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Abstract: It is well known that the performance and durability of lithium-ion batteries (LIBs) can
be severely impaired by fracture events that originate in stresses due to Li ion diffusion in fast
charge–discharge cycles. Existing models of battery damage overlook either the role of particle shape
in stress concentration, the effect of material disorder and preexisting defects in crack initiation and
propagation, or both. In this work we present a novel, three-dimensional, and coupled diffusive-
mechanical numerical model that simultaneously accounts for all these phenomena by means of
(i) a random particle generator and (ii) a stochastic description of material properties implemented
within the lattice method framework. Our model displays the same complex fracture patterns that
are found experimentally, including crack nucleation, growth, and branching. Interestingly, we show
that irregularly shaped active particles can suffer mechanical damage up to 60% higher than that of
otherwise equivalent spherical particles, while material defects can lead to damage increments of up
to 110%. An evaluation of fracture effects in local Li-ion diffusivity shows that effective diffusion
can be reduced up to 25% at the particle core due to lithiation, while it remains at ca. 5% below the
undamaged value at the particle surface during delithiation. Using a simple estimate of capacity loss,
we also show that the C-rate has a nonlinear effect on battery degradation, and the estimated capacity
loss can surpass 10% at a 2C charging rate.

Keywords: Li-ion battery; active particles; graphite; capacity loss; modeling

1. Introduction

The efficient management of energy and improvements in energy storage solutions are
two of the main societal challenges today. Energy storage is needed to address imbalances
between energy production and demand, as well as to provide solutions for delivery of
off-grid electric power in portable consumer goods. Due to the inherently intermittent and
unpredictable nature of energy produced from renewable sources and its increasing fraction
in the total electricity production mix, there is an imperative need to improve energy storage
technologies. In addition, the constant demand for ever-increasing energy hungry portable
electronics and electric appliances and the need for cleaner mobility solutions such as the
electric vehicle also require (and are made possible by) technological improvements in
energy storage solutions.

Electrochemical batteries are portable devices that can deliver electrical power from
stored chemical energy. They do so with high conversion efficiencies and without emis-
sions [1–4]. Because of these features, electrochemical batteries are the most suitable
solution today for portable energy applications; capacities range in size from small elec-
tronic devices to electric vehicles. In addition, electrochemical batteries are becoming
practical solutions for energy storage in photovoltaic plants and have started to find use
as large power supply equipment. In the context of the uncertainty of future demand,
mainly due to the underestimation of the rate of technology change [5–7], the battery
industry is currently pressed to increase battery scalability, performance, and durability,
while simultaneously reducing production costs and environmental impacts [8–13].
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Lithium-ion batteries play a prominent role in current electrochemical energy storage
solutions, mainly because of the high energy density they can provide. However, the
life of Li-Ion batteries is strongly conditioned by chemical- and mechanical-degradation
mechanisms such as the formation of the so-called solid–electrolyte interface (SEI) or
because of mechanical damage due to diffusion-induced stress (DIS) in active material
particles [14,15]. Therefore, there is an urgent need to better understand these mechanisms
that threaten the life of the batteries [16,17]. The role of diffusion-induced fracture in active
particles of electrodes has increasingly been named as one of the critical factors limiting the
capacity of the batteries [18–22]. Namely, cracks nucleate in the active particles when the
material strength is surpassed due to DIS. Subsequent crack propagation through active
particles leads to a loss in ion diffusivity and to an increase in SEI formation. Hence,
the amount of lithium that can intercalate/deintercalate during further charge/discharge
cycles of the battery is reduced. Determination of mechanical stress levels within the active
particle is thus fundamental for estimating the evolution of mechanical degradation.

Several works have already studied the mechanical stresses and fracture phenom-
ena of active particles in lithium-ion batteries. In one of the first studies of mechani-
cal damage, Christensen and Newman [18] determined the distribution of mechanical
stresses in carbonaceous battery anode materials. They analyzed the effect of volumetric
expansions and the resulting hydrostatic stresses occurring during the intercalation of
lithium ions in spherically-shaped active particles. Zhang et al. [23] described DIS in active
particles resorting to a thermal analogy and assuming both perfect spherical and ellip-
soidal shapes. Cheng and Verbrugge [24] derived analytical solutions of the mechanical
stresses within active spherically-shaped particles under both galvanostatic and poten-
tiostatic conditions. Continuum-based models using a phase-field approach have been
successfully implemented for studying electrochemical phenomena [25–27]. Mukherjee
and coworkers [28–30] introduced the use of a two-dimensional lattice spring-based model
to describe microcrack nucleation and the subsequent propagation of microcracks in active
graphite particles. Their model obtained the evolution of the lithium-ion concentration
during lithiation and delithiation processes and the consequent mechanical degradation
due to DIS.

To date, most models used to study the mechanical degradation in active particles
consider simple shapes (spherical, ellipsoidal, or a combination of both). However, real par-
ticles present a variety of convex and concave surfaces. These surfaces can act as stress con-
centrators, thus increasing cracking risks during lithium-ion intercalation/deintercalation
processes in the active particle [31]. In this work, we overcome the shape limitations
present in current numerical descriptions of mechanical damage. We do so by introducing
a novel random active particle generator. In particular, we generate active particles as
three-dimensional n-faced convex polyhedrons.

Heterogeneity, disorder, and preexisting defects in graphite active particles can also
play an important role in fracture processes. These effects have also been overlooked by
the existing numerical models of the mechanical degradation of Li-ion batteries. Here,
we account for these phenomena within the so-called lattice model framework [32–34].
In lattice models, the continuum (i.e., active particle) is discretized into a set of one-
dimensional elements that host the diffusive and mechanical interactions of the material.
Originally developed to describe fracture mechanisms in brittle disordered materials, such
as graphite [35], lattice methods are perfectly suited for the numerical implementation
of material heterogeneity and defects. In particular, we account for these here using a
Weibull distribution function to describe mechanical properties (such as local diffusivity,
elastic modulus, or strength) at the microscale. An additional benefit of the method is
that it can spontaneously nucleate microcracks; whereas in previous models, cracks had to
be preallocated.

Using our developed numerical framework we analyze the mechanical and functional
degradation process in active graphite particles in lithium-ion batteries. We describe the
effects of diameter, surface roughness, particle shape, and charging rate on complex fracture
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phenomena promoted by DIS. Namely, we provide details of crack nucleation, growth,
and even branching or bending. Moreover, the presence of mechanical damage (cracks)
limits ion-diffusion paths, leading to a reduced effective ion-diffusivity and uneven Li ion
concentration gradients. In turn, these gradients further promote stress concentrations.
This coupled phenomenon is conveniently captured by our model. In fact, we can identify
the cycling behavior of the particles when subjected to different charging (and discharging
rates). A direct consequence of impaired diffusion is a capacity loss of the battery, since
the total amount of Li that can be intercalated is reduced. We use this idea to provide a
qualitative estimate of battery capacity loss under different scenarios.

Aside from heterogeneities/imperfections, other localized effects such as abnormal
local overheating are known to compromise battery performance [36], whose mechanism is
similar to that of supercapacitors or pitting corrosion [37]. Nonhomogeneous temperature
fields could be readily incorporated into our numerical model by inclusion of a heat diffu-
sion equation. However, thepresent work is limited to a constant temperature field, and
temperature effects will be part of future work. The present implementation of the method
also assumes classical Fickian diffusion laws, as well as constant Li-ion flux throughout the
active particle boundary. These assumptions become questionable at large C-rates; however,
the qualitative behavior and trends displayed by our model provide useful information.

Despite the continuous effort in the search for alternative components, graphite is still
the most used material in lithium-ion batteries due to its cycling stability and its high energy
density. Thus, our results solely relate to graphite active particles, which make lithium-ion
battery anodes. An active area of research towards improving electrodes focuses on the use
of two-dimensional nanomaterials such as chalcogenides [38], MXenes [39], or rGO [40]. At
the material level, the benefits of these novel electrodes can be qualitatively explored in our
model using a reduced disorder parameter s, as well as a narrower Weibull distribution. At
the component level, the performance of different nanostructures (e.g., layers and fibers)
could be tested.

The numerical details of the implementation of the novel features introduced in our
model are first described in Section 2 below. Our findings on the effects of the particle shape,
material disorder, and charging rates on the fracture characteristics and the corresponding
estimates of diffusivity and capacity losses are next summarized in Section 3.

2. Materials and Methods

We used a set of coupled initial and boundary value equations to describe the frac-
ture processes due to diffusion-induced stresses in the active particles of the electrodes.
Although our present work focused on the material level (that is, on active particles), the
model can be readily extended to describe the behavior at the component level (i.e., the elec-
trodes) and other materials such as silicon [41–43]. Our physical models, described below,
were numerically solved using a lattice model formulation, that is, using one-dimensional
elements within a finite element method framework.

We established the following model to capture the onset and propagation of damage
within AP. Initially, the concentration of lithium ion within the particle was numerically
obtained from the solution of a diffusion equation (Equation (3)). The transport of Li
ions within graphite was modeled as a single-phase diffusion process. Then, mechanical
stresses within the particle due to the contraction/expansion caused by the de-/lithiation
process were evaluated. As a central assumption, mechanical damage was used to explain
the degradation behavior of the materials due to microdamage and was coupled with
diffusive damage.

2.1. Spatial Discretization

The numerical framework used was the so-called lattice model: a discrete modeling
technique that presents an alternative to continuous models for fracture analysis of brittle
and disordered materials. In this approach, the material structure is discretized into a
network of one-dimensional elements in which different physical phenomena take place.
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This results in a three-dimensional lattice. The nodes of this lattice were placed according
to the following procedure. First, the domain was divided into cubic cells; then, a sub-cell
was defined inside each cell. Nodes were randomly placed within these sub-cells (one node
per sub-cell). The degree of randomness of the mesh, typically referred to as parameter s,
was determined by the ratio between the size of the sub-cell and the cell. Higher values of s
lead to more disordered meshes, while lower values of s lead to regular structures. Finally,
a Delaunay tessellation was determined through the nodes, resulting in the lattice network
(Figure 1). The mesh elements need to be assigned a cross-section value [44], which are
calibrated comparing the numerical solution with the analytical results of representative
problems (i.e., expansion or contraction of a sphere under external pressure, in our case).

Cell
Subcell

Lattice node

Lattice element
Figure 1. Node placement procedure and Delaunay tessellation.

2.2. Particle Generation

We developed a numerical algorithm to generate random geometries that mimic real
nonspherical active particles. All generated particles are convex polyhedrons with tunable
characteristics (e.g., number of vertices or size). The algorithm starts from an sphere. Then,
a certain number of vertices are randomly placed on the surface. These points are next
triangulated using Delaunay triangulation, yielding a convex polyhedron. The geometry
obtained this way is thus characterized by the number of vertices chosen, as shown in
Figure 2.

Vertex i, (r,θ,φ)i

(a) (b) (c)

Figure 2. Construction of a convex polyhedron with n = 30 vertices: (a) sphere as construction basis,
(b) allocation of vertices on the sphere, and (c) the resulting polyhedron.

Vertices are randomly chosen according to the following method [45]:
xi = a sin ϕi cos θi
yi = b sin ϕi sin θi

zi = c cos ϕi

(1)

where the azimuthal and polar angles are given by:{
θi =

2π
n + δ 2π

n (2η − 1) ∀i = 1, . . . , n
ϕi = 2πη ∀i = 1, . . . , n

(2)
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where δ is a random number between 0 and 1, and 0 < η < 1.
Figure 3 shows two convex polyhedra generated, using 60 and 120 vertices (Figure 3b

and Figure 3c, respectively), compared to the equivalent spherical particle (Figure 3a). The
radius of the sphere from which the polyhedron is generated is adjusted depending on the
type of problem to be studied. On the one hand, it can be increased so that the volume
of the polyhedron obtained is equal to that of a perfect sphere (Figure 3a). In this way,
the lithium-ion hosting capacity of the active particle is not reduced due to generating the
polyhedron shape. On other hand, it can be kept as the original size of the particle, if we
want to keep the maximum size.

(a) (b) (c)

Figure 3. Lattice model meshing (bottom) and corresponding geometry (top): (a) sphere, (b) polyhe-
dron n = 60 vertices, and (c) polyhedron n = 120 vertices.

2.3. Coupled Diffusive-Mechanical Model

The transport of Lithium ions in the active material is described using the following
diffusion equation:

∂c
∂t

+∇ · J = 0 (3)

where c is the concentration of Li ions in the active material, and J is their flux, which is
given by:

J = −D
(
∇c− Ωc

RT
∇σh

)
(4)

where D is the Li diffusion matrix in the active material, R is the gas constant, Ω is the
Li-ion partial molar volume, T is the absolute temperature (in this work, it is assumed
to be constant), σh is the hydrostatic stress (defined as σh = tr(σ)/3), and σ is the stress
tensor. Notice that, as is immediately apparent in Equation (4), Li transport is coupled to
the mechanical problem, since the thermodynamic driving force for Li diffusion includes
gradients in both the Li concentration and in the hydrostatic stress. We take c(x, 0) = c0 as
the initial Li concentration in active particles.

The boundary conditions at the surface of the active particle follow from charge
conservation considerations. That is, at the particle surface:

J · n = − in

F
(5)
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where F is Faraday’s constant, and in is the current density on the active particle surface (consid-
ered positive during the intercalation process and negative during the deintercalation process).

In this work, we assume that the ionic conductivity of the electrolyte is very large
and neglect the ion concentration gradients in the electrolyte. Under these galvanostatic
conditions, active particles are subjected to a constant current, and the boundary conditions
simplify to:

in
F

= const. (6)

We define Li flux in terms of the C-rate (that is, the theoretical time required in hours
to fully charge or discharge the battery) as follows:

‖J‖ = V
3600S

cmaxC (7)

where V is the volume of the particle, S is the surface area of the particle, cmax is the
maximum stoichiometric ion concentration, and C is the C-rate.

The diffusion of Li ions, together with a nonuniform concentration field within the
active particle, induces significant volumetric expansions/contractions. The particle defor-
mation, in turn, causes internal stresses. The total strain field in the active particle, ε, can be
related to the displacement field u within the domain by:

ε =
1
2

(
∇u +∇u>

)
. (8)

The total strain tensor accounts for both the diffusive and mechanical strains in our
coupled diffusive-mechanical model. The mechanical strains correspond to the deformation
induced by the mechanical forces, while the diffusive strains correspond to the volume
expansion (contraction) due to the lithiation (delithiation) stages imposed on the particle.
That is,

ε = εel + εin + εd (9)

where εin and εel are, respectively, the inelastic and elastic components of the mechanical
strain tensor, and εd is the diffusion-induced strain field. Assuming an isotropic expansion,
the latter can be defined as:

εd =
Ω
3
(c− c0)I (10)

where c is the concentration of Li ions in the active material, and c0 is the initial lithium ion
concentration in the active material at the stress-free state.

We use the continuum damage formulation of [46] for the constitutive law of the
material, which reads as:

σ = (1− d)Del
0 : εel (11)

where Del
0 is the initial (undamaged) elasticity matrix. In the formulation, the elastic

stiffness degradation is characterized by the degradation parameter, d. The degradation
parameter can take values ranging from zero (undamaged material) to one (corresponding
to total loss of strength). In the description of the fracture of brittle materials (such as the
case of graphite), εin = 0, and the damage variable can take only two discrete values, i.e.,
d = 0 or d = 1.

Finally, we apply the equilibrium equation:

∇ · σ + b = 0 (12)

where σ is the stress tensor, and b the body force vector.
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2.4. Lattice Model Implementation

In the lattice approximation of the diffusion problem, lithium ions’ transport within
the active particle was modeled through a network of one-dimensional flow elements. On
the other hand, the beam elements with shear correction were used for the mechanical
problem. Since the diffusion of the ions takes place within the solid medium, the same
lattice elements were used for both the mechanical and diffusive problems. However, the
cross section of the elements for each problem were defined separately. In the case of the
diffusion problem, the area of adjacent Voronoi facets was considered, as proposed by [47].

The diffusive-mechanical problem is time-dependent. For this reason, we need to
establish a time-integration scheme, apart from the spatial FE-based discretization. The nu-
merical implementation of the lattice model is summarized as follows. For each time step,
the diffusive problem was solved in the first place. Then, once the Li-ion concentration in
the active particle was determined, the diffusive forces were applied to the lattice elements,
and the mechanical problem was solved. The element stresses were evaluated and checked
with respect to the failure criterion. The elements that surpassed the failure surface became
damaged elements, and the mechanical and diffusion matrices were updated.

The time-dependent transport problem in matrix form reads:

Mdċ + Kdc = q (13)

where q is the flux vector, and Md and Kd are the mass and diffusion element matrices
defined as:

Kd =
DA

L

[
1 −1
−1 1

]
(14)

Md =
AL
6ω

[
2 1
1 2

]
(15)

where D is the diffusion coefficient, A is the cross-sectional area of the element of the
lattice, L is the length of the element, and ω is a correction parameter that accounts for
the overlapping volume of adjacent lattice elements (ω = 3 for three-dimensional lattice
models [47]).

The concentration cj at time step tj can be expressed using the generalized central
difference scheme [48]:

cj =

(
1

∆t
Md + νKd

)−1(( 1
∆t

Md − (1− ν)Kd

)
cj−1 + qj−1

)
(16)

where ∆t is the time step. When ν = 0.5, this integration scheme becomes the so-called
Crank-Nicolson.

The mechanical problem at time step tj reads:

Kmuj = fj (17)

where Km is the global stiffness matrix, and fj is the global force vector at instant tj and
includes the mechanical (fm,j) and diffusion forces (fd,j).

The global element matrix, Km,eg, is assembled using the corresponding transforma-
tion matrices with the direction cosines of the elements and the local stiffness element,
which in the three-dimensional case is a 12× 12 matrix as follows:
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Km,el =



EA
L 0 0 0 0 0 − EA

L 0 0 0 0 0
12EI

L3(1+µ)
0 0 0 6EI

L2(1+µ)
0 − 12EI

L3(1+µ)
0 0 0 6EI

L2(1+µ)
12EI

L3(1+µ)
0 − 6EI

L2(1+µ)
0 0 0 − 12EI

L3(1+µ)
0 − 6EI

L2(1+µ)
0

GJ
L 0 0 0 0 0 − GJ

L 0 0
(4+µ)EI
L(1+µ)

0 0 0 6EI
L2(1+µ)

0 (2−µ)EI
L(1+µ)

0

(4+µ)EI
L(1+µ)

0 − 6EI
L2(1+µ)

0 0 0 (2−µ)EI
L(1+µ)

EA
L 0 0 0 0 0

12EI
L3(1+µ)

0 0 0 − 6EI
L2(1+µ)

12EI
L3(1+µ)

0 6EI
L2(1+µ)

0

GJ
L 0 0

(4+µ)EI
L(1+µ)

0

sym. (4+µ)EI
L(1+µ)



(18)

where E is the elastic modulus, A is the cross-section, L is the length of the element, I is the
inertia, G is the shear modulus, J is the polar moment of inertia about the x-axis, and µ is
the shear-correction factor, which in the case of a circular cross section becomes µ = 10/9.

In every mechanical step, the elements that surpassed the failure surface were re-
moved (i.e., their damage variable was set to 1) generating microcracks. To determine
the equivalent stress of the element, we considered only the axial interaction: σeq = N

A ,
where N is the axial force in the element. Thus, when the equivalent stress of the element
surpassed the material tensile strength, σeq > ft, the element underwent failure.

Finally, the diffusive and mechanical element matrices were updated according the
damage variable of the elements.

3. Results and Discussion

In this work, we analyzed the degradation mechanisms in graphite active particles
of Li-ion battery anodes. For this purpose, we followed a numerical approach combining
the particle generator along with the coupled diffusive-mechanical model presented in
Section 2. We took into account the cycling phenomena by driving a galvanostatic lithiation
process at different charging rates (i.e., 0.5C, 1C, and 2C) until stoichiometric conditions,
followed by its corresponding delithiation process. Moreover, we considered different
particle shapes and the internal material disordered. The material properties considered in
the simulations are shown in Table 1.

Table 1. Material properties for graphite.

Material Property (Units) Graphite [49]

E (GPa) 15
ν 0.3

ft (MPa) 35
D (m2/s) 7.08 × 10−15

Ω (m3/mol) 1.14 × 10−6

cmax (mol/m3) 22,900

During lithiation, ions flowed from the outer surface of the particle towards the
core, until the maximum Li-ion concentration in graphite was reached (denoted by cmax).
This generated a concentration gradient toward the core of the particle that induced the
outer region of the particle to swell, generating compressive hoop stresses close to the
surface. To satisfy the geometric compatibility conditions, tensile stresses developed at
the center (Figure 4a). For this reason, cracking initiated from the core during lithiation,
since brittle materials (such as the graphite) are much more prone to fracture under tensile
stresses [50]. On the other hand, during delithiation, the mechanism was the opposite: as
Li-ions departed from the particle, compressive stresses developed in the core, and tensile
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stresses appeared on the outer surface (Figure 4b). As we observe in Figure 4, this was a
time-dependent phenomenon, and the most important stress gradients took place during
the first seconds of the process. This crack formation mechanism has been discussed in
models of the cracking behavior of active Li-ion batteries particles, both in early and current
mathematical models [14,18], as well as in numerical–experimental models [51–53] and
also in 3D tomography of single particles at different states of charge [54]. For the sake
of clarity, we have not included the failure process in these results (Figure 4). These are
accounted for hereafter.
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Figure 4. Li-ion concentration: (a) lithiation (t = 200 s) and (b) delithiation (t = 200 s). Stress evolution
during (c) lithiation and (d) delithiation.

3.1. Effect of Particle Shape

One of the main features of our modeling framework is its ability to account for
different types of particle shapes. While most of the simulation works assume perfect
spherical shapes for the active particles [55], it is well known that these typically present
irregular shapes [56]. With our particle generator, based on the construction of polyhedra,
we are able to realize particles with irregular shapes. Thus, using a spherical particle as a
reference with diameter 10 µm [57], we established two comparisons: (i) polyhedra with
the same maximum size and (ii) polyhedra with the same volume. In the first case, we
generated polyhedra with a different number of vertices placed on a wrapping sphere of
same diameter as the reference spherical particle. In this case, the volume enclosed by the
polyhedron was smaller than that of the sphere. In the second case, we kept the volume of
the polyhedra constant with respect to that of the sphere by reallocating the vertices and,
thus, increased the maximum size of the particle. In such a way, we yielded an equivalent
particle in terms of storage capacity.

In Figure 5, we present the damage level of the particle at 1C, which was measured
as the cumulative element damage, i.e., the addition of the contribution of each broken
element to the damage. In the case of brittle failure, the element damage was defined as
the ratio of the cross section of the broken element to the sum of all the cross sections.
Therefore, the damage level of the particle can be measured as the sum of the cross sections
of the elements that failed over the sum of the cross sections of all the elements. The
results are presented for the two cases considered: (i) keeping the maximum particle size
(denoted as D = cte) and (ii) keeping the particle volume (denoted as V = cte). A wide
range of polyhedron vertices were considered, namely n = 15, 30, 60, and 120. We also
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included a case with a large number of vertices (n > 500), which we refer to as n → ∞.
Furthermore, since fracture evolution during lithation differs from that of delithiation, we
present both cases.

In the case of lithation (Figure 5a), we can observe that as we increased the number
of the vertices of the polyhedron, the damage level yielded the same value as expected
(when n→ ∞, both approaches yielded the shape of a spherical particle). However, it can
be seen that, for low values of vertices, more irregular shapes were accomplished; thus, the
damage results varied. If we follow a constant volume approach, the total damage was
underestimated, while in the constant size approach, the total damage was overestimated.
Thus, the assumption of a perfectly spherical particle can yield relative errors of up to
40% when evaluating the cumulative damage instead of using an irregular shape with
same maximum size. This difference was less, i.e., 28%, when the irregular particle had the
same volume.

These differences were also observed in the case of delithiation (Figure 5b). However,
in this case, we reached up to 60% when we considered equivalent volumes, while this
number was reduced to 13% when the equivalent size was kept. This is mainly due to the
fact that failure driven by delithiation initially takes place in the outer surface, while in
lithiation it starts in the core of the particle.

(a) (b)
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Figure 5. Damage level in the polyhedra as a function of the number of the vertices following the
constant particle size and volume approaches: (a) lithiation at 1C and (b) delithiation at 1C.

In Figure 6, we present the cracking patterns of different particle shapes during lithia-
tion and considering the maximum particle size as constant. These are shown for polyhedra
of vertices n = 15, 30, 60, 120, and ∞. The color map represents the evolution of microcracks
from the first instants of the lithiation process (in red) until the maximum concentration
was reached (in blue). In Figure 6b, we represent the corresponding cumulative damage
evolution. From these results, it can be observed that, to a large extent, the majority of the
fracture process occurred within 0.2 and 0.4tlith, where tlith is the time required to achieve
the maximum stoichiometric concentration. The cracks were initially nucleated at the core
of the particles and propagated towards the surface in different fracture planes. These
were influenced by the shape of the particle and, as expected, the cumulative damage
became larger for smaller values of n. In general terms, we observe a cumulative damage
of approximately 4%. On the other hand, when the particle volume was kept (Figure 7), we
observe similar cracking patterns, but the resulting damage was lower.

As pointed out above, delithiation promotes the apparition of tensile stresses close
to the outer surface due to the migration of ions leaving the particle. This results in
surface cracks that propagate towards the core. This is observed in Figures 8 and 9. In
general terms, the cumulative damage yielded levels of 4%, and most of the fracture
events occurred within the first 0.4tdelith time window, where tdelith is the time required to
completely delithiate the particle. It must be remarked that our model was able to represent
complex fracture behavior including crack nucleation and growth, branching, and change
in direction, resembling actual cracking patterns observed in the literature [58].
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Figure 6. Damage evolution in terms of the particle shape. Pure lithiation, C-rate = 2, polyhedra of
constant size: (a) Crack pattern evolution and (b) Damage evolution.
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Figure 7. Damage evolution in terms of the particle shape. Pure lithiation, C-rate = 2, polyhedra of
constant volume: (a) crack pattern evolution and (b) damage evolution.
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Figure 8. Damage evolution in terms of the particle shape. Pure delithiation, C-rate = 2, polyhedra of
constant size: (a) crack pattern evolution and (b) damage evolution.
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Figure 9. Damage evolution in terms of the particle shape. Pure delithiation, C-rate = 2, polyhedra of
constant volume: (a) crack pattern evolution and (b) damage evolution.

3.2. Effect of Material Disorder

Graphite presents a highly disordered internal material structure [59,60], and this is
typically neglected in most of the numerical models of graphite particles. Although our nu-
merical model partially accounted for this through the so-called randomness ratio s, we also
made use of probability distribution functions to incorporate additional variability in the
local material properties. Namely, we used Weibull’s probability density function [61,62] to
account for the imperfections in graphite particles. We applied this function to the element
elastic modulus so as to intrinsically account for potential defects, such that:

Ei = E0

[
ln

1
1−ωi

]1/m
(19)

where Ei is the elastic modulus of the i-th element, E0 is the global elastic modulus of
graphite, ωi is a random number ranging from 0 to 1, and m is the Weibull’s modulus
or shape parameter. In our simulations, m = 3. A greater value of m implies more
homogeneity of the model.

In the first place, we analyzed the effect of material disorder in a perfectly spherical
particle subjected to a full lithiation–delithiation cycle at different C-rates. In Table 2, we
can observe that accounting for this phenomenon resulted in important differences in the
damage level. For instance, at 1C, the obtained cumulative damage with perfect material
properties was 2.6%. This value increased up to 5.5%, i.e., more than twice the original
value. As the C-rate increased, the damage level increased, and this trend was also observed
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in our simulations, obtaining larger damage values for Weibull’s model (35.8%) versus the
homogeneous model (24.2%).

Table 2. Effect of material disorder on damage after 1 cycle (spherical-shaped particle).

C-Rate Damage
Homogeneous Model Heterogeneous Model

0.5C 0.00% 0.18%
1C 2.64% 5.46%
2C 24.16% 35.83%

We also analyzed the effect of particle shape along with the material disorder (see
Figure 10). For the sake of objectivity, we considered more regular particle shapes (i.e.,
n = 60 and 120. The damage level achieved with homogeneous properties (Figure 10a)
was lower than that of the Weibull’s model (Figure 10b): 23–24% versus 35–36% for 2C.
Of course, adding material inhomogeneity leads to more spread cracking patterns; thus,
the damage level is more affected. In any case, it can be observed that differences in the
damage level reached 122% at 1C and 51% in the case of 2C, which are relevant.
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Figure 10. Effect of particle shape on damage after 1 cycle: (a) homogeneous material properties and
(b) non-homogeneous material properties.

Figure 11 shows the cracking pattern evolution within one lithiation–delithiation cycle
for different particle shapes and C-rates. In the first place, it can be observed that, as the
C-rate increased, cracking density increased. It can also be observed that the nonhomo-
geneous cases (i.e., Weibull’s model) presented a higher cracking density than from the
homogeneous model.

3.3. Diffusivity and Capacity Loss

Lithium ion transport takes place within the active material, which in our case is
graphite. As discussed above, the lithiation and delithiation processes result in cracking
patterns that depend on different variables (e.g., C-rate, material heterogeneity, and particle
shape, to name a few). From a mechanical point of view, microcracks can be seen as internal
material zones without any bearing capacity (i.e., they cannot withstand stresses). Thus,
cracks become paths through which Li ions can no longer migrate or be stored. From the
transport phenomena point of view, this promotes a loss of storage capacity in the particle.

Since cracking is both a spatial and temporal process, we discuss here how this loss
of capacity evolves, first, from the perspective of the effective diffusivity of lithium in the
particle matrix and, second, with a simple estimate of the total amount of Li that can be
stored in the active particle.
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Figure 11. Damage distribution after 1 cycle: (a) sphere, (b) polyhedron (n = 120), and (c) polyhedron
(n = 60). Homogeneous and heterogeneous material properties.

Figure 12 shows the reduction in orientation- and volume-averaged effective diffusiv-
ity for a spherical particle of 10 µm, as a function of radial position. The effective diffusivity
at a given radial position was obtained by averaging the diffusivity over all polar and
azimuthal angles in a differential spherical shell. During lithiation (Figure 12a), we observe
that the reduction in diffusivity of the particle increased as we moved closer to the core.
This can be easily explained in terms of cracking patterns: cracks nucleate near the core
and grow outwards, leaving the outer surface hardly affected. We can also observe that
the diffusivity reduction was strongly dependent on the C-rate, with diffusivity losses
up to 20% near the core for 2C. As expected, during delithiation (Figure 12b), the radial
dependence of the diffusivity reduction was reversed. The results in this figure correspond
to heterogeneous material properties (i.e., Weibull’s model).
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Figure 12. Loss of diffusivity at different radial distances for different C-rates: (a) pure lithiation and
(b) pure delithiation. Spherical particle with heterogeneous material properties.
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Figure 13 presents the diffusivity loss as a function of the radial distance for different
particle shapes (n = 60, and 120) and different C-rates. The maximum diffusivity loss
increased to 25% in the case of n = 60 and 2C, which was the most extreme case considered
in lithiation (see Figure 13a). While the effect was milder during delithiation (Figure 13b),
the reduction was yet greater, more than 5% than for the spherical case.
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Figure 13. Loss of diffusivity at different radial distances for different C-rates: (a) pure lithiation and
(b) pure delithiation. Polyhedra particles (n = 60 and 120) with heterogeneous material properties.

The reduction in the orientation-averaged effective diffusivity bears a direct relation
to the loss of the storage capacity of the battery. However, a more precise relation between
mechanical damage and battery performance degradation needs to be established. A very
simple estimate of capacity loss can be obtained from the maximum amount of Li that can
be intercalated, at a given charging rate, during a single lithiation step, before the maximum
concentration of Li is reached at the particle surface. Since, in our simulations, we imposed
a constant Li flux at the boundary, we can simply obtain an estimate of capacity loss with
respect to an undamaged state as the ratio between total charging time (for given charging
rate) of the damaged state and total charging time of the reference (pristine) particle state.
While an admittedly overly simplified model of battery degradation, capacity loss defined
this way after one cycle is shown in Table 3 for different C-rates. As expected, the higher
the C-rate, the higher the capacity loss. We also find that this relationship was not linear,
and while in the case of 1C the capacity loss was around 5% in the first cycle, it surpassed
10% for 2C.

Table 3. Capacity loss for different particle shapes and C-rates.

C-Rate Capacity Loss
Sphere Polyhedron (n = 120) Polyhedron (n = 60)

0.5C 3.14% 3.11% 2.41%
1C 5.79% 4.73% 5.32%
2C 11.56% 12.44% 10.66%

4. Conclusions

Lithium-ion batteries currently find widespread use as storage technologies in many
different applications such as consumer electronics, electric vehicles, or renewable energies.
Their main advantage is the high energy density of the active materials in the anode,
namely, graphite. On the other hand, these batteries suffer from capacity loss with cycling,
particularly at large charging rates. Diffusion-induced fracture is one important mechanism
that leads to a loss of the capacity in the active material. In this work, we detailed a novel
modeling framework to gain insight into the complex coupled phenomena, namely, ion
transport and material damage. The numerical results were discussed to provide, for
different scenarios, (i) insight into the mechanisms of mechanical damage (i.e., details on
crack nucleation and evolution) and (ii) an estimate of battery capacity loss.

Specifically, we discussed a novel 3D formulation of the so-called lattice model applied
to graphite active particles. Our numerical model solved a strongly coupled species
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transport–mechanical problem. In the transport problem, gradients in hydrostatic stress
were one of the driving forces for Li-ion diffusion. Additionally, Li-ion diffusivity in the
active particle was made dependent on mechanical damage through a damage parameter
that modeled reduced diffusion paths as cracks appeared in the material. On the other
hand, mechanical stresses in graphite (and consequently crack nucleation and propagation)
depended on volumetric changes induced by Li-ion concentration in the active particle.

Our numerical model introduced important novelties over previous works. It included
fracture capabilities; i.e., it can predict crack nucleation, whereas previous models assume
an elastic regime and preallocate cracks. Moreover, the effect of material disorder and/or
preexisting defects can be readily accounted for in the model. In addition, particles of
arbitrary shape can be easily studied. Thus, we also developed an algorithm to numerically
generate n-face polyhedra that mimicked actual active particles. In contrast to previous
studies that assume simple geometries (e.g., disks, ellipses, spheres, and ellipsoids), our
algorithms can account for stress concentration due to realistic irregular shapes.

The numerical results of the pure lithiation and delithiation analyses showed that
particle shape had an important effect on global damage. Specifically, damage in irregularly-
shaped particles can be up to 60% larger than on equivalent spherical particles. Increased
damage is mainly the result of stress concentration that only occurs for non-smooth irregu-
lar shapes.

We also discussed cracking pattern evolution both in lithiation and delithiation pro-
cesses. Our results showed that most of the failure events in the material occurred within
the first half of the process (0.4tlith and 0.4tdelith). We also found that the maximum damage
(obtained for C-rate 2) remained below 5%. Cracking patterns were displayed for different
charging conditions (0.5C, 1C, and 2C), particle shapes (e.g., vertices, maximum size, and
volume), and at different times. The results showed good qualitative agreement with the
experimental observations. Moreover, we are able to reproduce complex fracture patterns
such as crack nucleation, growth, branching, change of direction, etc.

The details of the internal material structure also played an important role in fracture
mechanisms. We accounted for particle microstructure in two ways: introducing a tunable
randomness parameter in the mesh and using a Weibull’s probability distribution function
to specify the physical properties of the material. In this way, both the internal disorder
present in graphite and implicit imperfections were included in our model. In our results,
we found differences in particle damage depending on microstructure that can be up to
110%. This shows that the internal microstructure plays a fundamental role in particle
degradation and subsequent capacity loss.

Finally, we analyzed the effect of lithiation/delithiation on a position-dependent
effective Li-ion diffusivity and on the capacity loss of active particles. As cracks are barriers
to Li-ion diffusion, mechanical damage resulted in a reduced effective diffusivity. We found
local effective diffusivity was reduced up to 25% close to the core of the particle due to
lithiation, and reduced in ca. 5% close to the outer surface due to delithiation (for C-rate 2).
Reduced diffusivity leads to larger Li-ion concentration gradients. Therefore, for a given
charging rate, the total amount of Li (and thus, battery capacity) that can be intercalated in
the active particle before a maximum concentration is reached is reduced with mechanical
degradation. Using a simple estimate based on this idea, we found that the C-rate had a
nonlinear effect on battery degradation: particle cycling led to 5% capacity loss at 1C and
was larger than 10% at 2C.

In future work, we will explore the effect of other material features such as the
orientation of the basal planes of graphite or the role of internal defects in degradation,
along with the formation of the solid–electrolyte interface, which are of great importance in
degradation mechanisms.
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