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Selective serotonin reuptake inhibitors (SSRIs) are a standard of care for the pharmacotherapy
of patients suffering from Major Depressive Disorder (MDD). However, only one-half to two-
thirds of MDD patients respond to SSRI therapy. Recently, a “multiple omics” research
strategy was applied to identify genetic differences between patients who did and did not
respond to SSRI therapy. As a first step, plasma metabolites were assayed using samples
from the 803 patients in the PGRN-AMPS SSRI MDD trial. The metabolomics data were then
used to “inform” genomics by performing a genome-wide association study (GWAS) for
plasma concentrations of the metabolite most highly associated with clinical response,
serotonin (5-HT). Two genome-wide or near genome-wide significant single nucleotide
polymorphism (SNP) signals were identified, one that mapped near the TSPAN5 gene and
another across the ERICH3 gene, both genes that are highly expressed in the brain. Knocking
down TSPAN5 and ERICH3 resulted in decreased 5-HT concentrations in neuroblastoma cell
culture media and decreased expression of enzymes involved in 5-HT biosynthesis and
metabolism. Functional genomic studies demonstrated that ERICH3 was involved in clathrin-
mediated vesicle formation and TSPAN5 was an ethanol-responsive gene that may be a
marker for response to acamprosate pharmacotherapy of alcohol use disorder (AUD), a
neuropsychiatric disorder highly co-morbid with MDD. In parallel studies, kynurenine was the
plasma metabolite most highly associated with MDD symptom severity and application of a
metabolomics-informed pharmacogenomics approach identified DEFB1 and AHR as genes
associated with variation in plasma kynurenine levels. Both genes also contributed to
kynurenine-related inflammatory pathways. Finally, a multiply replicated predictive algorithm
for SSRI clinical responsewith a balanced predictive accuracy of 76% (comparedwith 56% for
clinical data alone) was developed by including the SNPs in TSPAN5, ERICH3, DEFB1 and
AHR. In summary, application of amultiple omics research strategy that usedmetabolomics to
inform genomics, followed by functional genomic studies, identified novel genes that
influenced monoamine biology and made it possible to develop a predictive algorithm for
SSRI clinical outcomes in MDD. A similar pharmaco-omic research strategy might be broadly
applicable for the study of other neuropsychiatric diseases and their drug therapy.
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INTRODUCTION: PHARMACOGENOMICS
TO PHARMACO-OMICS

Pharmacogenomics (PGx), the study of the role of inheritance in
individual variation in drug response, has evolved from early
“pharmacogenetic” studies of candidate genes, often genes
encoding drug metabolizing enzymes, to become
“pharmacogenomics” after it became possible to scan across
the genome in an unbiased fashion to identify genes associated
with variation in drug response (Wang et al., 2011;
Weinshilboum and Wang, 2017). Variation in drug response
can result from variation in either “pharmacokinetics,” factors
that influence the concentration of drug that reaches its target, or
“pharmacodynamics,” factors involving the drug target itself or
processes downstream of the target (see Figure 1A) (Wang et al.,
2011; Weinshilboum and Wang, 2017). Early examples of
pharmacogenetics often involved genes that encoded drug
metabolizing enzymes or drug transporters, genes that were
obvious candidates for study. Psychiatry and
psychopharmacology participated actively in the early
development of pharmacogenetics with reports decades ago of
genetic variation in human genes encoding proteins of

importance for psychiatry such as the catecholamine
metabolizing enzyme catechol O-methyltranferase (COMT)
(Weinshilboum and Raymond, 1977; Scanlon et al., 1979; Ho
and Weinshilboum, 2019) and the catecholamine biosynthetic
enzyme dopamine beta-hydroxylase (DBH) (Weinshilboum et al.,
1975; Dunnette and Weinshilboum, 1977). Psychopharmacology
also led the way in reports of genetic variation in genes encoding
important drug metabolizing enzymes such as CYP2D6—an
enzyme that plays a major role in the biotransformation of
many drugs including SSRIs (Johansson et al., 1993). Recently,
rapid advances in “-omic” technologies, e.g., metabolomics,
transcriptomics and proteomics, coupled with a
computational revolution that has made it possible to
integrate and analyze large datasets, have enabled
pharmacogenomics to expand beyond the genome to become
“pharmaco-omics”—as will be illustrated by the subsequent
description of SSRI pharmaco-omics (see Figure 1B).
Specifically, this brief review will describe the application of a
multiple omics research strategy in an attempt to increase our
understanding of and our ability to predict variation in clinical
response for an extremely important class of drugs, the selective
serotonin reuptake inhibitors (SSRIs).

FIGURE 1 | Pharmaco-omic concepts. (A) Genomic factors can influence both pharmacokinetic and pharmacodynamic aspects of drug therapy. (B) Pharmaco-
omics Research Strategy. Variation in drug response in this series of studies was initially associated with variation in metabolite concentrations, and GWAS were then
conducted using those concentrations as phenotypes. A series of functional genomic studies was then performed. Finally, machine learning algorithms were developed
using both clinical information and SNPs for the top hits in the GWA studies. The algorithms also informed further functional genomic studies by identifying the most
significant contributors to prediction accuracy.
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SSRI PHARMACOMETABOLOMICS-
INFORMED PHARMACOGENOMICS

Major depressive disorder (MDD) is a common and potentially
devastating psychiatric disorder with a lifetime prevalence of
approximately 13% worldwide (Alonso et al., 2004; Bromet et al.,
2011). Even though the pathophysiology of MDD is not fully
understood, a relative deficiency of serotonin (5-HT) and other
central nervous system (CNS) monoamine neurotransmitters
clearly plays an important role (Morrissette and Stahl, 2014).
SSRIs, drugs that enhance serotonergic neurotransmission, have
become first-line pharmacotherapy for the treatment of MDD
(Clevenger et al., 2018; Kato et al., 2018). However, only
approximately one half to two-thirds of MDD patients
respond to SSRI therapy, and that response may require weeks
or months to develop (Trivedi et al., 2006). As a result, greater
understanding of mechanism(s) underlying individual variation
in SSRI clinical response remains a major goal of antidepressant
research. It had been hoped that genome-wide association studies
(GWAS) would provide novel insight into both underlying
molecular causes of MDD and variation in MDD drug
response. Unfortunately, the use of GWAS to study variation
in SSRI response has met with only limited replicated success
(Garriock et al., 2010; Uher et al., 2010; Ji et al., 2013; Biernacka
et al., 2016). In part, that may be due to underlying biological
heterogeneity of MDD as well as a lack of validated biomarkers
for this disease (Krishnan and Nestler, 2008). The development of
very large clinical datasets joined to genome-wide genomic data,
for example, the United Kingdom Biobank (Bycroft et al., 2018),
has provided novel insight into molecular risk for many diseases,
but it has been less successful when applied to drug response
because the extraction of accurate information with regard to
drug use and response frommedical records and electronic health
records (EHRs) has been challenging. As a result, it is important
that we develop novel research strategies to take advantage of
technical advances in molecular assays and new methods of data
analysis such as machine learning and artificial intelligence—as
described in subsequent paragraphs.

In an attempt to address the challenge presented by individual
variation in SSRI clinical response, the Mayo Clinic
Pharmacogenomics Research Network-Antidepressant
Medication Pharmacogenomics Study (PGRN-AMPS) applied
a metabolomics-informed genomics research strategy to study
samples from that 803 patient MDD SSRI trial (Mrazek et al.,
2014). This approach began by associating plasma metabolite
concentrations with symptom severity before and after drug
treatment, followed by GWAS for concentrations of the
metabolites that were significantly associated with SSRI
treatment outcomes to identify genetic polymorphisms
responsible for variation in metabolite concentrations (Gupta
et al., 2016; Neavin et al., 2016; Liu et al., 2018) (see Figure 1B).
The hypothesis underlying this metabolomics-informed
pharmacogenomic approach was that genes identified in this
fashion might also be associated with MDD pathophysiology
and/or variation in SSRI response. Metabolite concentrations are
quantitative biological traits and, as a result, they differ from the
rating scales used to help diagnose and evaluate treatment

response in psychiatry. However, it is important to note that
metabolite concentrations in blood can fluctuate in response to
environmental variables beyond genomics, a limitation that
always needs to be recognized and acknowledged.
Additionally, there is no assurance that the regulation of
metabolite concentrations in the periphery is similar to that in
the CNS. Therefore, as described subsequently, a series of
functional studies using cell lines that originated from or were
differentiated to resemble CNS cells were conducted to study the
function of genes identified as a result of their association with
metabolite concentrations, making it possible to draw parallels
between regulatory mechanisms in the CNS and the periphery.

Metabolite concentrations were assayed using plasma from
MDD patients at baseline and after 4 and 8 weeks of therapy with
citalopram or escitalopram, two structurally related SSRIs, using a
“targeted” metabolomics platform with high sensitivity for
monoamine neurotransmitters or their metabolites (Gupta
et al., 2016). A targeted platform was used because broader
platforms were not always quantitative, and we used a liquid
chromatography electrochemical array (LCECA) to detect the
metabolites because of its greatly superior sensitivity for
monoamine transmitters and their metabolites (Mark et al.,
1984). However, the limitation of this approach—which
should be kept in mind—is that it will fail to detect
compounds that do not display an electrochemical signal. The
plasma metabolite that was most highly associated with SSRI
response, either Remission (HAMD ≤ 7 or QIDS-16C ≤ 5) or
Response (≥ 50% decrease in either HAMD orQIDS-16C without
achieving Remission) was serotonin (5-hydroxytryptamine, 5-
HT). GWAS for plasma 5-HT in the 290 patients studied
identified two genome-wide significant or near genome-wide
significant SNP signals (see the Manhattan plot in Figure 2).
Specifically, one SNP signal mapped 5′ of the Tetraspanin 5
(TSPAN5) gene on chromosome 4 (p � 7.84E − 09), and the other
mapped across the glutamate-rich 3 (ERICH3) gene on
chromosome 1 (p � 9.28E − 08) (Gupta et al., 2016). Both of
these genes were highly expressed in the brain. The TSPAN5
SNPs were expression quantitative trait loci (eQTLs) for TSPAN5,
that is, they were associated with mRNA expression of the gene in
a SNP genotype-dependent fashion in multiple tissues including
the brain according to the Genotype-Tissue Expression database
(GTEx) (GTExConsortium et al., 2017). The ERICH3 SNPs, on
the other hand, were associated with decreased ERICH3
expression at the protein level, probably as a result of
accelerated degradation of the variant allozymes (Gupta et al.,
2016). The “top” SNP for ERICH3 was also associated with SSRI
response for MDD patients enrolled in other large clinical trials
(Liu et al., 2020) including the Sequenced Treatment Alternatives
to Relieve Depression (STAR*D) (Trivedi et al., 2006), the
International SSRI Pharmacogenomics Consortium (ISPC)
(Biernacka et al., 2016), and the Predicting Response to
Depression Treatment Test (PReDICT) (Dunlop et al., 2012;
Dunlop et al., 2017) trials. Recently, other SNPs that mapped
to ERICH3 were found to be associated with MDD risk in the
United Kingdom Biobank repository (McInnes et al., 2019).

Subsequent studies in which an identical research strategy was
applied to severity of MDD symptoms among the patients
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enrolled in the PGRN-AMPS SSRI trial rather than variation in
SSRI response found that kynurenine, an endogenous compound
that, like 5-HT, is a metabolite of the amino acid tryptophan (see
Figure 3), was the metabolite most highly associated with disease
severity as determined by either HAMD or QIDS-16C scores

(Liu et al., 2018). GWAS for plasma kynurenine concentrations
identified two SNP signals, one of which mapped across the beta-
defensin 1 (DEFB1) gene (p � 8.18E − 07), while the other
mapped across the aryl hydrocarbon receptor (AHR) gene
(p � 6.22E � 06) (Liu et al., 2018). The SNPs in both cases

FIGURE 2 | GWAS for plasma serotonin concentrations in the PGRN-AMPS trial. The Manhattan plot shows results for a GWAS for plasma serotonin
concentrations at baseline in the PGRN-AMPS MDD patients who were studied. The Y axis represents−log 10 of p-values, and the X axis represents chromosomal
position. Each dot represents a SNP. The figure was adapted from Gupta et al., 2016.

FIGURE 3 | Tryptophan metabolic pathways. Tryptophan is metabolized to form, among other compounds, either serotonin (5-HT) or kynurenine. Gene name
abbreviations: TPH1, Tryptophan Hydroxylase 1; TPH2, Tryptophan Hydroxylase 2; DDC, Dopa Decarboxylase; MAOA, monoamine oxidase A, MAOB, monoamine
oxidase B; IDO1, indoleamine 2,3-dioxygenase 1; IDO2, indoleamine 2,3-dioxygenase 2; TDO2, tryptophan 2,3-dioxygenase, KMO, kynurenine 3-monooxygenase;
KYNU, kynureninase.
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were eQTLs for DEFB1 and AHR, respectively. While these SNPs
were not genome-wide significant, functional studies, as
described subsequently, demonstrated that both DEFB1 and
AHR played important roles in mediating inflammatory
pathways that are involved in depression (Herbert and Cohen,
1993; Bufalino et al., 2013). Furthermore, when we describe the
development of a machine learning-based, multiply replicated
predictive algorithm for SSRI response in MDD, it was found that
SNPs from all four of the signals identified during these two
GWAS, those for TSPAN5, ERICH3, DEFB1 and AHR, all
contributed to the predictive accuracy of the algorithm
(Athreya et al., 2018; Athreya et al., 2019b). Even though the
sample size for the initial GWA studies was small, the use of
metabolomics to inform genomics resulted in genome-wide or
near genome-wide significant signals, several of which were
replicated in other trials, as mentioned above, and the
incorporation of SNPs from all of these signals contributed to
the predictive accuracy of the algorithm described subsequently.

FUNCTIONAL GENOMICS

It should be emphasized that the genes identified in the
course of the GWA studies performed using plasma
metabolites as phenotypes did not encode enzymes
involved in either the biosynthesis or metabolism of those
metabolites. We mention this fact because it indicates that
the variation in plasma concentrations of both 5-HT and
kynurenine, variation that was associated with SSRI response
and severity of MDD symptoms (see Figure 4), respectively,
appeared to be associated with the effects of proteins,
TSPAN5, ERICH3, DEFB1 and AHR, which had not
previously figured prominently--or at all--in our thinking
with regard to MDD pathophysiologic mechanism(s).
Therefore, after their identification, it was necessary that a
series of functional genomic studies be performed in an

attempt to make it possible to better understand biological
mechanisms underlying individual variation in
concentrations of these plasma metabolites, metabolites
that were themselves associated with SSRI clinical
response and—potentially—mechanisms related to MDD
pathophysiology. Prior to moving to the functional
genomic results, it should be emphasized once again that
both 5-HT and kynurenine are downstream metabolites of
tryptophan, as depicted graphically in Figure 3.

TSPAN5: 5-HT, Kynurenine and MDD-AUD
Cross-Talk
Knock-down (KD) and overexpression (OE) of TSPAN5 in
neuroblastoma cells significantly altered the expression of
serotonin biosynthetic and metabolizing enzymes including
TPH1, TPH2, DDC and MAOA, resulting in altered 5-HT
concentrations in the cell culture media (Gupta et al., 2016).
Specifically, KD lowered the expression of these enzymes, while
OE resulted in elevated expression. In 2020, Ho et al., replicated
these observations using forebrain neurons and astrocytes
derived from human induced-pluripotent stem cells (iPSCs)
(Ho et al., 2020), better models for human CNS cells than
were the neuroblastoma cell lines studied in the original 2016
experiments. KD of TSPAN5 also influenced kynurenine
concentrations as well as a series of immune response
signaling pathways based on RNA-sequencing results (Ho
et al., 2020). Of particular interest was the fact that TSPAN5
was found to be an alcohol-responsive gene that may play a role in
alcohol use disorder (AUD) pharmacotherapy with the anti-
craving drug acamprosate (Ho et al., 2020)—one of only three
drugs approved by the United States Food and Drug
Administration for the treatment of AUD. Specifically, both
ethanol and acamprosate, at physiologically appropriate
concentrations, down-regulated the expression of TSPAN5 as
well as that of genes encoding enzymes in the serotonin and
kynurenine metabolic pathways from tryptophan (Ho et al.,
2020). Of particular importance, a cluster of TSPAN5 SNPs
was found to be associated with length of abstinence during
3 months of acamprosate treatment for AUD patients enrolled in
the Mayo Clinic Center for the Individualized Treatment of
Alcoholism clinical trial (Ho et al., 2020). Taken together,
these results raise the possibility that TSPAN5 SNPs might be
biomarkers for acamprosate treatment response, and that the
gene itself might play a role in cross-talk between MDD and
AUD, two psychiatric disorders with high co-morbidity and,
perhaps, partially shared pathophysiology (Kendler et al., 1993;
Walters et al., 2018; Gelernter et al., 2019).

ERICH3: Vesicular Function and
Neurotransmitters
At the time of the discovery of the association of SNPs across
ERICH3with plasma 5-HT concentrations inMDDpatients treated
with SSRIs, ERICH3 was an uncharacterized gene that was most
highly expressed in the human brain according to the GTEx
database (GTExConsortium et al., 2017). Transcriptomic analysis

FIGURE 4 | Functional genomics. Functional genomic studies of
Tetraspanin 5 (TSPAN5) and Glutamate Rich 3 (ERICH3), genes identified
during the 5-HT GWAS, highlighted their role in monoamine transmission
while the Beta-Defensin 1 (DEFB1) and Aryl Hydrocarbon Receptor
(AHR) genes identified during the kynurenine GWAS, were both related to
inflammation.
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of human brain tissue single-cell RNA-seq showed that ERICH3
is expressed predominantly in neurons rather than other CNS cell
types (Tasic et al., 2018). The ERICH3 gene expresses multiple
splice variants (Liu et al., 2020). Co-immunoprecipitation of
ERICH3 protein, followed by mass spectrometric identification
of interacting proteins showed that ERICH3 interacted with a series
of neurotransmitter vesicular-associated proteins including CLTC,
AP2A2, and PIK3C2A (Liu et al., 2020). It also interacted with ALK
and CUX1 (Liu et al., 2020), proteins encoded by genes with genetic
polymorphisms that have been reported to be associated with
antidepressant treatment response (Ji et al., 2013; Sasayama
et al., 2013), although with unknown molecular mechanism(s).
KD of ERICH3 resulted in decreased 5-HT concentrations in both
cell culture media and cell lysates. These observations was replicated
in an ERICH3 knock-out experiment using CRISPR/Cas9 (Liu et al.,
2020). Taken together, this series of observations raises the
possibility that ERICH3 might influence 5-HT concentrations
as a result of alterations in neurotransmitter vesicular function
(Liu et al., 2020). Of note, the functional implications of ERICH3
might extend beyond serotonin to include other
neurotransmitters since the co-localization of ERICH3 and
dopamine in dopaminergic neurons was also observed (Liu
et al., 2020), and independent single-cell RNA-seq data for
human cerebral cortex showed that ERICH3 was also
expressed in human glutamatergic and GABAergic neurons
(Tasic et al., 2018). Finally, it is important to note that
ERICH3 was identified by a GWAS for a phenotype based on
variation in 5-HT concentrations in patient blood samples.
ERICH3 is not only highly expressed in the brain, but it is
also expressed in platelets where 99% of the 5-HT in the
blood is stored in granules (Crane et al., 2015; Gehin et al.,
2018). Mechanisms by which ERICH3 influences 5-HT
concentrations in plasma—probably through effects on platelet
SLC6A4, the serotonin transporter that is the target for SSRI
drugs, might reflect similar mechanism in the CNS, as explained
in a recent publication describing ERICH3 functional genomics
(Liu et al., 2020). This series of observations suggests that insights
gained from experimental samples obtained in the periphery, in
blood plasma, can potentially provide insight into physiological
processes in the brain, in this case, the function of a novel gene
with potentially important functions in SSRI response as well as
in MDD pathophysiology.

Studies of Serotonergic Circuitry in
Patient-Derived iPSC Generated
Serotonergic Neurons
The development of pluripotent stem cells and the differentiation
of iPSCs into neuronal cell types have offered novel tools for the
study of molecular mechanisms underlying CNS disease
including psychiatric disorders. As mentioned above, in the
functional genomic studies of the 5-HT and kynurenine
metabolomics GWAS signals, iPSC-derived neurons of various
types and iSPC-derived astrocytes were used to validate and
expand initial molecular findings obtained from cell line
models such as neuroblastoma cells. Those experiments
utilized iPSC-derived neural cells to directly investigate gene

function on an isogenic background, that is, by knocking-out
the gene of interest using CRISPR/Cas9 and then assessing
downstream phenotypes in the same cell line. A
complementary approach would involve the generation of
iPSCs from MDD patients who did and did not respond to
SSRI therapy, followed by their differentiation into appropriate
neuronal cell lines and investigation of molecular mechanisms
that might contribute to differences in drug response. Because
SSRIs target serotonin reuptake, a potentially useful in vitro
model would be iPSC-derived serotonergic neurons, a
technology that was developed only recently (Lu et al., 2016;
Vadodaria et al., 2016; Xu et al., 2016). Specifically, using skin
biopsies from MDD patients enrolled in the PGRN-AMPS trial--
three female SSRI responders and three female non-responders,
iPSCs were generated and differentiated into functional
serotonergic neurons (Vadodaria et al., 2019a; Vadodaria
et al., 2019b). Altered neurite growth, morphology (Vadodaria
et al., 2019b), and hyperactivity downstream of upregulated
excitatory serotonergic receptors (Vadodaria et al., 2019a)
were observed in non-responding patient-derived serotonergic
neurons. RNA-sequencing showed that non-responding patient-
derived neurons had decreased expression of the protocadherin
alpha genes that are involved in the regulation of neurite length
and morphology (Vadodaria et al., 2019b). Those results
suggested that altered serotonergic circuitry in non-responding
patients might represent one factor involved in resistance to SSRI
therapy. It is important to acknowledge the inherent challenges
involved in studying non-isogenic iPSCs, since these cells are
known to display considerable phenotypic variation among
colonies as well as among cell lines (Cahan and Daley, 2013).
To address that variation would require a large number of cell
lines, an effort which, when coupled with the extensive resources
and time required for the differentiation of pure serotonergic
neurons, would be challenging.

DEFB1: The Gut-Brain Axis and
Inflammation
Just as 5-HTwas the metabolite among those assayed that showed
the highest association with SSRI response in the group of PGRN-
AMPS SSRI trial subjects for whom metabolomic assays were
performed, the metabolite that was most highly associated with
severity of MDD symptoms as determined by HAMD or QIDS-
C16 scores was kynurenine (Liu et al., 2018). When a GWAS was
performed for baseline plasma kynurenine in these MDD
patients, two SNP signals that mapped to the DEFB1 and
AHR genes were identified (Liu et al., 2018). Beta-defensing 1
encoded by the DEFB1 gene is an antimicrobial gut mucosal
protein associated with innate immunity and bacterial infection-
induced inflammation—both of which have been associated with
depression (Herbert and Cohen, 1993; Bufalino et al., 2013).
Furthermore, AHR is known to regulate kynurenine biosynthesis
(Neavin et al., 2018) and, as mentioned previously, both 5-HT
and kynurenine are downstream metabolites of the amino acid
tryptophan (see Figure 3). Therefore, even though the p values
for these two gene signals that were identified during the
kynurenine GWAS were not genome-wide significant, both
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signals were pursued functionally. Additionally, as pointed out
subsequently when the MDD SSRI treatment outcomes machine
learning-based predictive algorithm is described, it was fortunate
that these genes were pursued since SNPs in both genes
contributed significantly to the accuracy of that predictive
algorithm (Athreya et al., 2019b).

Kynurenine can cross the blood-brain barrier and
approximately 60% of the kynurenine in the brain is
synthesized in the liver (Schwarcz et al., 2012). The enzyme
primarily responsible for kynurenine synthesis in the liver is
TDO2, while the synthesis of kynurenine in immune cells is
primarily catalyzed by IDO1 and IDO2 (see Figure 3). Using
THP-1 monocytic cells as a model system, functional genomic
studies of DEFB1 showed that the inflammatory mediator
liposaccharide (LPS) could induce the expression of IDO1 in
these cells, but that the addition of recombinant DEFB1 strongly
inhibited that induction (Liu et al., 2018). In parallel, during LPS
induction of IDO1, culture media concentrations of tryptophan
decreased while kynurenine concentrations increased and, in
both situations, those effects were significantly “blunted” by
the addition of recombinant DEFB1. These observations were
compatible with the conclusion that DEFB1 is capable of
influencing the biosynthesis of kynurenine and plasma
kynurenine concentrations were the phenotype for the GWAS
which initially identified the DEFB1 gene (Liu et al., 2018).
Finally, one of the DEFB1 SNPs, rs2702877, was significantly
associated with severity of MDD symptoms using data from all
803 MDD patients enrolled in the PGRN-AMPS SSRI clinical
trial, both on the basis of HAMD-17 scores (p � 1.74E − 04) and
QIDS-C16 scores (p � 1.25E − 05). These observations with
regard to DEFB1 fit well with the rapidly evolving concept of a
“microbiota-gut-brain” axis (Mayer, 2011; Cryan and Dinan,
2012). As described subsequently, very similar results were
found with regard to the influence of genetic differences in
AHR expression on kynurenine biosynthesis and their
relationship to TDO2 expression in the liver based on the
results of studies performed with HepaRG cells as a model
system for the synthesis of hepatic kynurenine.

AHR: Regulation of Kynurenine
Biosynthesis and Metabolism
AHR is a ligand activated transcription factor (Neavin et al.,
2018) and—as mentioned previously—the majority of
kynurenine in plasma is synthesized in the liver, with
approximately 60% of the kynurenine in the brain originating
in the liver (Schwarcz et al., 2012). HepaRG cells are liver
progenitor cells that can be differentiated into hepatocyte-like
cells. When siRNA was used to KDAHR expression in these cells,
the expression of TDO2, the major hepatic enzyme that catalyzes
kynurenine biosynthesis, was greatly increased as was the
expression of KMO and KYNU, enzymes in the pathway
downstream from kynurenine, indicating that AHR appeared
to repress the expression of all three of these genes (see Figure 3)
(Liu et al., 2018). Conversely, when AHR was activated by
exposure to an AHR ligand, 3-methylcholanthrene (3-MC),
the expression of all three of these genes decreased

significantly (Liu et al., 2018). In both situations, the changes
in expression were observed at both themRNA and protein levels.
However, cell culture media kynurenine concentrations
decreased after AHR KD, probably because of increased
downstream metabolism catalyzed by KMO and KYNU. These
observations provide insight into the functional consequences of
the eQTL SNPs in the AHR gene, SNPs that were associated with
decreased AHR expression. The subsequent section of this brief
review merges the results of the GWAS and functional genomic
studies and describes how the utilization of machine learning
integrating those data made it possible to develop a predictive
algorithm for SSRI response in MDD patients.

PREDICTING SSRI RESPONSE

In psychiatry, measurements of disease severity prior to and
clinical outcomes after therapy are based on questionnaire scores
(e.g., HAMD and QIDS-C) rather than biomarkers. There is
increasing understanding that neuropsychiatric diseases such as
MDD, like many other medical conditions, may be heterogeneous
at the molecular level, making accurate prediction of drug
response challenging. In an attempt to help address this
challenge, an unsupervized learning algorithm using Gaussian
Mixture Models (GMMs) was developed to stratify patients based
on the similarity of their overall symptom severity at baseline as
well as at the 4 and 8 weeks time points in the PGRN-AMPS SSRI
trial. Three distinct clusters of patients were identified
algorithmically. The number of clusters to be formed was not
pre-specified. Instead, the GMM clustering used information-
theoretic criteria to determine the minimum number of clusters
sufficient to recreate the underlying distribution of depression
severity scores at baseline, 4 and 8 weeks. That clustering was
replicated using data from the STAR*D antidepressant trial and
the clustering behavior at 8 weeks was found to reflect existing
definitions of clinical outcomes in MDD–specifically Remission
and lack of Remission, or Response and lack of Response. The
clusters showed no associations with sociodemographic or
clinical factors, as well as no significant differences in plasma
drug levels at 4 and 8 weeks. However, the clusters did display sex
differences in metabolomic concentrations across all time-points
and treatment outcomes—which motivated our development of
sex-specific machine learning models to predict SSRI response
(Athreya et al., 2017). By doing that, instead of knowing sex as an
important predictor of treatment outcomes, it was possible to
study the varying degrees of contribution of SNPs to predicting
outcomes in men and women separately–setting up a novel way
to prioritize SNP selection for future functional studies. However,
it should be emphasized that the clusters themselves were not
used to predict SSRI response with machine learning approaches
due—in part—to their relatively small sample sizes.

The biological measures described in this review, i.e. the SNPs
identified during the GWA studies, SNPs associated with
metabolites which were themselves associated with clinical
response, together with clinical variables such as baseline
severity as evaluated by physicians, were incorporated into a
supervised machine learning model to predict SSRI response
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(Athreya et al., 2018; Athreya et al., 2019b). Specifically, random
forests were trained to predict sex-specific remission vs. non-
remission or response vs. non-response, where the input data
were baseline depression severity and genotypes of
pharmacogenomic SNPs. The models were trained with
repeated cross-validations using the Mayo Clinic PGRN-AMPS
data, and were validated using independent samples from the
STAR*D (for QIDS-C) and ISPC (for HAMD) studies. The
predictive accuracy of the algorithm using clinical data alone
was 56%. By including the SNPs in ERICH3, TSPAN5, DEFB1,
and AHR, it was possible to achieve a balanced predictive
accuracy of 76%. The prediction accuracy was then validated
and replicated using data for MDD patients treated with
citalopram/escitalopram in the STAR*D (n � 467) and ISPC
(n � 165) trials. Figure 5 shows graphically the contribution of
each of the SNPs to the predictive accuracy of the algorithm in
men and women separately. The x-axis for Figure 5 reflects the
sensitivity of predictions to variation in the predictor
variable—i.e., the higher the importance of the variable, the
larger is the chance of incorrect predictions if there is
significant variance in the predictor. Machine learning
approaches can also serve as discovery tools for candidate
genes and SNPs, since they make it possible to evaluate the
relative contribution of each SNP/gene to prediction accuracy.
Those candidate SNPs/genes can then be studied in detail in the
laboratory using functional genomic techniques. Finally, by the
inclusion of additional candidate genes/SNPs—a process that is

already underway for this algorithm—it should be possible to
further increase the predictive accuracy of the algorithm. One of
the goals of this series of studies, studies that grew out of the
application of “pharmaco-omics” to SSRI response in MDD
patients, would be the development of a predictive algorithm
which—prior to the initiation of SSRI therapy—could be
implemented clinically to assist in the selection of therapeutic
approaches for patients suffering from MDD (Athreya et al.,
2018; Athreya et al., 2019a).

CONCLUSION AND FUTURE DIRECTIONS

In this brief overview, we have described the application—over a
period of years—of a multi-omics research strategy as one possible
approach to address a major challenge in neuropsychiatric
research, the relative lack of biological phenotypes and the
heterogeneity inherent in complex psychiatric phenotypes. The
series of studies described here have focused on SSRIs, first-line
pharmacotherapy for MDD, a common psychiatric disorder that
affects millions of people worldwide (Alonso et al., 2004; Bromet
et al., 2011). The application of multiple omics, particularly
utilizing “targeted” metabolomics data to identify metabolites
associated with clinical outcomes and then using the identified
metabolites to conduct exploratory GWA studies, followed by
functional genomics, led to the discovery of novel genes and
novel gene function related to variability in SSRI response

FIGURE 5 | Machine learning algorithm prediction accuracy. The figure shows the relative contributions of individual SNPs and HAMD scores to the predictive
accuracy of the algorithm. The X-axis reflects the sensitivity of predictions to variation in the predictor variable—i.e., the higher the variable importance, the larger is the
chance of wrong predictions if there is significant variance in the predictor. The figure was adapted from Athreya et al., 2019b. Response and Remission are defined in
the text.
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among patients suffering fromMDD. Furthermore, the application
of machine learning to develop a predictive algorithm was made
possible by merging biological discoveries (i.e. genes and SNPs)
with clinical variables to enable prediction of drug response with an
accuracy that may, eventually, have clinical utility. Machine
learning approaches could also serve as a discovery tool to scan
across a series of SNPs/genes to identify the most important
contributors to variation in drug response so that those genes
and SNPs can be studied in detail in the laboratory. In this way, the
drug—SSRIs—will have served as a molecular probe for further
investigation into disease pathophysiology by revealing novel genes
with unanticipated functions. In future studies, the pharmaco-
omics approach described here (see Figure 1) might be applied to
other classes of pharmacotherapy in depression, including the use
of drugs such as ketamine, or to the study of other complex,
heterogeneous neuropsychiatric diseases.
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