exchange of CWP1 between

maturing ESVs makes a definition of the boundaries for ESVs

even more challenging [26]: there is a possibility that this dynamic

network is not restricted to ESV organelles but establishes direct

connections with the ER [28]. Further, the recruitment of

proteasomes [32] and ribosomes to ER and ESV membranes, as

shown also in this study, is an additional common feature of the

two organelles. This suggests that basic trafficking-related

processes such as co-translational import of secreted proteins,

folding, retro-translocation, and associated degradation processes

start at the ER level but may extend beyond ESV genesis.

Consistent with the premise of subtractive elimination of ER

proteins from organelle-specific factors, the MS data intersect was

highly enriched in abundant ER-resident proteins, e.g. protein

disulfide isomerase (PDI) 1–5, Hsp70/BiP and Hsp90/Grp94. On

the other hand, many proteins in the ESV dataset showed a typical

ER distribution, although 5 proteins also localized to ESVs. A

likely explanation is that many tested candidates are present in ER

subdomains closely associated or directly connected to ESVs.

When encysting Giardia cells are subjected to cell disruption by

sonication or other tested methods such as nitrogen cavitation (not

shown), these ER domains remain physically linked to ESVs and

are enriched accordingly in the sorting process.

Despite elimination of ,90% of all hits in the dataset

intersection, which was enriched for known ER proteins, the

ESV dataset still contained a large number of proteins localizing to

the ER. There are several possible explanations for this surprising

finding, the most likely being the intimate association between the

ER and ESVs as discussed above. The physical connections and

membrane continuities may be resistant to our cell disruption

protocols and may thus limit to extraction of ESVs from this

subcellular context. In contrast, ER membranes and PV do not

occupy the same cellular space: the ER network extends

throughout the cytoplasm but not into the cortical layer just

below the plasma membrane into which PVs are embedded [55].

Although the interface between the two organelle systems includes

postulated direct contact points [8] the subcellular segregation of

the two compartments appears to make separation by cell

disruption easier.

We performed a preliminary validation of the ‘‘ESV-specific’’

dataset by localizing 16 tagged factors. The results suggested that

the dataset contained many ER proteins rather than novel ESV

factors. Based on this we propose two non-mutually exclusive

interpretations for the lack of novel ESV-specific proteins in our

datasets: i) The organelle enrichment strategy and post-sorting

elimination of contaminants worked well for filtering out abundant

generic ER proteins, but is less efficient in eliminating minor

contaminants and/or proteins that remain attached to the

fluorescently labeled organelles. ii) ESVs and the ER are highly

distinct with respect to abundant luminal proteins such as CWPs,

modifying factors, or chaperones. However, both organelles share

most membrane or peripherally associated proteins. All available

data on stage-specific gene expression during encystation suggests

that only CWP genes are strictly stage-specifically regulated (i.e.

completely ‘‘off’’ in trophozoites) whilst the remaining (,20)

significantly modulated ‘‘encystation’’ genes are upregulated from

a basal level in trophozoites during the first 7 hours p.i. [48]. Since

CWPs as cargo proteins are certainly more abundant than ESV

membrane or organelle-associated proteins, any novel represen-

tatives of the latter are difficult to identify within a still relatively

high background of ER proteins. In fact, the apparent lack of

abundant novel proteins in ESVs exacerbates the appearance of

false-positive ER factors in the organelle-specific dataset.

A Proposal for Cargo-driven ESV Neogenesis
The emerging picture in Giardia encystation is that, aside from

synthesis of the bulk cyst wall proteins, only relatively small

adjustments of expression in some genes (e.g. enzymes for the

synthesis of the cyst wall glycan) are required for encysting cells to

produce mature ESVs [48,56]. This also suggests that morpho-

genesis of ESV organelles could be driven by accumulation of

cargo rather than by specific organelle-associated factors, analo-

gous to the formation of dense core secretory granules (DCSG) in

endocrine/neuroendocrine cells [57], or in ciliates [58]. In early

electron microscopy studies, ESV formation was described as

Figure 5. Subcellular localization of 8 selected PV candidates.
Representative localization of C-terminally HA-tagged variants after
constitutive expression in trophozoites (H) or 8–12 hours induced
expression (A-G). A, B, C) Gl96994HA (Qa3-SNARE), Gl15104HA (Sec1
homolog), and Gl16521HA (putative alpha-SNAP) localize to PVs. D)
Gl15339HA (beta adaptin) localizes to the ER. E) Gl15472HA (VPS46
homolog) localizes to the cytoplasm and shows intense signal near the
cell surface. F, G) Gl8559HA (v-type ATPase) and Gl40224HA (MDR-like
protein) localize to the perinuclear region and the ER in trophozoites. H)
Gl4270HA (hypothetical protein) localizes to vesicle-like structures at
the plasma membrane and in the cytoplasm. Localization to PVs cannot
be excluded. Antibodies: anti-HA high affinity from rat, Alexa488-
conjugated goat anti-rat (green), alternatively rat anti-HA-FITC (green).
pCWP1: inducible CWP1 promoter; pendo: endogenous promoter; int:
stable integration into the genome; epi: episomal maintenance of the
plasmid. Scale bar: 1.5 mm.
doi:10.1371/journal.pone.0094089.g005
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aggregation of electron-dense material in ER membrane-bounded

compartments, followed by growth via direct addition of newly

synthesized CWPs until large organelles are formed [21,54,59]. A

more recent model posits that ESV formation is the result of self-

organizing properties, mainly of CWP3, leading to formation

of a dense core [28]. The ability of CWP1 and 2 to form highly

Figure 6. Subcellular localization of three ESV candidates: Gl14458HA, Gl32419HA, and Gl25205HA. Representative localization of C-
terminally HA-tagged variants after inducible (Gl14458, Gl32419) or constitutive expression (Gl25205) by confocal microscopy at 13h p.i. Anti-CWP1
was used to detect ESV organelles. A) Wild type (WB) encysting trophozoite at 13h p.i.: CWP1 localized to ‘‘doughnut-shaped’’ ESVs which is typical
for this time point [28]. No CWP1-signal in the perinuclear ER was visible. B) Gl14458HA at 13h p.i.: Gl14458HA was detected primarily in the
perinuclear ER and overlaps with CWP1 in ESVs. Note the retention of CWP1 in the perinuclear ER and reduction of ESV numbers. In fact, the majority
of induced cells in the population did not produce ESVs at all. C, D, E) Representative subcellular localizations of Gl32419-HA at 13h p.i. C) Partial
signal overlap of Gl32419HA (green) with CWP1 (red) in knob-like structures, reminiscent of ESV neogenesis at ER exit sites [27]. Alternatively,
Gl32419HA localized to the ER D) co-localizing with CWP1 primarily in the perinuclear ER and in ESVs suggesting delayed export of CWM to ESVs. E)
In cells with canonical mature ESVs no signal overlap of Gl32419HA and CWP1 was observed. F) Gl25205HA at 13h p.i. was detected in the ER and in
ESVs with occasional signal overlap with CWP1. Antibodies: anti-HA high affinity from rat, Alexa488-conjugated goat anti-rat (green), and Texas red-
conjugated anti-CWP1 (red). Nuclear DNA was labeled with DAPI. pCWP1: inducible CWP1 promoter; pendo: endogenous promoter; int: stable
integration into the genome; epi: episomal maintenance of the plasmid, WB: wildtype. Scale bar: 1.5 mm.
doi:10.1371/journal.pone.0094089.g006
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cross-linked complexes [21,41], and of CWP1 to bind directly to

the GalNAc homopolymers [60], which constitutes 60% of the cyst

wall material, provides the prerequisites for distributing the

extracellular matrix material evenly on the surface of the parasite

before initiating polymerization. The presence of basic and simple

machinery for ESV formation is supported by the observation that

the expression of CWP1 and CWP2 in human embryonic kidney

cells is sufficient to induce accumulation in membrane compart-

ments and secretion of the proteins [61]. This observation is in line

with granule formation in non-granule forming cells upon

expression of different dense core granule cargo proteins, including

pro-vasopressin, chromogranin A or von Willebrand factor [62–

64], suggesting that the cargo proteins themselves induce the

formation of their own carriers through accumulation. Thus, ESV

formation might be driven by progressive accumulation of CWPs

by a ‘‘sorting by retention’’ mechanism, while ER-resident

proteins such as Hsp70/BiP are removed via low-density vesicles

or tubular connections between ER and ESVs as the organelles

mature [32]. Taken together, the proteome data support a

scenario for ESV formation and maturation which relies strongly

on inherent properties of cargo proteins and likely only few and as

yet unidentified additional components, rather than on a

dedicated ESV-specific, organelle-associated machinery driving

morphogenesis.

Analysis of the remaining candidates in the data set might bring

to light further proteins localizing to ESV organelles. However,

none of these genes appear to be significantly upregulated during

encystation [48]. Thus, unless significant translational control

comes into play [36] we do not expect any additional highly

abundant proteins to be discovered exclusively in ESVs.

Taken together, identification of one or more low abundance

protein(s) which could be used as defining factors for ESVs as post

ER organelles within the only regulated secretory transport

pathway in Giardia, remains a significant challenge.

Ribosomal Proteins Are Enriched in the ESV Fraction
A comparison of the 72 ESV-specific and 82 PV-specific

candidates revealed a significant enrichment of translation/

ribosome proteins in the former. Using transmission electron

and immunofluorescence microscopy we found support for

recruitment of ribosomes not only to the ER but also to ESV

membranes during the differentiation process. However, addition-

al functional verification is required, in particular to test whether

co-translational insertion of proteins directed to the regulated

secretory pathway may occur directly into ESVs.

In eukaryotic cells, ribosomes localize to the cytoplasm,

the nuclear envelope, and the rough ER, giving the latter its

typical appearance in transmission electron microscopy. While an

Figure 7. Subcellular localization of the Giardia UDP-GlcNAc transporter (Gl15483) and the putative ER-GALE (Gl8382).
Representative subcellular localization of C-terminally HA-tagged variants of UDP-GlcNAc transporter (Gl15483) and the putative UDP-GlcNAc-49-
epimerase (Gl8382) in encysting transgenic cells. A, B) At 13h p.i.: the HA-tagged transporter was detected in the ER. Co-localization with CWP1 was
observed in the perinuclear ER and in areas corresponding to distinct ER regions or early ESVs (A, arrows). CWP1 is delayed in the perinuclear ER of
Gl15483HA-expressing cells where it overlaps with Gl15483HA. In mature ESVs, no co-localization of the two proteins was observed. C) Localization of
the putative UDP-GlcNAc-49-epimerase (Gl8382HA) at 13h p.i in the ER together with CWP1 whose export is delayed. Antibodies: anti-HA high affinity
from rat, Alexa488-conjugated goat anti-rat (green), and Texas red-conjugated anti-CWP1 (red). Nuclear DNA was labeled with DAPI. pCWP1:
inducible CWP1 promoter; int: stable integration into the genome; scale bar: 1.5 mm.
doi:10.1371/journal.pone.0094089.g007
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association of ribosomes to Golgi membranes in eukaryotic cells

containing a steady state Golgi organelle was not observed,

giardial ribosomes can be visualized on ESV membranes. Co-

translational insertion of secreted proteins directly across ESV

membranes might be a consequence of the requirement for

producing large quantities of CWP in the relatively short time

when ESVs grow maximally. The process of CWP synthesis,

translocation and folding clearly begins at the ER level from which

CWPs are exported in a COPII-dependent manner [27]).

However, the amount of CWPs detected in the ER drops

significantly after establishment of small immature ESVs

(Figure 5 in [27]). Direct co-translational import of CWPs via

ESV membranes is one possible explanation for this observation.

Directed translocation of proteins across ESV membranes towards

the cytosol as part of a quality control system was inferred from the

observation that proteasome complexes were recruited to the

vicinity of developing ESV organelles [26]. Pore complexes such as

Sec61, for which an alpha and a gamma subunit are annotated in

the Giardia genome database, are required for co-translational

insertion and are also strongly implicated in retro-translocation to

the cytoplasm [65]. In support of co-translational insertion of

proteins across ESV membranes, a signal recognition particle

component, 54 kDa protein (Gl15156), has been localized partially

to ESVs (Figure 8B). However, none of these factors are

distributed in an organelle-specific manner and there is currently

no possibility to design experiments allowing a dissection of

the directionality of protein translocation across ESV or ER

membranes.

Is the Cyst Wall Sugar Monomer UDP-GalNAc
Synthesized in the ER?

The Giardia cyst wall consists of 3 proteins (CWP1–3) and a

b(1-3)-GalNAc homopolymer which makes up about 60% of the

cyst wall [24,25]. While the protein components are trafficked via

ESV organelles to the surface of the cell, the place of synthesis,

transport to the surface, as well as timing and manner of

incorporation of the sugar components into the cyst wall remains

largely unknown. The sparse literature on the subject suggests

synthesis of the cyst wall monomer UDP-GalNAc from endoge-

nous glucose by a series of stage-specifically regulated, enzymatic

reactions [53]. A late step, i.e. conversion of UDP-GlcNAc into

UDP-GalNAc, was proposed to be performed by a cytosolic UDP-

GlcNAc-49-epimerase or so called GALE (Gl7982). While some

experimental data showed that the enzyme converted UDP-

GlcNAc into UDP-GalNAc during encystation, investigation of

enzyme kinetics showed that the reverse reaction towards

production of UDP-GlcNAc was clearly favored, raising significant

doubts about a productive synthesis of UDP-GalNAc in the

cytoplasm [66].

In this study, two important proteins potentially involved in this

process were identified in the ESV dataset: i) the only nucleotide

sugar transporter (Gl15483) identified in the Giardia genome

project [50] which specifically transports UDP-GlcNAc from the

cytoplasm to the ER lumen [51], and ii) a putative UDP-GlcNAc-

49-epimerase (GALE) (Gl8382). We detected epitope-tagged

variants of the epimerase in the ER, and the transporter mainly

showed distribution in the perinuclear ER and early ESVs, where

its signal overlapped with that of CWP1. N-glycosylation of

Figure 8. Stage-specific recruitment of ribosomes to ESV membranes. A) Transmission electron microscopy image of ESVs in G. lamblia wild
type encysting cells at 7 h p.i. (magnified on the right). Recruitment of ribosomes to ER membranes (tubular structures) and to early ESVs (round,
electron-dense structures) is observed. Ribosomes are visible as small, round and highly electron-dense structures arrayed along the cytoplasmic side
of ESV and ER membranes. B) Immunofluorescence analysis of cells expressing a C-terminally HA-tagged signal recognition particle component
SRP54 (line pendo-15156HA-epi). The micrograph shows punctuate localization of SRP54-HA and partial overlap with CWP1 accumulation (arrows).
Cytoplasmic and ER membrane associated SRP54-HA generates a high background signal, making a detection of the protein at ESV membranes
difficult. Antibodies: anti-HA high affinity from rat, Alexa488-conjugated goat anti-rat (green), and Texas red-conjugated anti-CWP1 (red). Nuclei were
labeled with DAPI. pCWP1: inducible CWP1 promoter; epi: episomal maintenance of expression vector; scale bar: 1.5 mm.
doi:10.1371/journal.pone.0094089.g008
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Giardia proteins is restricted to addition of GlcNAc1-2 to

asparagine [67]. Consistent with this, the parasite lacks genes

required for synthesis of the typical eukaryotic core-oligosaccha-

ride GlcNAc2Man9Glc3 and for further N-glycan processing in the

ER and Golgi. While the UDP-GlcNAc-transporter Gl15483 in

the ER membrane imports UDP-GlcNAc used for N-glycosyla-

tion, the presence of an ER-localized UDP-GlcNAc-49-epimerase

converting UDP-GlcNAc into UDP-GalNAc indicates involve-

ment of the putative GALE enzyme (Gl8382) in producing the

UDP-GalNAc monomer for the cyst wall glycan in the ER.

Opportunities and Technical Limitations of Dual
Organelle Sorting and in Silico Processing of Mass
Spectrometry Data

In proteomic studies, the purity of the biological sample is of

utmost importance for a successful analysis. One of the most

crucial steps is subcellular fractionation. Despite considerable

efforts to optimize protocols for purification of Giardia organelles,

the levels of contaminating proteins from non-target organelles

and cellular structures remain high [32,33]. The most frequently

used subcellular fractionation techniques applied in organellar

proteomics are density-based gradient centrifugation, affinity-

based isolation, free flow electrophoresis, and recently also flow

cytometry [68–71]. Fluorescence-based organelle sorting by flow

cytometry is challenging because of the small size of organelles

which usually results in reduced fluorescence intensity. In the case

of Giardia organelles, labeling with a highly expressed luminal

GFP-tagged organelle marker (CWP3-GFP) in ESVs or the

endocytic uptake of a fluid-phase fluorescent dye by PV organelles

created unique opportunities for intense organelle labeling. This

was sufficient to clearly detect and enrich the organelles

simultaneously by flow cytometry despite their small size and,

most importantly, to achieve a 100% relative enrichment (i.e.

100% separation) of ESVs and PVs which was a precondition for

the subsequent subtractive approach. Analysis of ESV and PV-

enriched samples by shotgun mass spectrometry revealed high

reproducibility between 3 independent experiments.

The limited purity of organelle preparations and the high

sensitivity of current mass spectrometers require additional

measures to address the large quantities of false-positive hits.

Researchers have developed different (in silico) strategies for the

elimination of contaminating proteins from organellar datasets. A

proteomic study on Giardia mitochondria-relic organelles (mito-

somes) using gradient centrifugation took advantage of the

organelle distribution into two neighboring fractions [33]. Using

isobaric tags for relative and absolute quantitation (iTRAQ) mass

spectrometry the relative distribution of mitosomal marker

proteins between the two fractions was evaluated, and novel

putative proteins were identified based on their similar distribution

ratio [33]. Another study focusing on the proteome of Spironu-

cleus hydrogenosomes utilized the distribution of the target

organelle into two gradient fractions of distinct densities [72].

After mass spectrometry analysis, putative organelle-specific

proteins were identified by their co-purification with organelle

marker proteins. Both approaches significantly reduced the

incidence of contaminants in the resulting large datasets, but the

proportion of organelle-specific proteins remained low.

In our case, simultaneous enrichment of ESV and PV organelles

makes subtractive approaches to identify contaminating MS hits

in silico possible. Using this approach we removed 1059 hits which

were common to both organelle fractions, including a large

proportion (86%) of ribosome/translation and ER-derived con-

taminants which constitute a major challenge in organelle

proteomic studies. Accordingly, among the 72 ESV and 82 PV

candidates only a single predicted ER protein was identified in

each dataset. However, preliminary evaluation revealed a large

proportion of hitherto unknown ER proteins.

Two factors may contribute to the low discovery rate of

organelle proteins: i) peripherally associated organelle proteins

may be partially or completely lost during the purification and

sorting process, ii) the subtractive approach to remove contami-

nating proteins likely also eliminates specific categories of

organelle-associated proteins, i.e. those with secondary localiza-

tions or with large cytoplasmic pools. Examples are the small

GTPases Rab1, Rab11, Arf1 and COPI components which also

localize to the ER and other membranes. In addition, some

peripherally associated factors are recruited to ESVs only during

specific phases of the differentiation process, e.g. Rab1, COPI

[26,29], or members of the SNARE family [43].

In summary, the success of a simultaneous sorting approach

strongly depends on how cleanly the differentially labeled

organelles can be prepared during cell disruption and how similar

their cellular context is. The major limitation in our case is the

close association of ESVs but not PVs with the ER subdomains.

Since the cellular context of the two analyzed organelles differs

greatly, subtractive analysis appears to be more efficient for PV

candidates but still led to many false-positive candidates in the

ESV dataset. Thus, subtractive analysis of datasets derived from

simultaneously sorted organelles is a useful strategy to discover

organelle-specific factors, but the degree of success depends

strongly on the feasibility of clean extraction of target organelles

from their subcellular context.

Materials and Methods

Giardia Cell Culture and in Vitro Encystation
Giardia lamblia WBC6 (ATCC catalog number 50803) tropho-

zoites were grown under microaerophilic conditions in 11 ml

culture tubes (Nunc, cat. 156758) or triple flasks (Nunc, cat.

132867) containing TYI-S- 33 medium supplemented with 10%

fetal bovine serum and bovine bile according to standard protocols

[41]. Parasites were harvested by chilling the tubes on ice for

30 minutes (for flasks: 1 hour in ice water) to detach adherent cells

and collected by centrifugation (9006g, 10 minutes, 4uC).

Encystation was induced using the two-step method as described

previously [48] by cultivating the trophozoites in bile-free medium

for 44 hours and thereafter in medium (pH 7.85) containing

porcine bile.

Sample Preparation for Flow Cytometry
ESV-organelle staining. CWP3-GFP expressing cells [28]

and WB wild type cells (control) were grown in triple flasks

(26800 ml) and kept in encystation conditions for 13 hours as

described above. Cells were harvested and resuspended in 20 ml

of encystation medium. To allow oxidative chromophore forma-

tion without damage to the cells, the cell suspension was chilled on

ice and dispersed into a 6 well plate (Sigma, cat. Z707759) and

exposed to air on ice over night. To complete GFP folding, the ice-

cold cell suspension was collected from the plate and incubated in

microaerophilic conditions for 30 minutes at 37uC.

PV-organelle labeling. Wild type trophozoites were grown

in triple flasks and harvested as described above. Cells were

washed twice in 10 ml 1x PBS (9006g, 10 minutes, 4uC) and

resuspended in 500 ul supplemented PBS (5 mM glucose, 5 mM

cysteine, 0.1 mM ascorbic acid) containing 4 mg/ml dextran

AlexaFluor-647 (Molecular Probes Inc., cat. D22914). Endocytic

uptake of the fluorescent dye by PV organelles was achieved at

37uC for 30 minutes, protected from light.
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All samples were washed twice in 10 ml 1x PBS (9006g,

10 minutes, 4uC) and resuspended in 5 ml 1x PBS. After addition

of protease inhibitor cocktail (Calbiochem, cat. 539131) and

phenylmethanesulfonyl fluoride (PMSF, Sigma, cat. P7626), the

cells were disrupted by four rounds of mild sonication (Branson

Sonifier 250, Branson Ultrasonics Corporation, 4660 pulses, duty

cycle 20%, output control 1.5) on ice. To remove remaining intact

cells and cysts, the cell suspensions were passed through a 5 um

filter (MILLEX-SV 5.00 um, Millipore, cat. SLSV25LS). Prior to

the sort, the two cell lysates were mixed at a ratio of 1:4 to obtain

similar numbers of target events, i.e. GFP-positive and AF647-

positive events, in the mixture.

Flow Cytometry-based Organelle Sorting
Flow cytometry-based sorting of organelles was performed on a

BD FACSAriaIIITM cell sorter. For data acquisition and

processing, the BD FACSDivaTM software (version 6.1.3) was

used. In order to achieve maximal speed the sort was performed

with using a nozzle with a 70 micrometer orifice diameter at 4.83

bar sheath pressure. GFP was excited by a 488 nm laser and

emission was detected using a 525/45 band pass filter. Alexa-

Fluor647 was excited by a 633 nm laser and emission was detected

using a 670/40 band pass filter. Given the small organelle size,

considerable proportion of observed events was stemming from

particulate and electronic noise. All the fluorescent and light

scatter parameters were estimated by the height of the voltage

pulse generated by each event. The detection threshold was

defined as a logical combination of green (GFP) and red (AF647)

signal value using the ‘‘OR’’ functional operator. The organelle

populations were defined by a parent gate (P3) based on FSC-H

(forward scatter-height) and SSC-H (side scatter-height) (Figure 1).

Yellow fluorescent protein (YFP) control beads (SHEROTM

Fluorescent Nanospheres, Spherotech Inc., cat. FP-0552–2) in

the size range of the organelles (400 to 600 nm) were used to

estimate the level of particulate and/or electronic noise with

selected instrument settings. To select for GFP-positive and

AF647-positive events out of the mixed organelle population,

gates P1 and P2 were set in a bivariate dot-plot. An unlabeled cell

suspension was used as negative control to define the gate

positions. To attain maximal purity, a sort precision mode of 0/

32/0 was chosen. The sort was performed with an average event

rate of 259000 to 309000 per second, an average sort rate of 600

events per second and a mean sort efficiency of 80%. Twenty

million GFP-positive and AF647-positive events were collected in

separate 5 ml polystyrene tubes (BD Biosciences, cat. 352052). For

quality control of the sort, the collected material was analyzed by

flow cytometry using the same settings as for the sort (Figure 1).

Protein Precipitation
Protein precipitation was performed using the pyrogallol red

molybdate (PRM) method [73]. Briefly, PRM reagent was added

to the sample in a ratio of 1:4. The samples were mixed and

incubated at 25uC for 25 minutes. Proteins were pelleted at

38006g for 30 minutes and dissolved in 1 ml of ddH2O. After

addition of 250 ul of PRM reagent, incubation and pelleting was

repeated one more time. The final pellet was resuspended in 25 ul

of Laemmli buffer containing 0.5% (v/v) b-mercaptoethanol,

incubated for 5 minutes in boiling water, and stored over night at

220uC.

SDS-PAGE and Immunoblot Analysis
SDS-PAGE on a 12% polyacrylamide gel and subsequent

transfer to a nitrocellulose membrane (Protran, Whatman GmbH,

cat. 10401396) was performed according to standard protocols.

The following antibodies were used: Anti-GFP from mouse (JL-8,

Clontech, cat. 632380; 1:2000) and a horseradish peroxidase-

conjugated rabbit anti-mouse IgG (Sigma, cat. A9044, 1:8000).

Signal detection was performed using Western Lightning Chemi-

luminescence Reagent (PerkinElmer Life Sciences, cat. NE-

L100001EA). Data collection was done in a Multimage Light

Cabinet with AlphaEase FC software (Alpha Innotech, San

Leonardo, CA, USA).

Mass Spectrometry Analysis and Protein Identification
Protein samples were boiled for 5 minutes and centrifuged for

1 minute at 1691006g at room temperature to pellet insoluble

material. The samples were separated by 1D–SDS-PAGE using

precast 12% Tris-Glycine gels (Invitrogen, cat. IM6000). 4 to 8 ul

of supernatant were loaded, depending on the estimated amount

of protein in the respective sample determined in a preceding test

run. After staining with Roti Blue (CARL ROTH, cat. A152),

each gel line was cut into 21 slices. In-gel digestion of proteins

using trypsin and extraction of peptides was performed according

to standard protocols. Samples were analyzed on a LTQ-Orbitrap

XL mass spectrometer (Thermo Fischer Scientific, Bremen,

Germany) coupled to an Eksigent-Nano-HPLC system (Eksigent

Technologies, Dublin, CA, USA). A detailed description of sample

preparation and mass spectrometry analysis can be found in the

Text S1.

The raw-files from the mass spectrometer were converted into

Mascot generic files (mgf) with Mascot Distiller software 2.4.2.0

(Matrix Science Ltd., London, UK). The peak lists were searched

using Mascot Server 2.3 against the G. lamblia database (http://

tinyurl.com/37z5zqp) with a concatenated decoy database sup-

plemented with contaminants, The Arabidopsis Information

Resource (TAIR9) protein database and the Swissprot database

to increase the database’s size. The final database included 79141

entries. The identification results were loaded into Scaffold 3.0

(Proteome Software, Portland, US) and filtered for a minimal

mascot score of 20 for peptide probability, a protein probability

greater than 80%, and a minimum of 2 unique peptides per

protein. The mass spectrometry proteomics data have been

deposited to the ProteomeXchange Consortium (http://www.

proteomexchange.org) via the PRIDE partner repository [74] with

the dataset identifier PXD000694’’.

In silico Removal and Functional Annotation Clustering
of the Intersection Dataset

The final ESV and PV organelle-specific datasets were

compiled by in silico identification and removal of the contami-

nating proteins. Briefly, the ESV-derived and PV-derived mass

spectrometry (MS)-datasets from the three independent experi-

ments were intersected separately. Proteins detected in both ESV

and PV MS-datasets were considered as ‘‘contaminants’’ and

removed, thus generating three independent subtractive lists

enriched for putative ESV-specific hits and PV-specific hits,

respectively. To enhance the stringency for detection of putative

organelle-specific candidates, we accepted only ESV candidates

that were detected in at least two more ESV MS-datasets than PV

MS-datasets, and vice-versa. A detailed description of the

procedure is attached Figure S3. The contaminating proteins

defined by the data intersection were evaluated and clustered into

functional groups using the DAVID bioinformatics tool (http://

david.abcc.ncifcrf.gov/home.jsp) [34]. Since analysis in DAVID is

restricted to 3000 genes, clustering of the Giardia genome as a

control was performed by the generation of 10 independent lists

each containing 3000 randomly selected Giardia genes.
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In silico Analysis Tools
Analysis of primary structure and domain architecture of ESV

and PV candidates (i.e., manual annotation) was performed using

the following tools and databases: PSORTII (http://psort.hgc.jp/

form2.html) for prediction of subcellular localization, TMHMM

(http://www.cbs.dtu.dk/services/TMHMM/) for prediction of

transmembrane helices, SMART (http://smart.embl-heidelberg.

de/) for prediction of patterns and functional domains, pBLAST

for protein homology detection (protein blast by NCBI, http://

blast.ncbi.nlm.nih.gov/Blast.cgi), HHPred (http://toolkit.

tuebingen.mpg.de/hhpred) for protein homology detection based

on Hidden Markov Model (HMM-HMM) comparison, and the

Giardia genome database (http://giardiadb.org/giardiadb/) for

changes in mRNA expression during the Giardia life cycle. For

functional domains predicted by SMART we used an e-value of

10e-5 as cutoff, and for protein homologies predicted by pBLAST

we accepted alignment scores above 80. Alignment scores between

50 and 80 were accepted only when the pBLAST predictions were

consistent with those of HHPred. The latter was used to make

pBLAST more robust; only hits with a probability above 95%

were accepted.

Functional annotation clustering of the data intersect was

performed using the DAVID bioinformatics tool (http://david.

abcc.ncifcrf.gov/home.jsp) [34].

Expression Constructs and Transfection
For cloning of C-terminally HA-tagged proteins in Giardia, a

vector PAC-CHA with additional restriction sites was designed on

the basis of the previously described vector pPacV-Integ [26].

Additional restriction sites were inserted via oligonucleotide

primers. A detailed vector map can be found in the Figure S4.

For each gene of interest two expression vectors were constructed,

one in which expression of the gene of interest is driven by its own

promoter (pendo), and another in which the gene of interest is

under the control of the inducible cyst wall protein 1 promoter

(pCWP1). GenBank accession numbers and a list of primers used

for cloning can be found in Tables S2 and S3, respectively. For

transfection, 15 ug of plasmid DNA linearized with SwaI was

electroporated (BIO RAD Gene Pulser, 350V, 960 mF,

800 Ohm). The expression vector is targeted to the Giardia lamblia

triose phosphate isomerase (Gl-TPI) locus by homologous

recombination [75] stable transfectants are selected with the

antibiotic puromycin (Sigma, cat. 7699111) at a concentration of

77 uM for 5 days. For episomal maintenance, circular plasmid

DNA was electroporated and selected with puromycin.

Immune Fluorescence Assay
Immunofluorescence analysis was performed as described

previously [20]. The following antibodies were used in this work:

Anti-HA high affinity from rat (Roche diagnostics AG, cat.

11867423001, 1:50), Alexa488-conjugated goat anti-rat (Invitro-

gen, cat. A11006, dilution 1:200), Texas Red-conjugated anti

CWP1 (WaterborneTM Inc., cat. A300TR-R, dilution 1:50). For

microscopy cells were embedded in Vectashield (Vector Labs, Inc.,

cat. H-1200) containing the DNA intercalating agent 49-6-

Diamidino-2-phenylindole (DAPI) for staining of nuclear DNA.

Immunofluorescence analysis was performed on the standard

fluorescence microscopes Leica DM IRBE with MetaVue software

version 5.0r1, or Nikon Eclipse 80i with Openlab Improvision

software 5.5.2 for data collection. WCIF ImageJ was used for

image processing. Alternatively, analysis was performed on a Leica

SP2 AOBS confocal laser-scanning microscope (Leica Micro-

systems, Wetzlar, Germany) equipped with a glycerol objective

(Leica, HCX PL APO CS 6361.3 Corr).

Transmission Electron Microscopy
Transmission electron microscopy and sample preparation was

performed as described previously [29].

Supporting Information

Figure S1 Workflow. CWP3-GFP expressing cells at 13 hours

p.i. (A) and wild type trophozoites after endocytic uptake of the

fluid phase dye Dextran-AlexaFluor-647 (B) were disrupted

by sonication and passed through a 5mm filter. The cleared

microsome fractions were mixed (C) and organelles were

simultaneously enriched by flow cytometry-assisted organelle

sorting (FAOS) (D). Sample preparation and organelle sorting

were performed in biological triplicates. Protein precipitates of

organelle-enriched fractions were separated by 1D–SDS-PAGE

and analyzed by mass spectrometry (MS) (E), resulting in 3 ESV

and PV mass spectrometry datasets, each (F). Contaminating

proteins were identified by intersecting the ESV and PV MS-

datasets (G). A detailed description of the intersection can be

found in Figure S2. In silico data filtration, i.e. removal of the data

intersection (H) revealed ESV-organelle (J) and PV-organelle (K)
specific datasets.

(TIF)

Figure S2 Generation of the MS data intersection. A)
Mass spectrometry datasets of ESV-enriched (E1, E2, E3) and PV-

enriched (P1, P2, P3) fractions of each replicate were intersected

separately (top). The numbers stand for the proteins detected by

mass spectrometry. Removal of the intersection revealed proteins

exclusively detected in ESV-enriched fractions (middle, left) or PV-

enriched fractions (middle, right). From these lists, only proteins

occurring in at least two lists were accepted (bottom, blue). The

proteins were further analyzed according to their distribution

pattern in the six organelle-enriched fractions (B). B) Schematic

representation of the protein distribution pattern in ESV- and PV-

enriched fractions. ESV candidates (left): proteins of type X were

detected exclusively and in at least two of three ESV fractions,

proteins of type Y were detected in all ESV fractions and in one

PV fraction, proteins of type Z were detected in only two ESV

fractions and in one PV fraction. The same is true vice-versa for

PV candidates (right). Type Z proteins were removed, resulting in

72 ESV and 82 PV candidate proteins. The respective protein

numbers are indicated in brackets.

(TIF)

Figure S3 Conserved short chain dehydrogenases
(SDH) motifs in Gl8382, Gl7982 and human GALE.
Protein sequences of G. lamblia Gl7982 (cytoplasmic GALE,

[53]), G. lamblia Gl8382 (putative ER-GALE), and the human

GALE (hGALE) were analyzed manually. All conserved sequences

required for hGALE function [52] are present in both Giardia

GALEs and listed in the table. A conserved PG motif, which is

required for the direction of the reaction, is only present in the

Giardia ER-GALE. An N-terminal integral membrane domain in

the ER-GALE shifts the conserved motif positions for about 40

amino acids towards the C-terminus, compared to the cytoplasmic

GALE and hGALE.

(TIF)

Figure S4 Vector map. Schematic depiction of the vector used

for candidate cloning. pCW1: putative promoter region of cyst wall

protein 1 (GL50803_5638); ORF: open reading frame; HA:

hemagglutinin tag; CWP 39UTR: 39 untranslated region of cyst

wall protein 1 (GL50803_5638); RS1/2: recombination sites 1

(GL50803_17200) and 2 (GL50803_93938); GDH 59/39 UTR: 59
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and 39 untranslated regions of glutamate dehydrogenase

(GL50803_21942); Puro Res.: puromycin N-acetyltransferase.

(TIF)

Figure S5 Gl96994HA-expressing cells at 7h post induc-
tion of encystation. Recombinant protein expression was

detected by fluorescence microscopy with an FITC-coupled anti-

HA antibody (green, A and B, middle panels). A) Surface proteins

labeled with biotin were detected by fluorescence microscopy in

fixed cells after incubation with Streptavidin-Texas Red (red, left

panel). B) Visualization of fluid-phase endocytosis of a Dextran-

Texas Red marker (red, left panel). Nuclear DNA was labeled with

DAPI (blue). pCWP1: inducible CWP1 promoter; TXR: Texas

Red; FITC: Fluorescein isothiocyanate. Scale bar: 2 mm.

(TIF)

Table S1 Protein identification by mass spectrometry.
Raw data exported from proteome software (Scaffold version 3.0).

Identification probabilities, quantification values, and number of

unique peptides (worksheets 1–3) are indicated for all detected

proteins. For each of the 1281 proteins identified, the following

information is provided: Product description (column B) and

GeneID (column C) according to the G. lamblia genome database

(GiardiaDB), molecular weight (column D), and the T-test scores

(column E). For ESV-enriched fractions (E1-E3, columns F-H) and

PV-enriched fractions (P1-P3, columns I-K) the protein probabil-

ities (first worksheet), the quantitative values (second worksheet)

and the number of unique peptides (third worksheet) are indicated.

(XLS)

Table S2 ESV and PV candidate list with additional
information. For each of the 72 ESV and 82 PV candidates, the

following information is provided: protein category (column B),

GeneID (column C) and product description (column E) according

to the G. lamblia genome database, NCBI reference number

(column D), manual re-annotation (column F) and the prediction

tools it is based on (column G), number of transmembrane

domains (column H), signal peptide (column I), significant stage-

specific up-regulation of transcription (column J), localization of

HA-tagged variants determined in this study (column K), and

literature information (column L). TMD: Transmembrane do-

mains; SP: Signal peptide; ER: Endoplasmic Reticulum; ESV:

Encystation specific vesicles; PV: Peripheral vesicles; CYT: Cytosol;

PM: Plasma membrane; asterisk: prediction tools return different

results.

(XLSX)

Table S3 Oligonucleotide primer sequences. Primers

used for cloning of expression constructs. Sequences are in 59 to

39 orientation, restriction sites are marked in bold. pCWP1:

inducible promoter of G. lamblia cyst wall protein 1; pendo:

endogenous promoter, HA: hemagglutinin tag.

(DOC)

Text S1 Detailed description of mass spectrometry
analysis. Detailed description of SDS-PAGE, sample prepara-

tion, mass spectrometry analysis, database search and protein

identification.

(DOC)

Text S2 DAVID functional annotation clustering of data
intersection. Functional annotation clustering of the data

intersection using the DAVID bioinformatics tool (http://david.

abcc.ncifcrf.gov/home.jsp). For each cluster, the enrichment score

is given at the top, and functional groups (left) and protein counts

(right) within the respective cluster are listed. The 1059 putative

contaminants of the data intersection are categorized into 56

annotation clusters.

(PDF)

Text S3 DAVID functional annotation clustering of the
G. lamblia genome. Functional annotation clustering of the G.

lamblia genome using the DAVID bioinformatics tool (http://

david.abcc.ncifcrf.gov/home.jsp). For each cluster, the enrichment

score is given at the top, and functional groups (left) and protein

counts (right) within the respective cluster are listed. Clustering of

all predicted proteins in the G. lamblia genome (5150 validated

genes) using 10 random gene lists containing 39000 genes each.

(PDF)
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