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Abstract 

Background: Pan‑cancer studies have disclosed many commonalities and differences in mutations, copy number 
variations, and gene expression alterations among cancers. Some of these features are significantly associated with 
clinical outcomes, and many prognosis‑predictive biomarkers or biosignatures have been proposed for specific 
cancer types. Here, we systematically explored the biological functions and the distribution of survival‑related genes 
(SRGs) across cancers.

Results: We carried out two different statistical survival models on the mRNA expression profiles in 33 cancer types 
from TCGA. We identified SRGs in each cancer type based on the Cox proportional hazards model and the log‑rank 
test. We found a large difference in the number of SRGs among different cancer types, and most of the identified SRGs 
were specific to a particular cancer type. While these SRGs were unique to each cancer type, they were found mostly 
enriched in cancer hallmark pathways, e.g., cell proliferation, cell differentiation, DNA metabolism, and RNA metabo‑
lism. We also analyzed the association between cancer driver genes and SRGs and did not find significant over‑repre‑
sentation amongst most cancers.

Conclusions: In summary, our work identified all the SRGs for 33 cancer types from TCGA. In addition, the pan‑cancer 
analysis revealed the similarities and the differences in the biological functions of SRGs across cancers. Given the 
potential of SRGs in clinical utility, our results can serve as a resource for basic research and biotech applications.
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Background
Many molecular features that can predict the clinical 
outcomes in cancers have been disclosed from large-
scale cancer genome projects, such as The Cancer 
Genome Atlas (TCGA, https:// www. cancer. gov/ tcga), 

The International Cancer Genome Consortium (ICGC) 
and Therapeutically Applicable Research to Generate 
Effective Treatments (TARGET, https:// ocg. cancer. gov/ 
progr ams/ target) [1, 2]. The predictive features could 
be the biological molecule itself or alterations/modifi-
cations of the biological molecule. For example, hyper-
methylation of BRCA1 promoter is a predictor for the 
overall survival (OS) and the disease-free survival (DFS) 
in triple-negative breast cancer [3]. Signatures consisting 
of multiple hypermethylated or hypomethylated sites can 
stratify cancer patients into high-risk and low-risk groups 
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which have significantly different OS outcomes for blad-
der urothelial carcinoma (BLCA), breast invasive carci-
noma (BRCA), head and neck squamous cell carcinoma 
(HNSC), liver hepatocellular carcinoma (LIHC), lung 
adenocarcinoma (LUAD), thyroid carcinoma (THCA) 
and uterine corpus endometrial carcinoma (UCEC) [4]. 
Copy number variations (CNVs) show prognostic power 
in breast, endometrial, renal clear cell thyroid, colon-rec-
tal and oral squamous cell carcinomas [5, 6]. In addition 
to the changes at the DNA level, changes at the expres-
sion levels of mRNA, lncRNA, miRNA, and protein are 
also potential biomarkers for predicting OS and DFS in 
cancers [7–9]. All the epigenetic variations, CNVs, and 
transcriptome alterations can result in the modifications 
of the proteome, and consequently influence the clinical 
outcome and prognosis.

Even though proteins are the direct players in regulat-
ing cancer-related pathways, comprehensive quantifi-
cation of the proteome, which usually is performed by 
mass-spectrometry, is technically challenging [10]. Tran-
scriptome quantification data derived from RNA-seq, 
on the other hand, are more popular for prognostic bio-
marker screening due to the rapid development of Next 
Generation Sequencing (NGS) technology. Benefiting 
from numerous publicly available expression profiles for 
cancers, databases are built for discovering the progno-
sis power of mRNA, miRNA, or lncRNA [11, 12]. Many 
studies have observed that the RNA expression levels are 
prognosis-related in individual cancers [13–16]. Once 
the prognostic genes were identified, the biological func-
tions involved in these genes can be valuable in predict-
ing treatment outcomes and hence may affect treatment 
decisions.

Making use of results in cancer genome projects, pan-
cancer analyses have revealed the molecular distances 
among different cancer types and suggested a new clas-
sification of cancer types based on their aneuploidy, 
CpG hypermethylation, mRNA, lncRNA, miRNA, or 
protein [17–22]. These pan-cancer studies have dis-
closed the similarities among different type of cancers. 
For instance, based on the mRNA expression profiles, 
neural-related cancers, such as glioblastoma multiforme 
(GBM), brain lower-grade glioma (LGG), and pheochro-
mocytoma and paraganglioma (PCPG), were grouped. 
Cancers originated from kidneys, such as kidney renal 
clear cell carcinoma (KIRC) and kidney renal papillary 
cell carcinoma (KIRP) but not kidney chromophobe 
(KICH), were clustered together [17]. Similarities and 
variations among different types of cancers may provide 
hints for the underlying biological mechanism of can-
cer developments, which could eventually lead to differ-
ent clinical outcomes. To date, the majority of studies 
focused on identifying a combination of genes that can 

predict survival outcome, and single survival-related 
genes (SRGs) were usually ignored. However, their poten-
tially prognostic powers remain relevant and may play 
roles in the cancer driver pathways on the molecular 
level. Hence, it is worthwhile to explore the SRGs at both 
the pan-cancer and the single cancer levels.

The log-rank test is a hypothesis test for comparing 
the survival distributions of two samples. It is non-par-
ametric and so appropriate for sparse, skewed data of 
an unknown distribution, such as the data to which we 
applied it, namely a low expression group sample and a 
high expression group sample, to identify cancer SRGs. 
Cox regression, also known as proportional hazards 
regression, is a method for investigating the effect of sev-
eral variables upon the time it takes a specified event to 
happen. It is semi-parametric, in that it does not assume 
a particular form for the underlying distribution, but it 
does depend on several technical assumptions, in par-
ticular that the unique effect of a unit increase in any 
given covariate is multiplicative with respect to the haz-
ard rate. Both methods are widely used in clinical trials. 
The advantages of Cox regression is that it provides a 
numerical estimate of the difference between two groups, 
unlike the log rank test which merely flags whether a dif-
ference is significant or not at the specified level.

In this study, we systematically carried out a pan-can-
cer analysis of the SRGs involved in 33 cancers using data 
from the TCGA database. We applied both the log-rank 
test and Cox regression for the identification of SRGs. 
We identified all the genes whose expression levels were 
significantly correlated with clinical survival, for each 
cancer type. We further investigated the distribution of 
these genes across cancers and explored the pathways of 
these SRGs involved in different cancer types.

Results
Identification of SRGs in cancers using two statistical 
models
To identify SRGs, we used mRNA expression values and 
clinical survival times from the TCGA database. We 
selected 9133 patients with primary solid tumors and 
primary blood-derived tumors from 33 cancer types 
(Table 1). Two statistical methods, the log-rank test and 
the Cox proportional hazards model, were used in this 
study. An advantage of the log-rank test is that it relies 
on relatively few assumptions, but a disadvantage is that 
it cannot distinguish the extent of risks among predic-
tors [23]. However, Cox regression estimates the change 
in the log hazard ratio for each one-unit increase in pre-
dictors. As shown in Fig. 1, genes were first screened by 
median absolute deviation (MAD) because we reasoned 
that only relatedly expressed genes are potentially associ-
ated with survival time. Furthermore, genes that violated 
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the Cox proportional hazards assumption, i.e. a constant 
hazard ratio, were removed from the Cox analysis [24]. 
The number of the applicable genes for the two statistical 
models are listed in Table 1.

For each cancer type, both models were applied sepa-
rately for every applicable gene. For the log-rank test, 
patients were divided into low and high gene expres-
sion groups based on the median expression value of 
each tested gene. We considered a gene as an SRG if it 
had a false discovery rate (FDR) less than 0.05. Further-
more, a gene could be interpreted as a harmful or a pro-
tective gene based on the restricted mean survival time 

(RMST), which is estimated from the area under the 
survival curve. That is, when the high-expression group 
had a lower RMST, it could be viewed as a harmful gene, 
and vice versa. Similarly, in the Cox regression test, genes 
with an FDR of less than 0.05 was regarded as an SRG. 
The positive and negative Cox coefficients were used to 
classify harmful and protective genes, respectively.

Pan‑cancer analysis of SRGs shows cancer specificity
We next investigated whether the SRGs were shared 
by different cancer types. We clustered p-values from 
the log-rank test and coefficient values from the Cox 

Table 1 Summary of 33 cancer types in TCGA 

Cancer Type (Abbreviation) Sample Number Event Number Applicable Genes

Log‑Rank Test Cox Regression

Adrenocortical carcinoma (ACC) 79 43 16,921 16,146

Bladder urothelial carcinoma (BLCA) 407 229 17,469 16,137

Breast invasive carcinoma (BRCA) 1080 204 17,658 12,023

Cervical squamous cell carcinoma and endocervical adenocarci‑
noma (CESC)

291 88 17,531 16,171

Cholangiocarcinoma (CHOL) 36 22 17,510 15,992

Colon adenocarcinoma (COAD) 279 105 17,454 16,698

Lymphoid Neoplasm Diffuse Large B‑cell Lymphoma (DLBC) 47 16 16,897 16,439

Esophageal carcinoma (ESCA) 184 113 18,118 17,285

Glioblastoma multiforme (GBM) 152 131 17,655 16,469

Head and neck squamous cell carcinoma (HNSC) 519 271 17,699 16,248

Kidney chromophobe (KICH) 65 12 17,175 16,421

Kidney renal clear cell carcinoma (KIRC) 531 223 17,662 16,531

Kidney renal papillary cell carcinoma (KIRP) 287 72 17,357 13,727

Acute myeloid leukemia (LAML) 151 92 16,477 14,445

Brain lower grade glioma (LGG) 511 201 17,801 14,036

Liver hepatocellular carcinoma (LIHC) 366 225 16,931 14,581

Lung adenocarcinoma (LUAD) 502 258 17,764 14,936

Lung squamous cell carcinoma (LUSC) 495 252 17,989 17,170

Mesothelioma (MESO) 85 80 17,562 16,705

Ovarian serous cystadenocarcinoma (OV) 302 231 17,968 16,849

Pancreatic adenocarcinoma (PAAD) 177 122 18,007 12,693

Pheochromocytoma and paraganglioma (PCPG) 179 23 17,373 14,346

Prostate adenocarcinoma (PRAD) 497 97 17,700 17,191

Rectum adenocarcinoma (READ) 94 29 17,575 15,504

Sarcoma (SARC) 259 153 17,375 15,299

Skin cutaneous melanoma (SKCM) 102 44 17,298 15,242

Stomach adenocarcinoma (STAD) 393 195 17,967 17,338

Testicular germ cell tumors (TGCT) 134 36 18,471 13,477

Thyroid carcinoma (THCA) 500 60 17,435 16,059

Thymoma (THYM) 119 24 17,646 17,055

Uterine corpus endometrial carcinoma (UCEC) 174 49 17,640 17,047

Uterine carcinosarcoma (UCS) 56 41 17,986 17,606

Uveal melanoma (UVM) 80 34 16,620 16,088
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Fig. 1 The workflow for data pre‑processing, model fitting and functional analysis. The flowchart illustrates the working process of the present 
paper. RNA‑Seq and clinical survival data were retrieved from Broad GDAC firehose. mRNA expression data from Illumina Hiseq were used. The 
RSEM‑derived TPM were log2 transformed and standardized. Genes with median absolute deviation (MAD) greater than zero were fused with 
clinical survival data. In the model fitting section, the derived data were directly applied to the log‑rank test or were examined for the proportional 
hazards assumption before applying the Cox model. Both models were fitted individually for each gene in each cancer type. The result tables 
indicate the simplified information generating from the models. Multiple testing corrections were performed before subsequently analysed 
by pathway enrichment and clustering. Abbreviation: RSEM, RNA‑Seq by expectation maximization. RMST, restricted mean survival time. TPM, 
transcript per million
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regression. For cancers having at least 100 SRGs from the 
log-rank test and Cox regression, the FDRs and coeffi-
cients were analyzed and plotted in Figs. 2 and 3, respec-
tively. The heatmaps suggest that most of the cancer 
types have few or no SRGs, according to both the test and 
regression. In general, most of the SRGs were specific to 
certain cancer types, and the number of SRGs was highly 
diverse among cancer types. Still, for the SRGs identified 
by Cox regression (Fig. 3), squamous cell cancers (CESC 
and HNSC) were found to be clustered together. Notably, 
we observed that KICH was not grouped with the other 
two kidney-origin cancers (KIRC and KIRP). This result 
is consistent with previous clustering work based on the 
similarity of mRNA profiles [17]. Interestingly, we found 
that LGG and PAAD were clustered together, according 
to both the log-rank tests and Cox regressions.

Moreover, nine cancer types, ACC, KIRC, KIRP, 
LGG, LIHC, MESO, PAAD, PRAD, and UVM, had 
more than 100 SRGs discovered, under both models. 
The SRGs were moderately shared between the two 
models (Additional  file  1: Supplementary Table  1). All 
the overlapping genes showed the same tendency to be 
harmful or protective, suggesting that the two models 
produced consistent results. Overall, Cox regression 
tended to identify more SRGs in more cancer types 
compared to the log-rank test, and most of the dis-
covered SRGs were harmful, except for KIRC, with the 
majority of SRGs being protective.

Cancer‑related pathways were enriched with SRGs
To date, several cancer hallmarks have been well stud-
ied and defined [25]. We were interested in whether the 
SRGs identified here may be involved in the hallmark 

Fig. 2 Pan‑Cancer analysis of survival‑related genes from the log‑rank test. Benjamini & Hochberg adjusted p‑values from the log‑rank test were 
log10‑transformed. Absolute values were taken for harmful genes and shown in red. Protective genes were shown in blue. Grey color indicates 
insignificant cases (FDR ≥ 0.05). White color indicates inapplicable cases. Each row represents the log p‑values from a specific gene in cancer types. 
Each column represents a cancer type with the number of significant genes (FDR < 0.05) greater or equal to 100. Genes not significant in any cancer 
types were not shown here. Rows were clustering by Euclidean distance and complete linkage. Columns were clustered by Pearson distance and 
complete linkage. The organ system is indicated with different colors. The scale bar at the bottom indicates the range of log p‑values
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pathways. We chose Gene Ontology (GO) terms for 
pathway enrichment analysis and organized similar path-
ways into one major pathway, such as cell cycle or DNA 
repair, and selected one GO term that could best rep-
resent the category. Cancers in both models had many 
hallmark-related pathways in common (Figs. 4 and 5). For 
example, cell division and cell cycle are the most frequent 
pathways shared among different cancer types. Enriched 
results from both models show that ACC and LIHC have 
the highest number of enriched pathways related to sur-
vival, and these pathways are concentrated in cell growth 
and molecular metabolism.

In addition, we noticed that cell division pathway in 
LIHC was discovered by the log-rank test, but not by Cox 
regression. Indeed, we found that the cell division path-
way, GO:0000280, was enriched by Cox regression, but it 
had an FDR value larger than the FDR threshold, 0.001 

(Additional file 2). This result suggests that with the mul-
tiple statistical correction steps, only the most significant 
and hence reliable pathways have been enriched in our 
analysis.

Finally, it is worth noting that LGG and KIRC have the 
highest number of SRGs according to the log-rank tests, 
but the SRGs seem to participate in diverse biological 
functions. Only about 1% of SRGs in LGG and KIRC 
are involved in enriched pathways (Additional  file  3: 
Supplementary Table  2). This implies that the remain-
ing SRGs may be scattered amongst distinct pathways, 
making over representation analysis in most pathways 
insignificant.

SRGs are not over‑represented by cancer driver genes
A cancer driver gene confers tumor cells a selective 
growth advantage over normal cells, and many driver 

Fig. 3 Pan‑cancer analysis of survival‑related genes from Cox regression. Significant regression coefficients from Cox regression were clustered. 
Harmful genes were shown in red and protective genes were shown in blue. Grey color indicates insignificant cases (FDR ≥ 0.05). White color 
indicates inapplicable cases. Each row represents the Cox coefficients from a specific gene in cancer types. Each column represents a cancer type 
with the number of significant genes (FDR < 0.05) greater or equal to 100. Genes not significant in any cancer types were not shown here. Rows and 
columns were clustering by Pearson distance and complete linkage. The organ system is indicated with different colors. The scale bar at the bottom 
indicates the range of Cox coefficients



Page 7 of 15Wang et al. BMC Genomics          (2021) 22:918  

genes have been found to be prognostic [26]. Hence, it 
may be intuitive to imagine that the SRGs would cor-
relate with the driver genes. We examined whether 
the SRGs identified in this study are the same driver 

genes as in DriverDBV3 [27], an integrated driver 
gene database. All the mutation-based, CNV-based, 
and methylation-based driver genes were used in our 
analysis. We applied Fisher’s exact test and found that 

Fig. 4 Pathway enrichment of survival‑related genes from the log‑rank test. SRGs from the log‑rank test were enriched with Gene Ontology. 
Pathways having FDR < 0.001 are displayed in the heatmap. Significant pathways were manually grouped according to the relationship in Gene 
Ontology. The names of grouped pathways are shown on the right side and GO IDs that represented the grouped pathways are shown on the left 
side. The grouped pathways are further categorized by their biological functions as indicated in the bottom‑right annotation legend. The gene ratio 
that indicates the percentage of significant genes (SRGs) enriched in the pathway is presented with different block colors
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for most cancers the SRGs are mostly not significantly 
associated with the mutation-based and the methyl-
ation-based driver genes, and also, the SRGs identi-
fied using both the log-rank test and Cox regression 

are overrepresented with driver genes identified with 
CNV alterations in LGG and UVM (Table 2 and Addi-
tional file 4: Supplementary Table 3).

Fig. 5 Pathway enrichment of survival‑related genes from the Cox regression. SRGs from the Cox regression were enriched with Gene Ontology. 
Pathways having FDR < 0.001 are displayed in the heatmap. Significant pathways were manually grouped according to the relationship in Gene 
Ontology. The names of grouped pathways are shown on the right side and GO IDs that represented the grouped pathways are shown on the left 
side. The grouped pathways are further categorized by their biological functions as indicated in the bottom‑right annotation legend. The gene ratio 
that indicates the percentage of significant genes (SRGs) enriched in the pathway is presented with different block colors
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Discussion
In the present study, we applied two popular statisti-
cal tools, the log-rank test and the Cox proportional 

hazards model, on TCGA mRNA expression data, and 
revealed cancer-specific survival-related genes (SRGs). 
Although the log-rank test provides less information than 

Table 2 Comparison between survival‑related genes and cancer driver genes

Note: Fisher’s exact test of SRGs and cancer driver genes; *p < 0.05, **p < 0.01, ***p < 0.001, one-tailed. The first number in the parentheses indicates the count of 
overlapping genes between SRGs and cancer driver genes, and the second number indicates total driver genes that are also applicable genes in specified cancer

- Not available; no driver genes were described in those cancer types
a SRGs for both models are defined as FDR < 0.05
b Mutation-based driver genes were merged based on 14 tools summarized by DriverDBV3

Cancer Type # of  SRGsa DriverDBV3

Mutationb CNV Methylation

Log‑Rank Test
 KIRC 7770 46.9% (340/725) ** 0% (0/3) 50% (6/12)

 LGG 6691 32.5% (570/1752) 82.2% (37/45) *** –

 ACC 5243 19.7% (74/375) 32.3% (40/124) –

 UVM 3765 25% (9/36) 62% (75/121) *** –

 LIHC 2359 9.5% (106/1113) 9.6% (8/83) 6.6% (12/181)

 PRAD 1538 5.1% (58/1141) 23.5% (4/17) 4.4% (3/68)

 MESO 586 2.5% (1/40) 0% (0/1) –

 PAAD 443 1.6% (16/971) 0% (0/2) 16% (4/25)**

 KIRP 238 1.9% (12/631) 1.1% (1/87) 2.2% (5/224)

 BLCA 39 0.2% (6/2404) 0% (0/104) 0% (0/443)

 CESC 35 0.2% (4/1815) 0% (0/52) –

 LAML 29 0% (0/413) 0% (0/3) –

 HNSC 18 0% (0/1914) 1% (1/103) 0% (0/89)

 STAD 10 0.1% (4/3695) 0% (0/86) –

 LUAD 8 0% (1/2903) 0% (0/37) 0% (0/18)

 SKCM 1 0% (0/4559) 0% (0/18) –

Cox Regression
 KIRC 7091 38.3% (278/725) 0% (0/3) 50% (6/12)

 ACC 6467 25.9% (97/375) 43.5% (54/124) –

 UVM 5600 33.3% (12/36) 84.3% (102/121) *** –

 LGG 5418 27.2% (476/1752) 42.2% (19/45) *** –

 PAAD 4287 21.2% (206/971) 0% (0/2) 36% (9/25)*

 LIHC 2384 10% (111/1113) 8.4% (7/83) 9.9% (18/181)

 PRAD 2068 8.1% (92/1141) 35.3% (6/17) * 5.9% (4/68)

 MESO 728 2.5% (1/40) 0% (0/1) –

 KIRP 592 2.4% (15/631) 2.3% (2/87) 1.8% (4/224)

 BLCA 442 2.7% (64/2404) 1% (1/104) 1.6% (7/443)

 KICH 407 3.7% (2/54) – –

 CESC 230 1.4% (25/1815) 0% (0/52) –

 HNSC 204 0.9% (17/1914) 1.9% (2/103) 0% (0/89)

 LAML 158 0.7% (3/413) 0% (0/3) –

 LUAD 71 0.4% (12/2903) 5.4% (2/37) ** 0% (0/18)

 PCPG 64 2% (1/49) 0% (0/5) –

 BRCA 24 0.1% (2/2162) 0% (0/220) 0% (0/36)

 UCEC 5 0% (0/6669) 0% (0/76) –

 STAD 3 0% (1/3695) 0% (0/86) –

 SARC 2 0% (0/543) 0% (0/104) –

 THCA 2 0% (0/192) 0% (0/3) 0% (0/201)
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Cox regression, it depends on fewer assumptions and so 
may be considered as having some advantages as regards 
robustness and power. It is partly for this reason that it 
is so commonly used in the literature, and why we chose 
to include it for our analysis alongside Cox regression. 
The two models identified different sets of SRGs across 
different cancer types, and the inconsistency may be due 
to the characteristics and limitations of these two mod-
els. For example, the log-rank test dichotomizes samples 
and further tests the null hypothesis of no difference 
between groups in the survival probability at any time 
point. As the name of the test suggests, it is a rank test 
and so ignores the quantitative trait, i.e., the values of 
the expression level. In contrast, Cox regression derives 
numerical estimates of coefficients whose scale is mean-
ingful and quantifies the hazards of the genes. Although 
the rationales behind the two procedures are different, 
the common SRGs discovered under them share the 
same correlations between expression levels and the sur-
vival risk (Additional file 1: Supplementary Table 1). The 
SRGs identified in this work are based on the currently 
largest pan cancer dataset, TCGA and it will be worth-
while to validate these SRGs in other new large-scale can-
cer genomic datasets when they become available.

We utilized univariate Cox regression to discover 
SRGs. Other confounding factors such as gene-gene 
or gene-environment interactions were not considered 
and could potentially interfere with the statistical power 
of the model. For example, cancer subtype is one well-
known factor that could lead to a different prognosis. To 
investigate whether cancer subtype affects the identified 
SRGs, we used BRCA as an example, because BRCA has 
a common classification system, PAM50 [28], based on 
its gene signature. When we stratified BRCA samples 
following PAM50 and fitted the Cox model, we found 
an increased number of SRGs in the LumA subtype 
(data not shown). This implies that cancer subtype can 
potentially affect model performance. Apart from this, 
some TCGA cancer types are a mixture of various tis-
sues. Take HNSC for example, the data for which were 
collected from mucosal linings of the upper aerodiges-
tive tract, encompassing oral cavity, nasal cavity, para-
nasal sinuses, pharynx and larynx [29]. The discrepancy 
between mRNA profiles and the diversity of tissue ori-
gins within the same cancer type may adversely affect 
the statistical power of SRGs. Hence, we subsequently 
examined the performance of our univariate regres-
sions by calculating the concordance index (C-index), 
an indicator of the Cox model’s accuracy [30]. We found 
that the medians of the C-index were mostly around 0.6 
(Additional file 5: Supplementary Fig. 1). In other stud-
ies [31–33], the C-index often ranged from 0.6 to 0.8 
when multiple genes or clinical factors were included in 

the model variables. The C-indexes we calculated sug-
gest that our method could be further improved by con-
trolling for other variables using multivariate survival 
regression, such as the Cox-Lasso method [34, 35].

Another confounding factor may come from the tran-
scriptional regulatory networks. Genes governed by the 
same transcription factor are potentially co-expressed. 
Therefore, they may be identified as SRGs together 
because our models discovered SRGs solely based on the 
correlation between mRNA expression levels and sur-
vival times. Ranking the importance of these SRGs in 
cancer survival would  require further investigation and 
validation using other databases, such as cBioPortal [12]. 
Meanwhile, these important indexes can be used in mul-
tivariate survival analysis with filtered important genes 
which might provide better explanatory power [8, 36].

It is worth mentioning that the potentially dual char-
acteristics of a gene in regulating cancer development 
have recently become more evident [37]. For example, 
Notch was found to be both tumor suppressive and onco-
genic in HNSC [38]. Studies have discovered that many 
cancer driver genes may have an opposite effect among 
different cancer types [38, 39]. Our study provides an 
avenue to explore such dual characteristic genes based 
on our clustering results. We found that some genes are 
harmful in one cancer whilst being protective in others 
(Figs. 2 and 3). The functions of these genes and underly-
ing mechanisms related to survival are worthy of further 
investigation.

Interestingly, some pathways enriched with SRGs have 
been found to be dominant in specific cancer types. For 
example, in a recent study [40], survival-related pathway 
in mitochondrial ATP synthesis was enriched from both 
models in uveal melanoma (UVM), a common primary 
intraocular tumor in adults. An in  vitro study demon-
strated that knockdown of histone subunit macroH2A1 
leads to dysregulation of mitochondrial metabolism 
and is related to UVM aggressiveness. Another study 
reported that ATP synthase transporters were upregu-
lated in a uveal melanoma cell line [41]. Also, autophagy 
pathways enriched by SRGs from the log-rank test of kid-
ney renal clear cell carcinoma (KIRC) were evidenced 
by recent studies as potential therapeutic targets [42, 
43]. Keratinocyte differentiation pathways enriched by 
SRGs from Cox regression of pancreatic adenocarcinoma 
(PAAD) were correlated in cancer progression and inva-
sion [44, 45]. Together, these findings are consistent with 
the survival-related pathways found in our study to be 
biologically significant.

Moreover, we found that SRGs are not over-repre-
sented by known cancer driver genes, given that the 
driver genes we tested were derived from mutations, 
CNV and methylation, even though we found that the 



Page 11 of 15Wang et al. BMC Genomics          (2021) 22:918  

SRGs in LGG and UVM were both enriched in CNV-
based, but not mutation-based or methylation-based 
driver genes. We reasoned that the difference may be 
due to the distinctive biological outcomes of CNV and 
mutation. Recently, CNVs were found to be directly cor-
related with mRNA expression, and it was deduced that 
the mutation of driver genes may result in protein mal-
function but not necessarily induce mRNA expression 
level changes [46]. Another reasonable explanation is that 
these survival related genes are the consequence of tumor 
growth. In one study, energy metabolism was altered 
to compensate the unusually rapid proliferation rate in 
tumor cells [47]. Thus, the high glucose uptake rate may 
lead to gene expression changes in glycolysis pathway. 
Our pathway enrichment results using the log-rank test 
demonstrated that KIRC has a pathway, named acetyl-
CoA biosynthetic process (GO:0006085, Additional file 2, 
sheet 2_pathway_logrank test), with FDR less than 0.05. 
This pathway was previously reported to be associated 
with tumorigenesis in KIRC [48]. Collectively, although 
most of the SRGs in the two models were not correlated 
with cancer driver genes, they may be part of other fac-
tors in cancer driver pathways.

In large-scale biomedical research, one should always 
be cautious of multiple statistical tests and make appro-
priate adjustments. However, the cost of such corrections 
is a loss of statistical power for detecting true positives. 
In pathway enrichment analysis, clusterProfiler [49] gen-
erally tests thousands of pathways for each query, and is 
subsequently corrected by the Benjamini & Hochberg 
method to control the false discovery rate. Such a high 
number of tests could result in some pathways being 
found to be insignificant even if they are biologically sig-
nificant. Given that GO terms are organized in a directed 
acyclic graph, many of them are highly correlated and 
can be clustered into groups. It is possible to condense 
the pathways from thousands to hundreds but still pro-
vide biologically representative clusters. Accordingly, to 
maximize the statistical power, we could focus on specific 
pathways or remove superfluous pathways to reduce the 
number of statistical tests. Such a strategy may help to 
unveil novel survival-related pathways in the future.

Finally, we would like to make four caveats regard-
ing the research. Firstly, the focus is on associations 
between genes and survival time, and the predic-
tive power of genes on survival time is not examined. 
Secondly, genes are considered for significance of 
association only singly, and no gene-to-gene or gene-to-
environment interactions are considered. Incorporat-
ing potentially confounding demographic, clinical and 
other covariates into the analysis would likely improve 
statistical power as regards cancer prognosis. Thirdly, 
reproducibility of the results in the research is not 

examined, due to limitations of available data. And 
fourthly, in the analysis based on the log-rank test, gene 
expression is dichotomized into high-expression and 
low-expression groups, whereby important informa-
tion regarding quantitative traits of gene expression is 
likely lost. This may partly account for the inconsist-
ency between our results based on the log-rank test and 
those based on Cox regression. These caveats suggest 
the need for further research.

Conclusions
This work provides a comprehensive analysis of the 
SRGs in cancers based on data in TCGA. We discovered 
that the SRGs in different cancer types are significantly 
involved in cancer hallmark pathways; however, they vary 
widely in number. We also found that the SRGs are not 
over-represented by cancer driver genes. These findings 
are supported by statistical analyses using the log-rank 
test and Cox regression. In summary, our pan-cancer 
analysis reveals the distributions and biological functions 
of SRGs in 33 cancer types and provides potentially valu-
able clinical insights.

Methods
Data processing from TCGA 
TCGA mRNA expression and clinical data [1] 
were downloaded from Broad GDAC Firehose [50] 
through firehose_get (version 0.4.13) with keyword 
“Level_3__RSEM_genes__data” and “Merge_Clinical.
Level_1”, respectively. The data versions are both “std-
data__2016_01_28”. For mRNA expression data, file-
names contain “illuminahiseq_rnaseqv2” were used. 
Primary solid tumor (sample type code 01) and primary 
blood derived cancer (sample type code 03) were selected 
for downstream analysis. As described in TCGA publica-
tion [51], the sequencing raw reads were aligned to hg19 
genome by MapSplice, translated the genome coordi-
nates to the transcriptome based on UCSC knownGene, 
and quantified the transcriptome with RSEM. The result-
ing values (shown in “scaled_estimate” column from the 
downloaded expression matrix), which is the estimated 
frequency of a transcript among total transcripts, were 
multiplied by  106 to obtain transcript per million (TPM) 
and used throughout this study as gene expression val-
ues. For clinical data, survival time were parsed from 
three attributes: days_to_death as overall-survival (OS) 
time, days_to_last_followup as follow-up time and days_
to_new_tumor_event_after_initial_treatment as dis-
ease-free-survival (DFS) time. The study used DFS time 
predominantly and used OS time instead if DFS time did 
not exist.
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Log‑rank test
The log-rank test was conducted individually for each 
gene in every cancer type. Gene expression values were 
divided into two groups, the high-expression group and 
the low-expression group, based on the median value. 
If the median value was equal to zero, we removed that 
gene from the test. To determine the impact of gene 
expression on survival, we compared the restricted mean 
survival time (RMST) between two groups, where higher 
RMST means better survival. Benjamini & Hochberg 
multiple test correction [52] were applied to the resulting 
p-values for each cancer type.

Cox proportional hazards model
An “event” was considered to occur if a patient died or 
relapsed before the end of the study. Otherwise, the 
patient was considered as censored, for example, if they 
were still alive or cancer-free healthy at the end of the 
study, or if they could not be contacted at that time. That 
is, if either of OS and DFS time existed, a patient was 
considered having an event; Otherwise, a patient was 
defined as censored. Before fitting the Cox model, genes 
in each cancer were screened separately to meet the fol-
lowing criterions: (1) MAD > 0, and (2) proportional haz-
ards assumption. For MAD, it was calculated for each 
gene in every cancer, defined by the following equation:

, where MADj is the median absolute deviation of 
gene j, Xij is the expression value of gene j in sample i, 
and 

∼

Xj is the median expression value of gene j. To test 
the assumption of proportional hazards for each gene, 
we obtained Schoenfeld residuals [53] for each gene and 
tested the null hypothesis that the correlation between 
the Schoenfeld residuals and ranked failure time were 
zero by using the function cox.zph in R package. Genes 
with p-value of less than 0.05 were considered to be vio-
lating the assumption of the test and were excluded from 
fitting the Cox model. Genes passed above thresholds 
were log2 transformed as equation:

, where a small value  10−5 was added to prevent zeros 
when taking logarithms. The transformed values were 
further standardized to approach ~N (0, 1) normal dis-
tribution. We started to apply the model on each gene of 
every cancer with following hazard function:

MADj = median

(

|Xij −
∼

Xj|

)

log2

(

Gene value + 10−5
)

hij(t) = h0ij (t) exp
βij×Xij

, where i indicates gene, j indicates cancer, hij(t) is the 
hazard of gene i in cancer j at time t, h0ij is the baseline 
hazard, βij is the Cox coefficient, and Xij is the trans-
formed and standardized gene values. The resulting 
Wald p-value for Cox coefficients were corrected with 
Benjamini & Hochberg method [52] for each cancer.

The concordance index (C-index) evaluates the accu-
racy of the Cox model [30]. The C-index is interpreted 
similarly to the AUC (area under the receiver operating 
characteristics curve). A C-index of 1 means that the 
SRGs are perfect at discriminating which patient have a 
better survival, while a C-index of 0.5 indicates the sur-
vival prediction of the gene is random.

Heatmap clustering
For the log-rank test, we used the Benjamini & Hoch-
berg method of adjusted p-value (also known as FDR) 
to produce the heatmap. Before clustering, FDR values 
were log10 transformed, and genes whose RMST value 
was lower on the high expression group were multiplied 
by − 1 to become positive log FDR. The distances of col-
umn and row values were calculated by Pearson correla-
tion and Euclidean distance, respectively. Both columns 
and rows used complete-linkage to draw the column 
dendrogram and the order of rows. For Cox regres-
sion, we used Cox coefficients to generate the heat-
map. Genes with cox coefficients with FDR < 0.05 were 
preserved and those with FDR ≥ 0.05 were changed to 
zero. The distances of column and row values were both 
calculated by Pearson correlation and ordered by com-
plete-linkage. The organ system annotations in the heat-
map were classified according to a previous study [54]. 
All heatmaps in the papers were generated by R package 
ComplexHeatmap [55].

Pathway enrichment analysis
Pathway analysis was performed by R package cluster-
Profiler [49]. Cancer-specific SRGs (FDR < 0.05) from the 
log-rank test and Cox regression were selected for Gene 
Ontology enrichment [56, 57]. Function dropGo was run 
to remove level 1 to level 5 GO terms, which may con-
tain general but limited information about pathways. The 
remaining pathways with FDR less than 0.001 were man-
ually grouped according to the pathway relationships in 
the directed acyclic graph. To give an overall picture of 
the enriched pathway, we picked a GO term that was sig-
nificant in most cancer types for each manually separated 
group. For each represented GO term, we showed the 
ratio of significant genes (SRGs) enriched in a pathway to 
all genes comprising the pathway. Of note, because appli-
cable genes in each cancer type were different, the num-
bers of genes involved in the pathway may have subtle 
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difference. Detailed pathway enrichment and grouped 
results could be found in Additional file 2.

Statistical test for driver genes association
One-tailed Fisher’s exact test was performed to test 
the linkage between SRGs and cancer driver genes 
from DriverDBV3 [27]. We downloaded three types of 
driver genes, including the mutation-based, the CNV-
based, and the methylation-based from DriverDBV3 
database (http:// drive rdb. tms. cmu. edu. tw/ downl oad). 
The downloaded tables described cancer-specific driver 
genes. Specifically, the mutation-based drivers were cat-
egorized by 14 different tools. We merged all mutation-
based driver genes from the 14 tools. Fisher’s exact test 
was performed separately for each type of cancer and 
each type of driver gene as shown in the following table:

SRGs Non‑SRGs

Driver genes a b R1

Not driver genes c d R2

C1 C2 Appli‑
cable 
genes

The number of applicable genes depends on each can-
cer type in each model. C1 and C2 are the numbers of 
SRGs and non-SRGs in survival models, respectively. R1 
and R2 are the numbers of driver genes and non-driver 
genes, respectively. All the driver genes not analyzed or 
not applicable in survival models were excluded in this 
analysis. Symbol a represents the number of SRGs that 
are also noted as driver genes in DriverDBV3. The num-
ber of b, c and d are derived accordingly.
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