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Abstract

The ability to estimate protein-protein binding free energy in a computationally

efficient via a physics-based approach is beneficial to research focused on the mecha-

nism of viruses binding to their target proteins. Implicit solvation methodology may be

particularly useful in the early stages of such research, as it can offer valuable insights

into the binding process, quickly. Here we evaluate the potential of the related molec-

ular mechanics generalized Born surface area (MMGB/SA) approach to estimate the

binding free energy ∆Gbind between the SARS-CoV-2 spike receptor-binding domain
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and the human ACE2 receptor. The calculations are based on a recent flavor of the

generalized Born model, GBNSR6. Two estimates of ∆Gbind are performed: one based

on standard bondi radii, and the other based on a newly developed set of atomic radii

(OPT1), optimized specifically for protein-ligand binding. We take the average of the

resulting two ∆Gbind values as the consensus estimate. For the well-studied Ras-Raf

protein-protein complex, which has similar binding free energy to that of the SARS-

CoV-2/ACE2 complex, the consensus ∆Gbind = −11.8± 1 kcal/mol, vs. experimental

−9.7± 0.2 kcal/mol.

The consensus estimates for the SARS-CoV-2/ACE2 complex is ∆Gbind = −9.4±

1.5 kcal/mol, which is in near quantitative agreement with experiment (−10.6 kcal/mol).

The availability of a conceptually simple MMGB/SA-based protocol for analysis of the

SARS-CoV-2 /ACE2 binding may be beneficial in light of the need to move forward

fast.

Keywords: binding free energy, implicit solvent, coronavirus, COVID-19

Introduction

Emerged as a global threat to human health, the SARS-CoV-2 virus that causes COVID-19

disease has been studied widely since the start of 2020.1 Despite sequence and structure sim-

ilarities with other viruses,2 no highly effective treatment option for the novel coronavirus

is available. As of today, about 14 million people across the globe have tested positively for

the virus, and around 600,000 have died of COVID-19.3 This fast-growing pandemic high-

lights the role of computational structural biology and computer-aided drug design (CADD),

which have the ability to accelerate the slow and expensive process of drug discovery.4 In

structure-based drug discovery, accuracy and speed of the binding free energy prediction

of drug-like compounds (ligands) to target biomolecules plays a key role in virtual screen-

ing of drug candidates.5–7 Despite decades of research, efficient and accurate computational

prediction of binding free energies is still a challenge.8–12
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In theory, the binding free energy of a molecular system can be estimated directly from

thermodynamic first principles.13 However, for any realistic molecular systems, e.g., the

complex of interest in this work that is made of more than 12,000 atoms,14 approxima-

tions must be made to make the estimate computationally feasible. For example, alchemical

methods,15,16 simulate changes in the free energy along a pathway that sometimes reflects

non-physical properties or literally “alchemy”. The required sample points along the path-

way are generated via Monte Carlo or Molecular Dynamics (MD) simulations. Some of the

popular methods in this class are thermodynamic integration (TI) and free energy perturba-

tions (FEP).17 However, these simulations are still computationally expensive, specifically

when it comes to high throughput virtual screening of thousands of potential drugs.

Remarkably more efficient, end-point free energy methods ignore details of the complex

to unbound state pathway and estimate free energy on an ensemble of snapshots repre-

senting the initial (complex) and the final (unbound) states only. These snapshots can

be generated by an MD simulation. Molecular mechanics Poisson-Boltzmann surface area

(MMPB/SA) and molecular mechanics generalized Born surface area (MMGB/SA)18–20 are

arguably among the most popular methods in this category. They are often used in docking

projects where a quick estimate of binding affinities is required.21 Leading docking software,

for instance, AutoDock Vina22 and DOCK,23 rank the feasible poses of a ligand in a binding

pocket based on a scoring function in which binding affinity plays an important role. End-

point free energies can improve the accuracy of these scoring functions on-the-fly. Recently,

MMGB/SA was employed to improve the accuracy of AutoDock Vina and Dock in the Drug

Design Data Resource (D3R) Grand Challenge 4 (GC4).24

While calculations based on practical implicit solvation models such as generalized Born

(GB) are arguably not as accurate as corresponding estimates based on the best available

explicit solvent models, the use of implicit solvent has an undeniable appeal. And not only

of computational efficiency: reasoning about physical origins of observed effects is often

much more transparent in an implicit than explicit solvent.25–27 That last advantage may be
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particularly valuable now, when so much about COVID-19 structure-infectivity relationship

remains unknown.

In this work, we employ MMGB/SA implemented in AmberTools1828 for binding free

energy calculation of the SARS-CoV-2 spike receptor-binding domain (SARS-CoV-2 S RBD)

and the human ACE2 receptor (PDB ID:6m0j), see Fig. 1. Through the MMGB/SA ap-

proach, the absolute binding free energy of a complex is calculated as the sum of gas-phase

energy, solvation free energy, and entropic contributions averaged over several snapshots ex-

tracted from the main MD trajectory. A grid-based surface GB model is used for estimating

the polar component of solvation free energy, coupled with water and atomic radii intro-

duced earlier.29 Human H-Ras and the Ras-binding domain of C-Raf1, so-called Ras-Raf

complex,6,30 is chosen as the reference for the initial evaluation of the MMGB/SA model.

Final results are compared with those from a few available relevant studies. The main goal

of the work is a quick assessment of the potential of the simple and efficient MMGB/SA

method to future studies of SARS-CoV-2 to ACE2 binding.

Figure 1: Binding scheme of the SARS-CoV-2 spike protein to the ACE2 human receptor.
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Methods and Materials

Binding Free Energy Decomposition

Binding free energy, ∆Gbind, of a molecular system is calculated as follows:

∆Gbind = ∆H − T∆S, (1)

where ∆H is the enthalpy change of the system, T is the absolute temperature in K, and

∆S is the entropy change of the system. A high-level illustration of ∆Gbind between bound

and unbound states of a solvated complex is shown in Fig. 2.

Figure 2: Binding a ligand (shown in yellow) to a protein receptor (shown in purple) in a
box of solvent (shown in blue) releases binding free energy of ∆Gbind. A negative sign of
∆Gbind indicates that spontaneous binding occurs, the magnitude of |∆Gbind| characterizes
the binding strength (affinity).

In theoretical/computational studies, a useful way of calculating ∆Gbind is through a ther-

modynamic cycle shown in Fig. 3.

With this approach, ∆Gbind,solv is calculated as follows:

∆Gbind, solv = ∆Gbind, vacuum + ∆Gsolv, complex−

(∆Gsolv, ligand + ∆Gsolv, receptor).

(2)

The solvation free energy, ∆Gsolv, is broken into the polar and non-polar components:

∆Gsolv = ∆Gpol + ∆Gnonpol. (3)
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Figure 3: The thermodynamic cycle used here to estimate the binding free energy of a
protein-ligand complex in the solvent.

The free energy in vacuum, ∆Gvacuum, is decomposed into the gas-phase energy (∆EMM)

and the configurational entropy of the solute (T ∆S):

∆Gvacuum = ∆EMM − T ∆S. (4)

Note that the T∆S above does not exactly correspond to T∆S in Eq. 1; specifically, the

entropy of solvent re-arrangement25,27 is subsumed into ∆Gsolv, see below, which is then

considered a part of ∆H. Combining the free energy components defined above, we obtain:

∆H = ∆EMM + ∆Gpol + ∆Gnonpol. Our approaches for calculating ∆Gsolv, ∆EMM and

T ∆S are explained below.

MMPB/SA Free Energy Methodology

MMPB/SA is a popular end-point free energy method which estimates ∆Gsolv by Poisson-

Boltzmann implicit solvent model,31 while components of ∆EMM are estimated based on a

classical Molecular Mechanics force-field. (In MMGB/SA, discussed below and used here, the

role of the PB is played by the faster GB). Significantly faster than the conventional Alchemi-

cal methods, MMPB/SA can be very useful, particularly in the early stages of structure-based
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virtual screening. As another important advantage, is that through MMPB/SA it is possible

to decompose the total free energy into sub-components and measure their contributions

separately.6,30 This feature is certainly useful when it comes to comparing several different

free energy methods. Finally, MMPB/SA is applicable to a wide range of structures,32 from

small host-guest systems to large protein-protein complexes with thousands of atoms.6

Through the MMPB/SA approach, the average of ∆Gsolv is calculated on a collection of

snapshots extracted from an MD simulation. Several decisions have to be made in applying

the approach in practice. First, the computational protocol must be selected between the

“single-trajectory” (one trajectory of the complex), or “separate-trajectory” (three separate

trajectories of the complex, receptor and ligand). In this study, we choose the former protocol

as it was shown33 to be not only much faster than the alternative, but also less “noisy” due

to the cancellation of inter-molecular energy contributions. This protocol applies to cases

where significant structural changes upon binding are not expected. Shown in Fig. 4, the

single-trajectory MMPB/SA starts with the initial structure of the complex in vacuum.

After solvating the structure in a solvent model, an MD simulation is performed to generate

the snapshots for further analysis. Then, a relatively large number (typically N > 100) of

uncorrelated snapshots are extracted to represent the structural ensemble. Next, binding

free energies of these structures are calculated in the implicit solvent after removing the

explicit solvent molecules. The average binding free energy over these snapshots is reported

as the final ∆Gbind.

With the single-trajectory protocol, the binding free energy of a protein-protein complex is

formally calculated as follows:

∆Gbind =< Gcomplex(i)−Gprotein1(i)−Gprotein2(i) >i, (5)

where < ... >i denotes an average over i snapshots extracted from the main MD trajectory.

The implementation of this protocol is available in AmberTools18 in Perl33 and Python.34
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Figure 4: MMPB/SA flowchart. The initial structure of the complex is solvated using a
water model. An MD simulation is run from which a relatively large number of snapshots
are extracted. The average binding free energy of the snapshots is assigned as the binding
free energy of the system.

In this work the former is used to maintain consistency with the reference study30 opted for

tuning the MMGB/SA model.

Solvation Free Energy

Polar Component. A computationally efficient alternative to the PB, the GB implicit

solvent model35,36 can be used for computing ∆Gsolv. Generally speaking, GB models have

shown to be computationally less expensive than the PB models, although the deterioration

of the accuracy has always been a concern. Here, we employed a grid-based surface GB model

called GBNSR6,37 which, in a recent study,38 was shown to be the most accurate among

several GB models in terms of the ability to approximate ∆Gpol relative to the numerical

PB. In this work, ∆Gpol is calculated with the ALPB modification39,40 of the generalized

Born41 model:

∆Gpol =
∑
ij

∆Gpol
ij ≈ −

1

2

(
1

εin
− 1

εout

)
1

1 + βα

∑
ij

qiqj

(
1

fGB
ij

+
αβ

A

)
, (6)
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where εin = 1 and εout = 80 are the dielectric constants of the solute and the solvent,

respectively, β = εin/εout, α = 0.571412, and A is the electrostatic size of the molecule,

which is essentially the overall size of the structure that can be computed analytically. Here

we employ the most widely used functional form fGB
ij =

[
r2ij +RiRj exp(−r2ij/4RiRj)

] 1
2
,

where rij is the distance between atomic charges qi and qj, and Ri, Rj are the so-called

effective Born radii of atoms i and j, which represent each atom’s degree of burial within

the solute. The effective Born radii, R, are calculated by the “R6” equation:42,43

R−3
i =

(
− 1

4π

∮
∂V

r− ri
|r− ri|6

· dS
)
, (7)

where ∂V represents the chosen representation of the dielectric boundary of the molecule, dS

is the infinitesimal surface element vector, ri is the position of atom i, and r represents the

position of the infinitesimal surface element. Uniform offset to the inverse effective radii is

set to the default (optimal) value that is 0.028 Å−1.44 The screening effect of monovalent salt

is introduced into Eq. 6 as is standard for the GB model;35 in our MMGB/SA calculations

the salt concentration was set to 0.1 M.

Non-polar Component. A common method to estimate the non-polar contribution to the

solvation free energy in Eq. 3 is to assume that it is proportional to the solvent accessible

surface area (SASA) of the molecule:

Gnonpol = γ ∗ SASA. (8)

While there are more accurate methods to estimate the non-polar45 contribution, here we use

the simple Eq. 8 for the sake of simplicity and consistency with ref.30 Also for consistency

with the same work, here we use γ = 0.0072 kcal/mol/A2. Atomic radii that form SASA not

only play an important role in the non-polar component, but also enter the polar component

through the dielectric boundary. Therefore, the right choice of atomic radii is crucial to

the accuracy of binding free energy estimation. Three sets of atomic radii are used here:
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OPT1,29,46 bondi, and mbondi2. The first two are listed in Tab. 1. Mbonid2 is indeed bondi

whose hydrogen atoms bound to a nitrogen are expanded from 1.2 Å to 1.3 Å, see .47 Carbon

(C), hydrogen (H), oxygen (O), nitrogen (N) and sulfur (S) are the main atomic types in

this study. The water probe radius is fixed to 1.4 Å.

Table 1: Two sets of atomic radii in Å used in this study.

ρC ρH ρN ρO ρS
bondi 1.70 1.20 1.55 1.52 1.80
OPT1 1.40 1.55 2.35 1.28 1.80

Gas-Phase Energy

Gas-phase energy of the solute, ∆EMM , is the summation of internal energies, electrostatic

energies, and van der Waals energies. In all of the MMGB/SA calculations reported here,

∆EMM is calculated using the ff99 AMBER force field. The choice of this old force field

is deliberate, and was initially motivated to ensure maximum consistency with ,6 which

provides a very detailed analysis of MMGB/SA performance on Ras-Raf. Good agreement

with experiment, Table 2, motivated us to use the same ff99 force field for all the subsequent

MMGB/SA calculations reported here. All of the enthalpy calculations in this study are

averages over 500 snapshots extracted from the main MD trajectory.

Configurational Entropy

Normal-mode analysis (NMA) and quasi-harmonic analysis are of the two common methods

for calculating configurational entropy of the solute.33 Since the latter has shown poor con-

vergence in several cases, NMA is selected for entropy calculations.30 The main drawback

of this method is the computational cost that becomes intractable for large systems, e.g.,

systems with more than 8,000 atoms in MMGB/SA (Perl version) of AMBER18 are not sup-

ported for NMA. To tackle this problem, one approach is to truncate the complex so that the

binding interface is preserved in its original shape.48 In this study, the SARS-CoV-2 S RBD
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and ACE2 complex is truncated for NMA feasible calculations. An offset of 1.92 kcal/mol

has been subtracted from the −T∆S component of GBNSR6 calculations to address the

concentration- dependency of the translational entropy at 1M , see 30 for details. NMA

entropy calculations are done over 150 snapshots extracted from the main MD trajectory.

Structure Preparation

Ras-Raf Complex. This well-studied complex was selected as the reference for testing

the parameters of the MM/GBSA model. We used tleap module in AMBER18 to set up

the input coordinate and topology files. The structure was solvated in a box of TIP3P49

water model (10 Å buffer). This choice of old water model and ff99 AMBER force field

was deliberate, to ensure full consistency with .6 The GTP molecule and the magnesium

ion (Mg2+) were eliminated for the sake of simplification. Since the net charge was 0, no

counterion was added.

SARS-CoV-2 S RBD and ACE2 Complex: Full Structure. H++ server50 was

employed to protonate the complex at pH=7.5. The server automatically generates the

solvated structure in a box of OPC51 explicit water model (10 Å buffer), with AMBER ff14SB

force field. This full structure is used only for enthalpy calculations that are compared with

those of the truncated complex structure for justifying the truncation approach, see below.

SARS-CoV-2 S RBD and ACE2 Complex: Truncated Structure. To execute NMA

entropy calculation the original structure (PDB ID:6m0j) was truncated from 12,515 atoms

(791 residues) to 7,286 atoms (463 residues) by removing residues, one by one, starting from

the N-terminus of the spike protein, and the C-terminus of the ACE2 protein. The goal

was to have fewer than 8,000 atoms remaining, while preserving sequence continuity of the

resulting structure to facilitate the set up of MD simulations, see Fig. 5. The remaining

atoms are still within 8 Å from the binding interface. The same protocol used for the full

structure was employed for parameterization and solvation.
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Figure 5: Truncation of SARS-CoV-2 S RBD used in the entropy estimate. The spike protein
is in cyan, and the ACE2 receptor is in green. Left: original complex. Right: truncated
complex. A pair of atoms on the binding interface that are 8.8 Å apart is shown in a solid
red segment to illustrate the length scale.

Trajectory Generation

All of the MMGB/SA estimates are based on snapshots extracted from MD trajectories

generated as described below. The structures were prepared and equilibrated as follows.

The solvated complexes were first energy minimized (max. minimization cycle of 1000),

followed by 50 ps of heating (from 1 K to 300 K) at constant volume, followed by 50 ps of

density equilibration at 300 K at constant 1 bar pressure, followed by another 2 ns of constant

(1 bar) pressure equilibration at 300K. In these stages, atomic coordinates were restrained

to their initial positions with 2 kcal/mol/A2. All simulations, including the production

runs described below, were executed with the GPU-enabled pmemd.cuda MD engine in

AMBER18, using Langevin dynamics with a collision frequency of 2ps−1 and an integration

time step of 2 fs while the bonds involving hydrogen atoms were constrained by the SHAKE

algorithm. Electrostatic interactions were approximated via the Particle Mesh Ewald (PME)

method, with a non-bond cutoff set to 9 Å. Coordinates were recorded every 10 ps.

Ras-Raf Complex. A production of 10 ns was performed using the Ras-Raf structure

prepared with the protocol described in Sec. .

SARS-CoV-2 S RBD and ACE2 Complex: Full Structure. A production of 50 ns

was carried out using the full structure described in Sec. .

12

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 26, 2020. . https://doi.org/10.1101/2020.08.25.267625doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267625
http://creativecommons.org/licenses/by/4.0/


SARS-CoV-2 S RBD and ACE2 Complex: Truncated Structure. The same protocol

used for the full structure was employed. A weak restraint of 0.01 kcal/mol/A2 was applied

to the atoms of the truncated complex, relative to the X-ray positions, during the 50 ns

production to prevent the truncated complex from falling apart. This restraint diminishes the

discrepancy between the force filed and water model in the structure used for MD simulation

(OPC, ff14SB) and the one for ∆Gbind calculations (TIP3P, ff99).

Results and Discussion

MM/GBSA on Ras-Raf

Here, we study the accuracy of ∆Gbind calculation using a different GB model (GBNSR6)

coupled with two sets of atomic radii. According to Tab. 2, it is observed that ∆Gbind cal-

culated by GBNSR6 with OPT1 radii underestimates the binding affinity whereas GBNSR6

coupled with bondi radii overestimates it. Yet, both of these results have better agreement

with the experiment52 compared to the reference MGB model in .30 We have also noticed

that a consensus estimate ∆Gbind = (∆Gbind(bondi) + ∆Gbind(OPT1))/2 is only within 2

kcal/mol off the experimental reference. Encouraged by this reasonable agreement with ex-

periment, we have decided to utilize GBNSR6 with both bondi and OPT1 radii to produce

a consensus estimate of ∆Gbind for the SARS-CoV-2 S RBD and ACE2 complex.

MM/GBSA on the Truncated SARS-CoV-2 S RBD and ACE2

The RMSD of the truncated SARS-CoV-2 S RBD and ACE2 backbone compared to the

crystal structure of the full complex is shown in Fig. 6. The trajectory is stable after 50 ns of

production, with the RMSD from the X-ray reference of around 3.15 Å. Comparing the esti-

mated ∆H between the truncated and original structures (results not shown) demonstrates

that the relatively small difference between the two (about 1 kcal/mol using mbondi2 radii

and 8 kcal/mol using OPT1 radii) indirectly validates the use of the truncation procedure.
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Table 2: MMGB/SA results on RAS-RAF. Means and the standard errors of the mean
are listed. All the components are in kcal/mol. Consensus ∆Gbind = (∆Gbind(bondi) +
∆Gbind(OPT1))/2 For comparison, an earlier MMGB/SA estimate is also listed (it does not
contribute to the consensus estimate). The experimental value is from isothermal titration
calorimetry.52 An offset of 1.79 kcal/mol has been subtracted from the ∆H component of
MGB-based estimate for consistency with the author’s recommendation in .30

GBNSR6
(bondi)

GBNSR6
(OPT1)

Consensus
MGB
(bondi)
ref30

Exp.

EMM -937.42 ± 2.07 -937.42 ± 2.07 -1308.6± 2.5
∆Gnonpol -9.63 ± 0.02 -11.02 ± 0.02 -9.5 ± 0
∆Gpol 887.39 ± 2.06 897.59 ± 2.15 1275.3 ± 2.4

∆H -59.66 ± 0.27 -50.85 ± 0.43 -42.7 ± 0.3
−T∆S 43.39 ± 0.98 43.39 ± 0.98 41.4 ± 1.6
∆Gbind -16.27 ± 1.01 -7.46 ± 1.07 -11.8 ±1 -3.1 ± 1.6 -9.7 ± 0.2

Figure 6: Backbone RMSD of the truncated SARS-CoV-2 S RBD and ACE2 complex,
relative to the truncated part of the experimental crystal structure of the full complex, along
the 50 ns production trajectory.

Shown in Tab. 3, our final estimates are presented, and compared to a previous computa-

tional study53 and experiment. These findings are briefly discussed in Conclusion.
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Table 3: MMGB/SA results on the truncated SARS-CoV-2 S RBD and ACE2 complex.
Means and the standard errors of the mean are listed. All the components are in kcal/mol.
Consensus ∆Gbind = (∆Gbind(bondi) + ∆Gbind(OPT1))/2 For comparison, a recently pub-
lished MMGB/SA estimate is also listed (it does not contribute to the consensus estimate).
Experimental value derived from a fit to surface plasmon resonance sensogram.54

GBNSR6
(mbondi2)

GBNSR6
(OPT1)

Consensus
GBOBC

(mbondi2)
ref53

Exp.

EMM -453.76 ± 0.87 -453.76 ± 0.87 -761.06± 3.96
∆Gnonpol -14.71 ± 0.02 -16.35 ± 0.02 -12.21 ± 0.06
∆Gpol 401.55 ± 0.81 413.72 ± 0.87 737.98 ± 3.86

∆H -66.93 ± 0.29 -56.39 ± 0.37 -35.30 ± 0.60
−T∆S 52.28 ± 1.49 52.28 ± 1.49 13.56 ± 0.70
∆Gbind -14.65 ± 1.52 -4.11 ± 1.54 -9.4 ±1.5 -21.74 ± 0.65 -10.6

Entropy Convergence of the Truncated SARS-CoV-2 S RBD and

ACE2 Complex

Entropy calculation is one of the most challenging and time- consuming parts of ∆Gbind

estimation. In order to maintain the consistent protocol, 150 snapshots were selected for

−T∆S calculations. In addition, we conducted an investigation to examine whether a fewer

number of snapshots would suffice to lead to a similar −T∆S. A subset of 15 and 50

equidistant snapshots were collected from the set of 150 snapshots. According to Tab. 4

it is observed that −T∆S calculated on 15 and 50 sample snapshots leads to a similar

−T∆S calculated on the whole set. Naturally, the standard error of the mean decreases

as the sample size increases. However, this increase doesn’t affect the stability of the mean

around 52 kcal/mol. Given entropy calculation as the bottleneck of ∆Gbind estimation, this

observation suggests that with a relatively small set of snapshots it is possible to compute

−T∆S quite accurately.

Table 4: Entropy convergence of the truncated SARS-CoV-2 S RBD and ACE2 complex.
Means and standard error of the means are listed. Increasing the number of equidistant
snapshots n from 15 to 150 shows the stability of the entropy around 52 kcal/mol.

n = 15 n = 50 n = 150
−T∆S 52.69 ± 5.05 52.30 ± 2.83 52.28 ± 1.49
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Conclusion

In this study, we have evaluated the performance of a relatively new GB model, GBNSR6,

and the newly introduced intrinsic atomic radii, in calculations of binding free energy of

a well-studied protein-protein complex, Ras-Raf and of SARS-CoV-2 S RBD and ACE2

complex, critical in the mechanism of the novel coronavirus infection. Unlike many previous

efforts, the new radii were specifically optimized to best reproduce the explicit solvent results

particularly in the implicit solvent-based binding MMGB/SA estimates. We also employed

the common bondi radii for the same calculations.

A better agreement with experiment of the absolute binding free energy for Ras-Raf,

compared to previous work, was achieved for both radii sets; however each individual estimate

either under- or over-estimated the experimental binding energy. We have therefore proposed

a consensus estimate, which is the average of the two: for Ras-Raf the consensus based on

OPT1 and bondi is in near quantitative agreement with experiment.

We applied the same approach to estimate ∆Gbind of the SARS-CoV-2 S RBD and ACE2

complex. As in the Ras-Raf case, the under- and over- estimation by each radii sets nearly

cancelled, resulting in a consensus estimate essentially within 1 kcal/mol from the experimen-

tal reference. That essentially quantitative agreement paves the way for further exploration

of SARS-CoV-2 S RBD and ACE2 complex with MMGB/SA, which has a number of advan-

tages. Specifically, the MMGB/SA approach could be reasonably accurate for future analysis

of relative binding free energies in this system, including the effects of mutations, relative

contributions from various residues to ∆Gbind, congeneric series of ligands, etc. Equally im-

portantly, MMGB/SA is well-suited for reasoning for physical reasoning. Needless to say,

additional thorough investigation is needed to see if the proposed approach can be extended

to other complexes.

Both of the two separate estimates of ∆Gbind based on either bondi or OPT1 radii result

in the expected near cancellation of the relatively large ∆H and −T∆S terms, suggesting

that each of these estimates “makes sense” on its own. Moreover, note that for both of
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the protein-protein complexes studied here, the two radii sets provide a fairly narrow range

within which the experimental value lies. Specifically, ∆Gbind calculated with bondi radii is

underestimated (too negative), whereas ∆Gbind calculated by OPT1 radii is over-estimated.

One rationale for this behavior, which is the basis of the proposed consensus approach,

could be that bondi and OPT1 radii sets have very different physical foundations behind

them (geometry for the former and global optimization of the electrostatics for the latter), so

the resulting errors in the corresponding electrostatic estimates are not as strongly correlated

as for radii derived on the same principle.

All of the MD trajectories generated in this work are available from the authors upon

request.
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