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Simple Summary: Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy
originating from abnormal lymphoid progenitor cells. Since ALL is genetically highly heterogenous,
more sensitive and rapid methods for identifying the molecular subtype of ALL are still being
searched, and Raman spectroscopy (RS) has a chance of becoming a valuable tool for this purpose.
Herein, the RS was applied to analyze normal B cells and three subtypes of B-ALL, characterized
by the presence of the product of gene fusion, i.e., BCR-ABL1, TEL-AML1, and TCF3-PBX1. The
classification and discrimination of normal and neoplastic cells were carried out with the chemometric
approach. Normal B cells were characterized mostly by bands assigned to nucleic acids and proteins,
whereas three subtypes of ALL appeared to contain a higher lipid content. Spectral differences
between particular ALL subtypes were modest. The results lead to the conclusion that RS has the
potential as a diagnostic tool in clinical practice.

Abstract: Acute lymphoblastic leukemia (ALL) is the most common type of malignant neoplasms in
the pediatric population. B-cell precursor ALLs (BCP-ALLs) are derived from the progenitors of B
lymphocytes. Traditionally, risk factors stratifying therapy in ALL patients included age at diagnosis,
initial leukocytosis, and the response to chemotherapy. Currently, treatment intensity is modified
according to the presence of specific gene alterations in the leukemic genome. Raman imaging is a
promising diagnostic tool, which enables the molecular characterization of cells and differentiation
of subtypes of leukemia in clinical samples. This study aimed to characterize and distinguish cells
isolated from the bone marrow of patients suffering from three subtypes of BCP-ALL, defined by gene
rearrangements, i.e., BCR-ABL1 (Philadelphia-positive, t(9;22)), TEL-AML1 (t(12;21)) and TCF3-PBX1
(t(1;19)), using single-cell Raman imaging combined with multivariate statistical analysis. Spectra
collected from clinical samples were compared with single-cell spectra of B-cells collected from
healthy donors, constituting the control group. We demonstrated that Raman spectra of normal
B cells strongly differ from spectra of their malignant counterparts, especially in the intensity of
bands, which can be assigned to nucleic acids. We also showed that the identification of leukemia
subtypes could be automated with the use of chemometric methods. Results prove the clinical suit-
ability of Raman imaging for the identification of spectroscopic markers characterizing leukemia cells.
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1. Introduction

Acute lymphoblastic leukemia (ALL) is a hematological malignancy originating from
abnormal lymphoid progenitor cells that accumulate in the bone marrow and invade
peripheral blood and extramedullary sites. B-cell precursor ALL (BCP-ALL) accounts for
80–85% of ALL. It is classified into several molecular subtypes depending on the initiating
genetic lesion and specific secondary aberrations, which lead to a unique gene expression
profile and chemosensitivity of leukemic cells [1]. Therefore, cytogenetic and molecular
identification of the prognostically relevant genetic abnormalities became a routine diag-
nostic procedure that determines patients’ risk stratification and, consequently, an intensity
of ALL treatment [2]. TEL-AML1 translocation [t(12;21) (q13;q22)], TCF3–PBX1 transloca-
tion [t(1;19)(q23;p13)], KMT2A (MLL) rearrangements (KMT2A-R), BCR–ABL1 [Philadelphia
chromosome (Ph) t(9;22)(q34;q11)-positive] are the most recurrent disease-initiating genetic
alterations in BCP-ALL. TEL-AML1 accounts for 25% of childhood cases and is related
to an excellent prognosis. Similarly, TCF3–PBX1 positive ALL also shows a favorable
outcome but increases the risk for ALL relapse in the central nervous system. In contrast,
Ph-positive ALL, which occurs ten times more rarely in children as compared to adults,
who represent 40–50%, is clearly associated with poor prognosis [3]. The unfavorable
outcome of this subtype results from the constitutive activity of the BCR-ABL1 oncoprotein.
This aberrant tyrosine kinase transfers a phosphate group to target molecules. It modifies a
phosphorylation pattern in numerous signaling pathways in response to external stimuli,
strongly enhancing the proliferation of leukemic cells.

Since genetic subtypes of BCP-ALL display distinct gene expression profiles, reflecting
activation of particular metabolic pathways, leukemic cells may be easily distinguished
from normal B cells and each other using high-throughput genomic methods. Moreover,
ALL cells can be sorted out by flow cytometry based on the expression of surface pro-
teins (immunophenotype). However, using both methods, pathological lymphoblasts
are subjected to invasive procedures of sample preparation which either destroy cells or
significantly disturb their homeostasis, making it impossible to reuse the sample for further
research. This study aims to investigate whether primary BCP-ALL cells representing
defined genetic subgroups can also be discriminated based on their chemical composition
using non-invasive and label-free Raman imaging. This technique measures molecular
bond vibrations based on the two-photon scattering phenomenon resulting from the in-
teraction of electromagnetic radiation with a sample, the annihilation of one photon, and
the simultaneous creation of a second photon. The difference in energy between the in-
cident photon and the Raman scattered photon is defined as the Raman shift (expressed
as cm−1) [4]. Analysis of the intensity profile of the inelastically scattered light as a function
of frequency provides the unique spectroscopic fingerprint of a tissue sample which reflects
detailed chemical composition with respect to the presence of nucleic acids, proteins, lipids,
and carbohydrates [4]. As a result of Raman imaging, complex datasets containing large
amounts of information are produced. Thus, appropriate chemometric methods must be
implemented in the extraction and correct interpretation of this information. Such statistical
methods, including principal component analysis (PCA), and k-means cluster analysis
(KMCA), reduce the dimensionality in the dataset, allow to capture of very subtle chemical
changes in analyzed samples and group spectra based on their similarities [4–6]. KMCA
provides the possibility of grouping the spectra into clusters based on spectral similarity
and identifying a common biochemical pattern of the studied samples [4]. PCA helps
to identify data patterns by highlighting differences in groups of spectra while reducing
data redundancy simultaneously [7]. In the PCA method, one of the first steps of the
analysis requires calculating principal components (PCs), which dissolve the variances
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within the spectra data set [7]. Recently, partial least squares (PLS) regression has been
widely applied as a supervised chemometric technique for Raman data classification. It
combines features from principal component analysis and multivariate regression and
allows to build of predictive multicollinear models [8,9]. PLS regression is a powerful
chemometric method, which serves as a supervised technique for generating machine
learning prediction algorithms, which learn similarities and differences between classes of
chemical data. In this method, known data (training set) are used to build a model, which
in turn can be used to predict new, unknown data (validation samples) [8,9].

There are many advantages of Raman spectroscopy that justify its successful imple-
mentation into cancer cell profiling for routine clinical pathology practice and live-cell
imaging. In addition to the high sensitivity and chemical specificity, using minimal or no
sample pretreatment, small sample volume, and the possibility to perform measurements
in liquids, Raman imaging allows nondestructive, intrinsic, and label-free cell characteri-
zation with excellent spatial resolution [4,10]. This great potential of RS for non-invasive
cancer diagnostics has been effectively tested in a wide range of solid tumors, including
breast, skin, brain, lung cancers, and others [11–14]. Raman studies on cancer detection
have been predominantly focused on analyzing tissue sections, and only a limited number
of experimental works were conducted on blood malignancies. The Raman spectroscopy-
based approach of pathological cells analysis was previously reported, including a mixture
with normal hematopoietic cells suspended in the solution [15,16] or B-ALL cell lines
compared with normal B cells [17–19]. In the present work, we have reported for the first
time that Raman spectroscopy was not only able to differentiate leukemic cells from normal
lymphocytes, but it also enabled accurate classification of B-cell acute leukemia into the
different differentiation/maturation stages [20]. It was also shown that the spectra of B-cell
leukemia cell lines are characterized by a lower ratio of the intensity of the DNA/protein
bands in relation to the healthy cells [18]. Thus, in the current study, we attempt to further
characterize ALL cells being at the same stage of maturation (pre-B), depending on the
presence of the specific genetic abnormalities, including BCR-ABL1, TEL-AML1, TCF3-PBX1
gene fusions. The clinical usefulness of Raman imaging and spectroscopic markers for the
characterization of leukemic cells compared to normal B cells is also shown.

2. Materials and Methods
2.1. B Lymphocytes and Cancer Cells Isolation

The experiments were performed in accordance with the consent of the Bioethics
Committee at the Medical University of Lodz No. RNN/270/19/KE (extension KE/30/21)
from 14 May 2019. Blood from volunteers and the bone marrow from the patients were
collected after obtaining informed consent.

B lymphocytes were isolated from the whole peripheral blood of healthy donors
(n = 5) (Figure 1a) with the immunomagnetic negative selection method (EasySep™ Direct
Human B Cell Isolation Kit, STEMCELL Technologies Inc., Vancouver, CA, USA), enabling
isolation of untouched target cells. The trypan blue exclusion method was used to assess the
viability of isolated cells. The purity of obtained cells was evaluated with flow cytometry
following staining with antibody cocktail: CD45-PerCP-Cy5.5 (clone 2D1) and CD19-APC
(clone SJ25C1) (Figure S1). Primary leukemic cells were isolated from the bone marrow
on the day of diagnosis of childhood BCP-ALL and were stored at −156 ◦C in the vapor
phase of the liquid nitrogen. The Ficoll-Paque method was used for PBMC isolation
according to the standard protocol. For this study, we selected only samples with three
gene rearrangements typical for BCP-ALL, i.e., BCR-ABL1, TEL-AML1, TCF3-PBX1. Before
Raman measurements, B-ALL samples were removed from the vapor phase of the liquid
nitrogen and thawed quickly in a water bath (37 ◦C). After washing step with PBS (three
times) at room temperature (300 g, 5 min), the viability of leukemic samples was assessed
using the trypan blue exclusion method. The characteristics of selected samples is presented
in Table S1. Both B lymphocytes and cancer cells were fixed with 0.5% glutaraldehyde (GA)
for 10 min at room temperature and then washed three times with the use of PBS buffer
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to remove the excess amount of fixative. After that, cells were resuspended in the saline
buffer for Raman measurements and kept at 4 ◦C.

Figure 1. Scheme of conducted experiments. (a) Blood samples were drawn from healthy donors via venipuncture, and B
cells were isolated. Leukemic cells were isolated from the bone marrow aspirate on the day of diagnosis of BCP-ALL and
deposited in the Bio-Bank from patients with B-ALL. All cells were fixed with 0.5% GA and became a subject of (b) Raman
imaging with two laser excitation wavelengths: 532 nm and 633 nm. Scale bar: 1 µm. (c) Subsequently, the acquired spectra
were grouped using KMCA considering two approaches: deriving two clusters—organic matter and background, and
3 clusters—cytoplasm, nucleus, and background. After that, three groups of spectra were analyzed using PCA and PLS.

2.2. Confocal Raman Imaging

Raman imaging of single cells was performed with the use of a confocal Raman
microscope WITec Alpha 300 (WITec GmbH, Ulm, Germany) (Figure 1b) equipped with
air-cooled 532 nm and 633 nm lasers, a CCD detector (Andor Technology Ltd., Belfast,
Northern Ireland), which was cooled down to −60 ◦C and a 600 grooves/mm grating
(BLZ = 500 nm) with a spectral resolution of around 3 cm−1. Cells (200–500 µL of cells
suspensions), deposited on CaF2 windows (Crystran LTD, Poole, UK, Raman grade) and
immersed in saline buffer were measured through illumination with the use of 63x water
immersion objective (Zeiss W Plan-Apochromat 63x, NA = 1, Oberkochen, Germany). A
0.5 s exposure time per spectrum was applied for a green laser, and the sampling density
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was equal to 1 µm. For a red laser, spectra were collected with a step of 3 µm and the
integration time was equal to 3 s. For statistical analysis, at least 50 cells/sample were
measured from different areas of the sample. The cells were placed on CaF2 slides and
measured at least after 30 min in order to let cells sediment and immobilize. Only normal-
looking oval-shaped cells were measured.

2.3. Spectral Data Post-Processing and Analysis

At first, the spectra were pre-processed with Project Five 5.1 Plus software (WITec
GmbH, Ulm, Germany). The pre-processing included the removal of artifacts from cosmic
rays (cosmical ray removal, filter size: 3, and dynamic factor: 8) and background correction
(polynomial fitting, 3rd order for a green laser, and 2nd order for a red laser). Then KMCA
was performed, and two approaches were applied. Firstly, the averaged spectra of the
whole-cell class were extracted. Secondly, spectra from each map of single cells were
divided into two/three clusters characteristic for different cellular components, the class of
nucleus, cytoplasm, lipid droplets, carotenoids, and hemoproteins (Figure 1c). Spectra were
obtained from KMCA for each B-ALL subtype, and each class separately was averaged
and presented with its standard deviation.

The chemometric analysis was performed with Unscrambler X v. software (v. 10.3,
64-bit, CAMO Software AS., Trondheim, Norway). Before applying the multivariate PCA,
the spectra were smoothed (Savitzky–Golay, 3rd order polynomial, 15 pts both for green
and red lasers), and baseline correction (linear correction and offset subtraction) and
spectra normalization (unit vector normalization) were done. The PCA was performed in
three different spectral ranges: fingerprint (1800–500 cm−1), C-H stretching region (3030–
2850 cm−1), and in a wide range (3030–2850 cm−1 and 1800–500 cm−1). The PLS was
executed in the spectral range of 1800–500 cm−1. In total, approximately 115,200 and 38,400
single spectra were analyzed using 532 nm and 633 nm lasers, respectively. It gives the
overall number of single spectra of ca. 153,600.

3. Results
3.1. Characterization of the Molecular Composition of Normal B Lymphocytes and B-ALL Cells

Firstly, we performed Raman imaging of normal B-cells and their leukemic counter-
parts using 532 and 633 nm laser excitations. For each subtype among BCR-ABL1, TEL-
AML1, TCF3-PBX1, 3–4 samples were collected from different patients (P1-10, Table S1).

Figure 2 presents the results of representative KMCA performed for Raman images of
TCF3-PBX1 positive blasts.

Figure 2a presents a set of Raman maps of exemplary lymphoblast. They were
constructed based on the bands attributed to organic matter (3030–2800 cm−1), DNA/RNA
(800–780 cm−1), and lipids (3030–3000 cm−1). The spatial distribution of organic matter
allows visualizing the entire cell body and assessing cell morphology. Integration of
bands characteristic for DNA/RNA is used to visualize the nucleus’s location and size.
Analysis of the size and the distribution of lipid droplets (LDs) can give insight into the
activity of cells because they are intracellular lipid reservoirs (fatty acids, triacylglycerides,
and sterols), providing building components for membranes or substrates for energy
metabolism [21,22]. Additionally, corresponding images were created as a result of KMC
analysis—an organic matter of the whole cell (orange), two clusters representing spectra
of nucleus and cytoplasm (blue and grey, respectively), and four clusters with other two
groups derived from cytoplasm—lipid droplets (red) and hemoproteins (green).
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Figure 2. (a) Raman maps obtained using 532 nm laser constructed based on bands characteristic for organic matter
(3030–2800 cm−1), nucleus (800–780 cm−1), and lipid droplets (3030–3000 cm−1) and KMCA. Scale bar: 2 µm. (b) Mean
spectra for the classes differentiated from the KMC analysis for cells from an ALL patient with the TCF3-PBX1 fusion gene.
Spectra were maximally extended on the y axis and shown in the ranges 3050–2750 cm−1 and 1800–500 cm−1. Abbreviation:
a.u.—arbitrary units.

Figure 2b displays the mean spectra for each cluster, representing distinct cellular
components that differ from each other and exhibit characteristic bands. Identifying these
clusters enables the characterization of the molecular structure of both normal and leukemic
cells and the determination of their metabolic differences. Lipids are distinguished by
bands characteristic for C-H stretching vibrations at 2936, 2903, and 2852 cm−1, and by
the marker band at 3010 cm−1 originated from C=C groups, related to the degree of lipid
unsaturation (Table 1). Additionally, the band at 1659 cm−1 is related to unsaturated lipids.
Other bands used for lipids and proteins characterization are assigned to the CH2/CH3
in-plane bending at 1445 cm−1 and the CH2/CH3 wagging, twisting and/or bending at
1340 cm−1. Other characteristic bands of proteins at 1659, 1266, and 1039, 1008 cm−1, can
be assigned to C=O stretching of α-helix (amide I), C-N stretching of α-helix (amide III),
stretching of C-N groups, and ring breathing of phenylalanine, respectively. Amide I and III
regions of RS spectra appear to be a valuable tool in estimating the secondary structure of
proteins. Bands characteristic for hemoproteins (green) were observed at 1585, 1311, 1130,
and 753 cm−1 and originated from C=C bending in phenylalanine, pyrrole asymmetric
stretching, stretching of C-N groups, and breathing mode of the pyrrole ring, respectively.
The unique band for the nucleus (blue) was 795 cm−1, which could be assigned to ring
breathing of nitrogenous bases in nucleic acids (mainly cytosine). Another band, which
could be assigned to nucleic acids, was the band at 1096 cm−1 (symmetric stretching of
PO2

− groups of the DNA backbone). All the assignments and classifications of Raman
bands are collected in Table 1.
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Table 1. Assignments of the Raman bands in the spectra of studied samples.

BAND/cm−1 Assignment Classification

540 Disulfide bonds [23] Proteins
613 Ring breathing of Phe [24–26] Proteins
655 Ring breathing of Phe and Tyr [25,26] Proteins

685–694 C-C twist, G [19] Proteins, nucleic acids
717 Vibrations of the choline group [27] Phospholipids, sphingolipids
728 Ring breathing of A [4] Nucleic acids
753 Pyrrole breathing mode [28,29] Heme proteins
795 Ring breathing of U, T, C; backbone O-P-O [4] Nucleic acids
827 PO2

− asymmetric stretching, Tyr [19,29,30] Nucleic acids, proteins
884 CH2 rocking deformation mode [4] Proteins

940 Skeletal modes [4]
N–Cα–C for α-helix [31]

Polisaccharides
Proteins

1008 Ring breathing of Phe [4] Proteins
1039 C-N stretching [4] Proteins
1096 PO2

− symmetric stretching [4,19] Nucleic acids, phospholipids
1130 C–C, C–O, C-N stretching [31,32] Heme proteins, proteins, lipids
1162 C-C stretching [33] Carotenoids
1175 Tyr, Phe, C-H bend Proteins
1266 =C−H deformation, amide III; C-N stretching in α-helix [4] Lipids, proteins
1311 CH2 twist, C-N stretching, Cα-Cβ stretching [19,32] Lipids, proteins, heme proteins

1340
CH2/CH3 wagging, twisting and/or bending;

CH deformation,
G modes [4,19]

Lipids
Proteins

Nucleic acids
1378 COO– symmetric stretching [30,34] Proteins, nucleic acids

1449–1455 CH2/CH3 bending in-plane [4] Lipids, proteins

1492 Ring breathing of G, A,
CH deformation mode [19]

Nucleic acids
Nucleic acids, proteins

1525 C=C stretching [33] Carotenoids
1557 Phe and Trp [30] Proteins
1585 Pyrimidine ring; C=C bending in Phe [4] Nucleic acids, heme proteins

1635–1670 Amide I, C=C stretching [4,19,32] Proteins, lipids
2850–2870 CH2 symmetric stretching [4] Lipids, fatty acids

2885 CH3 symmetric stretching, CH2 asymmetric stretching [4] Lipids, fatty acids, proteins
2933–2945 CH3 asymmetric stretching [4] Lipids, fatty acids, proteins

3010 =CH2 stretching [4] Lipids, fatty acids

Based on KMC analysis, the percentage of cells containing hemoproteins, carotenoids,
and lipids was calculated in relation to each group’s total number of examined cells. The
summary of Raman measurements of analyzed cells is presented in Table 2. Spectra of at
least 50 cells per sample from each donor, using two lasers with the excitation of 532 nm
and 633 nm, were gathered. The values representing the most abundant cluster within the
analyzed cells are in bold.

Table 2. A summary of measurements using two lasers (λ = 532 nm and λ = 633 nm), including the number of donors (N),
number of measured cells, and percentage of cells with heme proteins, carotenoids, and lipid clusters recognized by KMC.
The values representing the most abundant cluster within the analyzed cells are in bold.

CELLS N λ [nm] Number of
Cells

Heme Proteins
Clusters

Carotenoid
Clusters Lipid Clusters

B cells 5
532 255 144 (56.5%) 0 (0.0%) 3 (1.2%)
633 247 0 (0.0%) 0 (0.0%) 0 (0.0%)

BCR-ABL1 3
532 183 124 (67.8%) 0 (0.0%) 5 (2.7%)
633 169 0 (0.0%) 14 (8.3%) 7 (4.1%)

TCF3-PBX1 4
532 331 210 (63.4%) 8 (2.4%) 9 (2.7%)
633 271 4 (1.5%) 32 (11.8%) 2 (0.7%)

TEL-AML1 4
532 314 189 (60.2%) 16 (5.1%) 66 (21.0%)
633 257 3 (1.2%) 32 (12.5%) 2 (1.1%)
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Using a 532 nm laser excitation, in over 50% of the cells of each population, the
resonance Raman profile of hemoprotein was detected [28,29]. The 56.6% of B cells and the
67.8% of BCR-ABL1 leukemic cells were defined to include hemoproteins clusters. In the
case of 633 nm laser excitation, the percentage of hemoprotein clusters was found at the
level of 0.0–1.5%, which is related to much lower resonance enhancement of hemoproteins
at this excitation [29]. Carotenoids are also resonantly enhanced when excited in the visible
range. Still, due to their greater absorption when excited with 532 nm laser and sensitivity,
their relatively more intense bands are observed when the measurement is carried out with
a 633 nm laser excitation. In line with previous observations, no carotenoid clusters were
found in B cells [35]. In contrast, carotenoids were found in all studied types of leukemic
cells, at the level of 8.3% for BCR-ABL1 up to 12.5% for TEL-AML1 cells. Lipids were
identified in all groups of examined cells, at the level of 1.2% for B cells and up to 21.0% for
TEL-AML1. Blasts with TEL-AML1 fusion show the highest content of both carotenoids
(12.5%) and lipids (21.0%) content. Some discrepancies in amounts of specific compounds
calculated from data collected using two different lasers excitations originated either from
different levels of resonance enhancement or from different sampling densities, i.e., 1 µm
for 532 nm and 3 µm for 633 nm lasers.

The next step of the analysis was a comparison of the average Raman spectra of
normal B-cells and each subtype of leukemic cells. Figure 3 presents the average Raman
spectra with the standard deviation obtained from whole cells of all four studied groups
for 532 and 633 nm excitations.

Figure 3. Mean spectra of the whole cells with the standard deviation, measured using a 532 nm laser (a) of B cells (n = 254),
and BCR-ABL1 (n = 183), TCF3-PBX1 (n = 331), TEL-AML1 (n = 314) lymphoblasts; and using a 633 nm laser (b) of B cells
(n = 247), and BCR-ABL1 (n = 169), TCF3-PBX1 (n = 271), TEL-AML1 (n = 254) lymphoblasts. Spectra were maximally
extended on the y axis and shown in the ranges 3050–2750 cm−1 and 1800–500 cm−1. B cells are represented in red color,
whereas leukemic cells with BCR-ABL1 fusion gene are in navy blue, with TCF3-PBX1 mutation are in green, and with
TEL-AML1 fusion are in turquoise. In panel (b), bands at 1525 and 1162 cm−1 are marked with purple asterisks (*).
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Using only the visual assessment, the variation of the spectra presented in Figure 3
is imperceptible. The only noticeable differences can be noticed between the spectra of
BCR-ABL1 and TEL-AML1 cells measured with a 633 nm excitation (Figure 3b, marked with
purple asterisks). The difference is related to bands at 1525 and 1162 cm−1, corresponding
to stretching of C=C and C-C groups of carotenoids, respectively (Table 1). To visualize
and emphasize more subtle chemical changes in the registered spectra, we combined the
RS analysis with PCA’s multivariate statistical method [21].

3.2. Spectroscopic Analysis of Different B-ALL Subtypes

PCA of spectra representative for the whole B cells (red dots) and three subtypes
of leukemic cells collected from patients, i.e., BCR-ABL1 (blue), TCF3-PBX1 (green), and
TEL-AML1 (turquoise), is presented in Figure 4.

Figure 4. The score plots (a,b) and loadings (c) of PCA analysis representative for B cells and three groups of leukemic cells,
in the spectral range of 3030–2750 cm−1 and 1800–500 cm−1; laser excitation of λ = 532 nm. Color-coded asterisks mark the
most pronounced Raman features in the loadings (*).
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The left part of Figure 4 presents the score plots, where every data point represents a
Raman spectrum of a single cell. The first two score plots are shown along PC-1 to PC-2
and PC-2 to PC-3 axes (Figure 4a). The first three components describe 47%, 26%, and
9% of data variability. In addition, a combined three-dimensional plot for all three PCs,
describing in total 82% of data changeability, is presented in Figure 4b. As displayed in
Figure 4, B cells show a tendency to group along PC-1 and PC-2 axes. Spectra collected
from B lymphocytes are placed mainly on the negative side of both PC-1 and PC-2 axes. In
general, the spectra collected from examined leukemic cells mix with each other. Although,
a slight trend of grouping can be observed for cells with TCF3-PBX1 gene fusion along the
PC-2 axis. Spectra collected from leukemic cells with TCF-PBX1 fusion are placed on the
negative side of PC-1 and the positive side of PC-2 axes. Loadings of PCA are shown on the
right side of Figure 4 and present only those spectral regions where the differences between
presented samples are obvious (pointed with color-coded asterisks). Positive/negative
Raman features in the loadings indicate increased Raman signals in the original spectra
of the positive/negative score values. Raman features present in loadings can indicate
the increased intensity of Raman bands in original spectra and changes in the shape and
position of Raman bands. Loading for PC-1 does not provide much information about
the biochemistry of the cells (Figure 4c). The division along the PC-1 axis is based mostly
on variability in a baseline of spectra and probably also on the degree of hydration of the
samples. On the PC-2 loading plot, Raman bands characterizing B cells, marked by red
asterisks, are negatively correlated with PC-2 (Figure 4c). The most significant are the
bands at 1585, 1096, and 795 cm−1 (nucleic acids). Other bands worth mentioning are
1492 cm−1 (ring breathing of G, A, nucleic acids) and 1378 cm−1 (symmetric stretching of
COO− groups), 1678 and 1635 cm−1 (amide I), indicating the presence of proteins. The
band at 2990 cm−1 could be associated with lipids, or nucleic acids, whereas 1340 cm−1 may
indicate the presence of lipids, proteins, or nucleic acids. The high intensity of the nucleic
acids and proteins in the mean spectra of the B cells may be related to the morphology of B
cells since they contain large nuclei [36,37]. The results also suggest that these cells have
more proteins than leukemic cells. Interestingly, the spectra of TCF3-PBX1 cells tend to
group on the negative side of PC-1 and the positive side of PC-2. The bands at 2897 and
2852 cm−1 describing symmetric stretching of CH3 and CH2 groups are characteristic for
lipids. The presence of the 1445 cm−1 band may indicate the presence of lipids as well (in-
plane bending of CH2/CH3 groups), and 717 cm−1 is often distinctive for phospholipids
and sphingolipids (vibrations of the choline group). BCR-ABL1 and TEL-AML1 cells mostly
group on the positive sides of PC-1 and PC-2, which also indicates their more lipidic nature.
One can assume that spectra of normal B cells are attributed to more intense bands due to
nucleic acids and proteins, whereas leukemic cells show a higher content of lipids.

PCA analysis was performed separately for each type of leukemic cell and B lympho-
cytes to verify whether cancer cells can be distinguished from normal B lymphocytes based
on their spectral profiles. The results of PCA are shown in Figure 5. On each score plot,
lymphocytes are represented by red dots and their characteristic bands by red asterisks.
Analogically, spectra collected from leukemic cells are marked by the following colors: blue
(BCR-ABL1), green (TCF3-PBX1), and turquoise (TEL-AML1).
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Figure 5. PCA score plots comparing normal B lymphocytes with each leukemia subtype (a) BCR-ABL1, (b) TCF3-PBX1,
(c) TEL-AML1 and corresponding PCA loadings of PC2 (d); laser excitation wavelength of λ = 532 nm. The scores and
loadings plots for B cells and TCF3-PBX1 were multiplied by (−1) for greater clarity of visualization. On each score plot,
lymphocytes are represented by red dots and their characteristic bands by red asterisks. Spectra collected from leukemic
cells are marked in blue (BCR-ABL1), in green (TCF3-PBX1), and in turquoise (TEL-AML1). Abbreviation a.u.—arbitrary
units. The most pronounced Raman features in the loadings are marked by color-coded asterisks (*).

The score plots along PC-2 and PC-3 show significant differences among the four
groups of cells. Although PC-1 accounts for the most variance in the data sets, it does not
show significant differences across the groups. The score plots present the separation of
spectra collected from normal and leukemic cells along PC-2, which describes 15 to 19%
of the variability (Figure 5a). Spectra of B cells accumulate on the negative side of PC-2
and are characterized by the negative Raman features in the PC-2 loading plots (Figure 5d).
Spectra of leukemia subtypes are agglomerated on the positive side of the PC-2 axis in each
score plot and are represented by the bands positively correlated with PC-2 loadings. Each
type of neoplastic cell can be well distinguished from B cells. Raman features, which are
negatively correlated with PC-2 in the loadings (1585, 1492, 1378, 1096, 795 cm−1, Table 1)
indicate higher content of nucleic acids in B lymphocytes in comparison to leukemic cells,
similarly as presented in Figure 4. PCA revealed several Raman features indicating proteins,
including heme: 1311, 1130, 753 cm−1 or band at 685 cm−1 characteristic for C-C twist
vibrations in proteins and guanosine vibrations in nucleic acids as well as the band at
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540 cm−1 originated from disulfide bonds (Table 1). The malignant cells are described
mainly by the bands corresponding to lipids and proteins: 1659, 1445, and 1266 cm−1

(Table 1). The band at 717 cm−1 indicates the presence of choline (Table 1). Even though
such an approach could not discriminate different subtypes of leukemia from each other,
slight changes in the loading plots could be noticed. It indicates some chemical variability
between the leukemic cells carrying different gene rearrangements. The spectra collected
from cells with BCR-ABL1 gene rearrangement (Figure 5a) additionally can be distinguished
from B cells based on the intensity of bands at 1175 and 1557 cm−1 (vibrations of Phe, Tyr,
and Trp), 1311, 1130, and 753 cm−1 (heme proteins: pyrrole asymmetric stretching, C-N
stretching, and pyrrole breathing mode, respectively) and 1008 cm−1 (ring breathing of
phenylalanine, Table 1). Bands associated with heme proteins (1311, 1130, 753 cm−1) can
also be discriminated from the loading plot describing TEL-AML1 cells (Figure 5c). The
high content of heme proteins in malignant cells was also determined by analyzing the
number of cells containing this class of molecules by KMCA (Table 2). It was found in
over 60% of leukemic cells. In the case of TEL-AML1 cells, PCA analysis also revealed a
Raman feature at 884 cm−1 due to the rocking deformation mode of CH2 groups assigned
to proteins. When it comes to TCF3-PBX1, there are no other distinctive bands (Figure 5b).

In summary, B cells can be distinguished from leukemic cells based on bands assigned
to nucleic acids and proteins. In general, malignant cells tend to have more lipidic/protein
nature than their normal counterpart. Moreover, cells with BCR-ABL1 and TEL-AML1
fusion genes appear to have a higher protein content than TCF3-PB1, which are more
lipidic. These cells differ the most among all the studied leukemic cell subtypes, which
resulted in the most promising grouping of spectra in Figure 5.

3.3. Discriminant Analysis of Normal B Lymphocytes and B-ALL Cells

In order to verify the clinical potential of RS in the diagnosis of leukemia, we employed
partial least squares (PLS) discriminant analysis. The goal was to build a model that enables
distinguishing and categorizing the spectra obtained from biological samples of healthy
donors and patients with ALL disease. Figure 6 presents the results of the PLS model for
discriminating spectra of healthy B cells and malignant ones obtained using laser excitation
of 633 nm.

First, a PLS model in the spectral range of 1800–500 cm−1 has been established com-
paring leukemic cells (BCR-ABL1, TCF3-PBX1, and TEL-AML1) with normal lymphocytes
(Figure 6) and cancers cells with BCR-ABL1 and TCF-PBX1 mutations (Figure 7). With
respect to the data presented in Figure 6, the training set included spectra of B lymphocytes
and neoplastic cells (BCR-ABL1, TCF3-PBX1, and TEL-AML1 gene mutations) collected
from samples derived from two out of three patients. The training set presented in Figure 7
included 75% of spectra of leukemic cells collected from samples obtained from three pa-
tients to avoid the influence of individual variability and other factors that could diminish
classification. By building the model presented in Figure 6, spectra of the malignant cells
and B lymphocytes were assigned the value of (−1) and (1), respectively. For a model
aimed at differentiating between leukemic cells, spectra of TCF-PBX1 and BCR-ABL1 cells,
the value of (−5) and (5) were assigned, respectively (Figure 7).
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Figure 6. A PLS discriminant analysis. (a) Two-dimensional score plot for factors 1 and 2 of PLS-DA.
(b) Three-dimensional score plot for factors 1–3 of PLS-DA. (c) The regression coefficient of the
training data set (four groups: B cells, BCR-ABL1, TCF3-PBX1, and TEL-AML1; n = 2 for each group).
(d) Results presenting calibration and validation of the model. (e) Prediction results for the test data
set (n = 1 for each of the following groups: B cells, BCR-ABL1, TCF3-PBX1, and TEL-AML1). Data are
obtained for the spectra of whole-cell clusters of B cells and three groups of leukemic cells (n = 3 in
total for each group); laser excitation of 633 nm.
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Figure 7. A PLS discriminant analysis. (a) Two-dimensional score plot for factors 1 and 2 of PLS-DA.
(b) Results presenting calibration and validation of the model. (c) The regression coefficient of the
training data set (two groups: BCR-ABL1 and TCF3-PBX1; n = 3 for each group). (d) Prediction results
for the test data set (n = 3 for each of the following groups: BCR-ABL1 and TCF3-PBX1). Data are
obtained for the spectra of whole-cell clusters of two groups of leukemic cells (n = 3 in total for each
group); laser excitation of 633 nm.

The results of the 3-factor PLS model for distinguishing spectra of the whole-cell
body of healthy B cells and malignant ones obtained using laser excitation of 633 nm are
presented in Figure 6. Results presented in PLS two-dimensional calibration plot, including
factors 1 and 2 (Figure 6a), confirmed that there are, in fact, distinct differences between B
cells (red dots) and cells derived from patients diagnosed with B-ALL. Again, a tendency
of B cells to group together can be noticed. The three-dimensional calibration score plot of
factors 1–3 (Figure 6b) delivers more information about the model. It appears that there is
a slight tendency of the grouping of spectra of leukemic cells, noticeable especially for the
cells with TCF3-PBX1 fusion gene (green). There is also a similar trend of grouping spectra
of cells with BCR-ABL1 (blue) and TEL-AML1 (turquoise) gene rearrangements. However,
cells with BCR-ABL1 (blue) and TEL-AML1 (turquoise) fusions have more heterogeneous
characteristics. In Figure 6c, a plot of the regression coefficient is presented. It shows
which bands discriminate two analyzed groups of cell spectra, Raman spectra of normal B
cells and their malignant counterparts. Bands appearing on the positive side of this plot
characterize B cells, whereas leukemic cells are on the negative side of the plot. Normal
lymphocytes exhibit Raman bands at 1590, 1320, 1091, 827, and 781 cm−1, corresponding
to nucleic acids, and the band at 1436 cm−1, which can be assigned to both lipids and
proteins. The bands distinguishing leukemic cells from the normal ones are observed
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at 1664 (amide I, proteins), 1172 (Tyr, Phe, proteins), and 694 cm−1 (C-C twist, proteins).
Albeit the regression coefficient is relatively low, obtained PLS results agree with the one
from the PCA analysis. However, the PLS method’s advantage is that it provides a tool for
categorizing Raman spectra of cells and predicting whether a spectrum has been recorded
for a normal or cancer cell. Additionally, an established PLS model can be used to categorize
spectra of unknown samples. Figure 6d shows predicted vs. reference values of responses
for the training data set. For the model, values of R2 are equal to 0.9102 for calibration
and 0.8996 for validation. As the next step, spectra of one sample of each studied group
were incorporated in the evaluation of the model. The prediction plot (Figure 6e) indicates
that the obtained model can distinguish healthy B cells from neoplastic ones. Spectra of
malignant cells were positioned on the negative side of the chart, approximately around
the value of (−1), assigned to leukemic cells during the algorithm’s training. The prediction
coefficient R2 was equal to 0.75. The model achieved the sensitivity of 100% (calculated as
true positives divided by the sum of all positives) and specificity of 83% (computed as true
negatives in relation to all negatives).

Since each of the analyzed subtypes of leukemia could be distinguished from the
normal B cells (Figures 4–6), we investigated if PLS enables us to notice any differences in
Raman spectra between each leukemia subtype. For this purpose, we performed PLS anal-
ysis comparing malignant cells carrying different gene abnormalities. The most promising
model differentiating cells with BCR-ABL1 and TCF-PBX1 rearrangements is presented
in Figure 7. The bands distinguishing leukemic cells with BCR ABL1 mutation from cells
with TCF-PBX1 gene alteration can be mainly attributed to bands that originated from
proteins at 1687 (amide I, proteins), 1255 (amide III, proteins), 1004 (ring breathing of
phenylalanine), 930 (N–Cα–C vibration, proteins), 693 (C-C twist, proteins), and 616 cm−1

(ring breathing of phenylalanine). On the other hand, bands characterizing cells with
TCF-PBX1 mutation could be assigned to different bands that originated from the proteins
modes observed at 1275, 1255 (amide III, proteins), 1055 (C-C vibrations of phenylalanine),
913 (C-C vibrations of phenylalanine), 857 cm−1 (tyrosine). The differences in Raman
fingerprints of cells carrying different genetic mutations related to protein-specific content
(cytochrome, Phe, Tyr, Trp) suggest diversities in the metabolism of blasts carrying different
genetic aberrations. The tyrosine Raman feature at 857 cm−1, which characterizes TCF-
PBX1 cells, can be related to altered tyrosine phosphorylation in cells with the Philadelphia
chromosome because due to tyrosine phosphorylation, Fermi resonance doublet collapses
to a single band at 830 cm−1 [38]. The presence of the band characteristic mainly for RNA at
810 cm−1 in BCR-ABL1 may also indicate different transcriptional and translational activity
of Ph-positive cells.

4. Discussion

Rapid and label-free identification of malignant cells from patients suffering from
leukemia is an unwavering need within health care prospects. Therefore, the primary
goal of our study was to identify whether Raman imaging conjugated with multivariate
analysis (PCA or PLS) can be used as a distinguishable tool between normal cells vs. their
malignant counterparts and, more importantly, in layout concerning discrimination of
diverse subtypes of BCP-ALL.

Firstly, our results clearly indicate spectra separation of B cells from their malignant
counterparts. The PCA scores plots confirmed discrimination between BCP-ALL cells and
healthy B lymphocytes, thereby confirming the possibility of developing a classification
model to distinguish these groups of cells. Such an approach was previously demonstrated
only for experimental outlines based on leukemic cell lines [39]. The PLS model established
within the study allowed cell spectra of BCR-ABL1, TCF3-PBX1, and TEL-AML1 to be
correctly classified as leukemic cells with 100% accuracy. Analogous analysis in a group
of healthy B cells reached the maximum specificity equal to 83%, with a 17% margin
of B cells incorrectly classified as malignant. The model developed within our study
admittedly allowed the diagnosing of neoplastic cells but indisputably needs improvement
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to categorize normal cells correctly and increase the maximal level of specificity. For this
purpose, the algorithm should be trained on a significantly bigger data set to eliminate
individual variability.

The bands characterizing normal B cells and which determined discrimination in-
cluded: 1492, 1378, 1096, 795, 685 cm−1 (Figures 4 and 5). They can be assigned to nucleic
acids. The decrease of these bands in leukemic cells indicates a decrease of the nucleic-acid
content in lymphoblasts. Our findings are in line with the previous results [18–20,40].
Managò et al. indicated that Raman bands associated with vibrational modes characteristic
for nucleic acids could be successfully used as spectroscopic markers to distinguish normal
and cancer cells. The accuracy of the discrimination based on the PCA analysis was at
the level of 96%. Moreover, the 1447 cm−1/785 cm−1 ratio was higher for clinical samples
and leukemic cell lines than B lymphocytes [20]. Our results show the same tendency
(Figure S2). It was previously pointed that the reduction in the nucleic-acid content in
leukemic cells might be observed due to chromatin decondensation and higher levels of
transcriptional and replicational activities in cancers cells and/or breaks and translocations
of chromosomes [20,40]. The change in the degree of chromatin condensation may also be
indicated by changes in the morphology of the neoplastic cell nucleus compared to normal
B cells (TCF3-PBX1 and TEL-AML), as reflected by the calculated ratio of the nucleus area
to the whole cell area (Figure S3). Managò et al. also showed that individual variability
strongly impacts spectral discrimination between normal and cancer cells, which was also
observed in our study [20].

Secondly, we attempt to distinguish cells representing different subtypes of BCP-ALL
derived from patients (BCR-ABL1, TCF3-PBX1, and TEL-AML). However, we could not
obtain the precise key allowing for the distinction between subtypes of BCP-ALL (Figure 4).
The loadings plot in Figure 5 presents very similar shapes of bands and loadings for
malignant cells, which currently rule out the possibility of obtaining division. Nevertheless,
in the Raman spectra, some subtle changes can be seen. The loading plots for all aberrations
present the bands at 1659, 1445, 1311, 1266, 753, 717, and 655 cm−1, which can be assigned
to lipids and proteins. Similar conclusions were drawn from studies reported in the
literature [20]. Due to higher levels of transcriptional activity in metabolically active cancer
cells, an increase in proteins level may be correlated with increased biomolecular synthesis.
Yet, there are several bands characteristic only for specific subtypes. In the case of BCR-
ABL1 and TEL-AML1 fusion genes, there are significant bands, which can be assigned to
hemoproteins, i.e., 1311, 1130, and 753 cm−1. Nonetheless, these two mutations could
potentially be distinguishable since BCR-ABL1 was also characterized by the 1557 and
1008 cm−1 bands, whereas the latter subtype provides a band at 884 cm−1. These three
bands are assigned to proteins, but they are present on loading plots of different mutations.
This may indicate differences in protein composition in cells with these fusion genes [41,42].
Regarding the cells isolated from patients with TCF3-PBX1 gene rearrangement, there are
no additional marker bands. Even though we could not establish a model discriminating
all studied leukemic subtypes of leukemia, we achieved a promising model differentiating
cells with BCR-ABL1 and TCF-PBX1 gene alterations (Figure 7). There are several reasons,
including individual variability, why the use of spontaneous Raman spectroscopy makes
it difficult or even impossible to distinguish between genetic subtypes of B cell precursor
leukemia at a similar stage of differentiation. According to the FAB classification, cells
with the same gene rearrangement may exhibit different morphology defined as L1 or L2
subtypes [43]. Moreover, within the specific subtype of BCP-ALL leukemia, additional
coexisting genetic lesions may influence the analyzed cells’ phenotypic diversity and
make classification complicated. Finally, biochemical changes in leukemic cells of different
subtypes may be so subtle that they are very difficult to be detected by spontaneous Raman
spectroscopy.

Our analysis showed differences in lipid content within BCP-ALL subtypes and
described TCF3-PBX1 with the highest lipid content. The altered lipidic profile was reported
previously between normal and leukemic cells, where the higher abundance of lipids in
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cancer cells was correlated with the abnormal growth regulation of leukemic cells [44].
The uptake of free acid acids in the form of lipid droplets or their incorporation into
triglycerides and phospholipids by ALL cells was previously disclosed [45]. The presence
of lipid droplets in the larger amount in leukemic cells compared to B-cells and the highest
amount in TEL-AML-positive cells might indicate the correlation of the number of stored
lipids with the metabolic activity of the leukemic cells.

Another part of the results obtained within this work showed the presence of hemo-
proteins in cells of all four ALL subtypes, but in different proportions. The lowest number
of cells with hemoproteins content was observed within B lymphocytes (56.5%), and suc-
cessively, such number increased in BCP-ALL lymphoblast carrying TEL-AML1 (60.2%),
TCF3-PBX1 (63.4%), and BCR-ABL1 (67.8%). Those differences align with phenomena in
which leukemic cells tend to have a higher level of proteins containing hem as a pros-
thetic group (e.g., ferroporphyrins) since they are described as rapidly proliferating with
altered metabolism. However, the viability of BCR-ABL1 cells was the lowest among all
studied subtypes of B-ALL (43–56%, Table S1). Nevertheless, the highest percentage of
hemoproteins in BCR-ABL1 cells did not result from apoptosis because apoptosis might be
marked by the decrease of Raman signals assigned to cytochrome c [46,47]. In the case of
lymphoma, it was shown that an increased expression of cytochrome c was associated with
poor patient prognosis, and it was significantly correlated with an outcome predictor score,
accurately anticipating patient survival following chemotherapy [48]. Considering poor
prognosis in the case of Philadelphia-positive leukemias, an increased level of hemoproteins
in the BCR-ABL1 subtype of ALL could reflect its invasiveness. It may be rather associated
with a stronger proliferative potential of BCR-ABL1 cells than TCF-PBX1 or TEL-AML1
fusions. In the future, assessing the level of hemoproteins in leukemic cells might be a
promising diagnostic factor for B-ALL subtypes.

The 633 nm laser excitation measurements allowed us to detect carotenoids in all
fractions of cells representing BCP-ALL subtypes. The highest content of carotenoids of
12.5% was found in TEL-AML1, with a downward trend observed in TCF3-PBX1 (11.8%)
and BCR-ABL1 (8.35%). Carotenoids cannot be synthesized in the human organism and thus
must be provided with food. They accumulate in particular cells, have immunomodulatory
activity, and can be transformed into, e.g., retinol [49]. Previous studies proved that those
compounds could be found in human T cells but not in B lymphocytes [33,35,49–51], which
aligns with our previous research. These findings might suggest that leukemic cells, which
originate from pre-B cells, abnormally accumulate carotenoids. Their changed metabolism
might cause this and could possibly become a marker of leukemia development.

The use of two lasers of different excitations allowed us to collect full spectral informa-
tion and perform a complete biochemical analysis of both normal B cells and lymphoblasts.
Spectra obtained with a 532 nm laser excitation show a better signal-to-noise ratio for heme
proteins due to resonance enhancement. Applied excitation allows the application of a
smaller sampling density, so visualizing lipid droplets is possible. However, under these
conditions, strong absorption accompanies light scattering, which is decreased when the
measurement is performed with a 633 nm laser [52]. The 633 nm laser has proven to be
more powerful in studies of carotenoid accumulation in leukemic cells due to photosensi-
tivity of this group of molecules [53] and a resonance Raman enhancement phenomenon,
which occurs when excited by radiation from the range of 400–550 nm [52,53].

Summarizing, our results indicate wide spectra of ambiguities accompanied by the
application of Raman spectroscopy in the advanced biology of blood malignancies. The
question posed in our study whether spontaneous Raman spectroscopy is an efficient tool
to distinguish genetic subtypes of B cell precursor leukemia turned out to be a challenging
goal to reach. However, it revealed a wider perspective of the subject where the Raman
phenomenon is important and the biological context of analyzed cells. Moreover, one of
the facts worth emphasizing is that all cells used herein were at the same stage of differenti-
ation (pre-B common and pre-B-ALL), thereby posing the same shape or analogous ratio of
nucleus to the cytoplasm (Figure S3). Therefore, the golden key to successful differentiation
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probably lies in subtle features within the biochemical frame but probably does not change
cancer cell morphology. This suggests that one should look for alternative chemometric
methods for data analysis or consider introducing Raman reporters or markers reflecting
molecular/biochemical differences/features that may exaggerate the differences between
different leukemia subtypes/differentiate the cellular metabolism features of different
leukemia subtypes [54]. So far, such reporters are used in targeting specific cellular struc-
tures, such as MitoBADY, which accumulates in the mitochondria, or EdU, which bonds
with DNA [54]. Characteristics and proper segregation of common BCP-ALL into subtypes
probably require a wide spectrum of immunophenotyping methods, cytogenetics, and
molecular diagnostics. Gene expression profiling using microarrays identify differentially
expressed genes that correlate with lineage and primary genetic change. Anderson et al.
showed that most of the analyzed ALL lymphoblasts samples segregate according to the
primary genetic aberrations group [55]. Identifying upregulated genes, which correlates
with primary genetic changes, gives information of key processes with variable efficiency
in different genetic leukemia subtypes [55].

While we have achieved reproducible measurements that allowed us to distinguish
between normal B cells and B-ALLs, several limitations remain. We anticipate that given
the low degree of biochemical variation between some leukemia subtypes in terms of
general protein and lipid composition, it would be difficult to discriminate them by PCA
or PLS models. Therefore, to identify reliable and robust spectral differences between ALL
subtypes, a more advanced prediction model based on deep learning and a supervised
approach is needed. There are also other limitations in the translation of Raman-based
diagnostic of leukemia from the laboratory into the clinic, such as mentioned above diffi-
culties in analyzing the data and relatively slow acquisition times. The development of
non-linear Raman methods provides improvements in collection times for conventional Ra-
man spectroscopy and has been shown to significantly reduce acquisition times: coherent
anti-Stokes Raman spectroscopy (CARS) and stimulated Raman spectroscopy (SRS) [56].

The data collected by different research approaches might be used to design the super-
vised data analysis based on Raman spectroscopy imaging which focuses on previously
described alterations at the genetic and proteomic levels of signaling pathways analysis.

5. Conclusions

B cells from healthy donors and three genetic subtypes of BCP-ALL were analyzed
using Raman spectroscopy. PCA indicated that B cells significantly differ from malignant
cells. This led us to a successfully trained PLS algorithm to recognize healthy B lymphocytes
from leukemic cells. We achieved a sensitivity of the model equal to 1.00 and specificity
of 0.83, which means that the algorithm can be used to recognize true positive cells. Still,
about one-sixth of healthy cells are classified as malignant. Such results prove that Raman
imaging supported with chemometric analysis can be considered an innovative tool in
leukemia diagnostics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13215483/s1, Figure S1: Purity assessment of the B cell fraction by flow cytometry,
Figure S2: The 1445 cm−1/795 cm−1 ratio calculated based on the spectra obtained with the use of
532 nm laser for B cells and lymphoblasts, Figure S3: The nucleus/cell ratio calculated based on the
KMC maps obtained with the use of 532 nm laser for B cells and lymphoblasts, Table S1: Details of
samples used in the study.
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