
sensors

Article

IoTNet: An Efficient and Accurate Convolutional
Neural Network for IoT Devices

Tom Lawrence and Li Zhang *

Department of Computer and Information Sciences, Faculty of Engineering and Environment,
Northumbria University, Newcastle upon Tyne NE1 8ST, UK; tom.lawrence@northumbria.ac.uk
* Correspondence: li.zhang@northumbria.ac.uk

Received: 17 November 2019; Accepted: 11 December 2019; Published: 14 December 2019 ����������
�������

Abstract: Two main approaches exist when deploying a Convolutional Neural Network (CNN) on
resource-constrained IoT devices: either scale a large model down or use a small model designed
specifically for resource-constrained environments. Small architectures typically trade accuracy for
computational cost by performing convolutions as depth-wise convolutions rather than standard
convolutions like in large networks. Large models focus primarily on state-of-the-art performance
and often struggle to scale down sufficiently. We propose a new model, namely IoTNet, designed for
resource-constrained environments which achieves state-of-the-art performance within the domain
of small efficient models. IoTNet trades accuracy with computational cost differently from existing
methods by factorizing standard 3 × 3 convolutions into pairs of 1 × 3 and 3 × 1 standard
convolutions, rather than performing depth-wise convolutions. We benchmark IoTNet against
state-of-the-art efficiency-focused models and scaled-down large architectures on data sets which best
match the complexity of problems faced in resource-constrained environments. We compare model
accuracy and the number of floating-point operations (FLOPs) performed as a measure of efficiency.
We report state-of-the-art accuracy improvement over MobileNetV2 on CIFAR-10 of 13.43% with 39%
fewer FLOPs, over ShuffleNet on Street View House Numbers (SVHN) of 6.49% with 31.8% fewer
FLOPs and over MobileNet on German Traffic Sign Recognition Benchmark (GTSRB) of 5% with
0.38% fewer FLOPs.

Keywords: computational complexity; Convolutional Neural Network; computer vision; deep
network architecture; efficient architecture; image classification; deep learning

1. Introduction

Convolutional Neural Networks (CNNs) have proved revolutionary in computer vision
applications and consistently outperform traditional models or even humans at image recognition
tasks. CNNs are often benchmarked on computer vision tasks but their impacts are far wider-reaching.
Recently, the studies of [1] adopted a CNN model to perform gas identification as part of the wider
research area of electronic noses (ENs).

Many studies within computer vision focus on improving accuracy by designing a new
state-of-the-art model, typically only ever constrained by the resources available on high-end graphics
cards. State-of-the-art models are typically very deep. This is because the network generalization
capability is enhanced, as the network goes deeper. However, the downside to deep models is that even
the most cutting-edge and efficient state-of-the-art models, such as EfficientNet [2], still contain millions
of parameters and billions of FLOPs. Models such as these require significant computational resources
to execute, and exhibit diminishing returns when scaling, meaning that a large increase in model size
is required to obtain a small improvement of accuracy. Therefore, such an approach results in a very
large yet extremely accurate model. When deploying a CNN model within a resource-constrained

Sensors 2019, 19, 5541; doi:10.3390/s19245541 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
http://www.mdpi.com/1424-8220/19/24/5541?type=check_update&version=1
http://dx.doi.org/10.3390/s19245541
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 5541 2 of 27

environment such as IoT devices or smartphones, it becomes critical to find a balance between model
accuracy and computational cost to ensure the model will function well within resource limited
environments. When finding such a trade-off, two main approaches exist. (1) The first mechanism is to
scale down a large model to fit the constraints of the target device as it seems reasonable to assume
that if a large increase in the size of a state-of-the-art model results in a small improvement in accuracy,
then a large reduction in model size would result in a small loss of performance. While this is true
to an extent, the point at which accuracy starts to drop rapidly occurs while the model is still very
large. This is because the state-of-the-art accuracy-focused models contain strategies which help such
networks overcome the types of issues encountered during training, such as overfitting. To scale
such a model down sufficiently enough for tightly constrained environments, expert knowledge
and trial-and-error would be required. (2) Alternatively, the second approach is to design models
specifically for computational constrained environments. As an example, efficiency-focused models
include MobileNet [3], ShuffleNet [4] and EffNet [5]. Such models excel at delivering far greater
accuracy than would be possible by significantly scaling down a large model. This is achieved by
making design choices which reduce the computational cost, often by performing convolutions as
depth-wise separable convolutions instead of normal convolutions employed by their larger model
counterparts. A distinction between the above two types of convolutions (i.e., normal and depth-wise
separable convolutions) is discussed comprehensively below in Section 1.2. Both of the above two
approaches sacrifice model performance in the trade of enhanced computational efficiency.

Therefore, as compared with the aforementioned methods, the motivation of this research is to
design a novel efficiency-focused model specifically for resource-constrained devices which greatly
improves accuracy, and reduces computational cost simultaneously. Specifically, we propose a new
model, namely IoTNet, which improves the trade-off between accuracy and computational cost by
avoiding the common pitfall of efficiency-focused related studies which is to perform convolutions
as depth-wise separable operations to reduce computation cost. We instead reduce computation by
factorizing the 3 × 3 standard convolutions found in large and highly accurate models into pairs of
1 × 3 and 3 × 1 normal convolutions which reduces the number of parameters by 33%. The empirical
results indicate that our approach delivers significantly enhanced performance with less computational
cost measured as a reduction in FLOPs. The way our model differs from other existing studies is
visualized in Figure 1.

Figure 1. Our model dubbed IoTNet is distinctive from other related works as it uses pairs of 1 × 3
and 3 × 1 standard convolutions, rather than 3 × 3 standard convolutions typically found in large
models, or depth-wise separable convolutions used in efficiency-focused models.

Sensors 2019, 19, 5541 3 of 27

The main contributions of this research are as follows.

• We propose a new architecture, namely IoTNet, which is designed specifically for performance
constrained environments such as IoT devices, smartphones or embedded systems. It
trades accuracy with a reduction in computational cost differently from existing methods by
employing novel pairs of 1 × 3 and 3 × 1 normal convolutions, rather than using depth-wise
separable convolutions.

• An in-depth comparison of the proposed architecture against efficiency-focused models including
MobileNet [3], MobileNetV2 [6], ShuffleNet [4] and EffNet [5] has been conducted using
CIFAR-10 [7], Street View House Numbers (SVHN) [8] and German Traffic Sign Recognition
Benchmark (GTSRB) [9] data sets. The empirical results indicate that the proposed block
architecture constructed exclusively from pairs of 1 × 3 and 3 × 1 normal convolutions, with
average pooling for downsampling, outperforms the current state-of-the-art depth-wise separable
convolution-based architectures in terms of accuracy and cost.

• A direct comparison of pairs of 1 × 3 and 3 × 1 normal convolutions against 3 × 3 standard
convolutions has also been conducted. The empirical results indicate that our approach results in
a more accurate and efficient architecture than a scaled-down large state-of-the-art network.

The impact of this work is to enable a significantly more accurate model to be deployed within
resource-constrained environments, which is of great benefit to the wider research community.

1.1. Related Work

Works relating to IoT devices identify a real need for more accurate models within
resource-constrained environments. Recently, the research studies of [10] highlighted how IoT devices,
such as Raspberry Pi, make edge computing a reality, as cheap devices can be interconnected to
form network infrastructures. When interconnected, such networks have been used to tackle a range
of problems, including pollution, air, water, food, and fire sensing, heartbeat and blood pressure
monitoring, and motion tracking. Furthermore, the studies of [11] presented a novel solution to
decentralize data exchange based on wireless IoT and blockchain technologies and highlighted how
IoT-based solutions have illustrated exponential growth owing to a rise in IoT applications within
smart cities and health tracking domains. Because of the fast growth and the range of interesting
applications for IoT devices, more accurate and efficient deep learning models are essential. Moreover,
a recent case study [12] especially focused on sensor reliability relating to LiDAR sensors with IoT
capabilities. Their work pointed out that such types of sensor devices are becoming widespread. Their
IoT capable devices employed a range of models to perform tasks such as driver assisting obstacle
detection within cars and fault detection, yet more advanced deep learning models could be deployed
in such applications providing such networks can deliver sufficient accuracy and efficiency.

Research into architectures which improve the accuracy and performance of CNNs has been
an active research area for some time. This work has resulted in notable architectures such as
ResNet [13], WideResnet [14], AlexNet [15] and PyramidNet [16]. The 3 × 3 convolution has proven
a popular choice for many architectures but Inception-v3 [17] and Inception-v4 [18] have shown
that the 3 × 3 convolution can be replaced with a 3 × 1 and 1 × 3 convolution, resulting in a 33%
reduction in parameters. While the above variants of the inception block make use of 1 × 3 and
3 × 1 convolutions, the block contains multiple branches, filter concatenations and 1 × 1 convolutions.
Multiple branches were proposed within the inception model to train deeper models. The drawback
of such a practice is that in resource-constrained environments, models tend to be shallower due
to the computational constraints and multiple branches substantially increase the computational
cost for a given depth. In comparison with these existing models, the proposed architecture in this
research differs from inception networks as it contains one branch, and has no filter concatenation
which reduces overhead and does not use 1 × 1 convolutions. All the aforementioned existing models
are optimized to achieve state-of-the-art performance. However, the drawback when deployed to

Sensors 2019, 19, 5541 4 of 27

resource-constrained environments is that they are typically large and contain additional operations
to address overfitting [19]. While it is possible to scale these large models down, they are specifically
designed to maximize accuracy and are trained on high-end GPU machines.

Other research efforts in building network architectures suitable for use on performance restricted
environments such as IoT and smartphones have led to another category of models, specifically
designed to be computationally efficient. State-of-the-art architectures of this type of models include
MobileNet [3], MobileNetV2 [6], ShuffleNet [4], LiteNet [20] and EffNet [5].

A comparative analysis of all related studies has been summarized in Table 1, followed by
in-depth discussions.

The motivation behind MobileNet [3] illustrated in Figure 2 was to reduce the network
computational cost by using 3 × 3 depth-wise separable convolutions. Specifically, a depth-wise
separable convolution is a form of factorization which reduces computational cost in comparison
with a standard convolution. A more comprehensive comparison between a normal convolution and
a depth-wise separable convolution is provided in Section 1.2. The study in [3] showed a drawback
when evaluated with ImageNet, i.e., the performance of MobileNet decreased by 1%, but the advantage
was a substantial reduction in computational cost in comparison with those of the model with a normal
3 × 3 convolution.

Figure 2. MobileNet [3] uses depth-wise separable convolutions. DWise denotes depth-wise
convolution. Skip connections are not used.

ShuffleNet [4], as illustrated in Figure 3, uses two new operations, i.e., a point-wise group
convolution and channel shuffling. A 3 × 3 kernel was used for the depth-wise portion of the
depth-wise separable convolution operation to reduce computational cost. The motivation of using a
shuffle was to combat pitfalls in group convolutions. Specifically, if multiple group convolutions stack
together, output channels are only derived from a small fraction of input channels which impacted
performance. Shuffling the channels overcame this problem and led to performance improvements
over MobileNet. However, this additional operation, i.e., shuffling, is also a drawback, as it leads to
additional computation.

Sensors 2019, 19, 5541 5 of 27

Table 1. Comparative analysis of related studies.

Model Kernel Convolution Type Emphasis Methodologies and Strengths Drawbacks

AlexNet [15] mixed standard accuracy Demonstrated how the model depth was
essential for performance

Contained large kernels which are less efficient.
Outperformed by subsequent studies

ResNet [13] 3 × 3 standard accuracy Used skip connections to enable training
deeper networks

A slim but deep state-of-the-art model, not
designed for constrained environments

Inception [17,18] mixed standard accuracy
Trained deeper networks using sparsely
connected network architectures, i.e., by
using a variety of kernel sizes side by side

The employed side-by-side model increased model
complexity

WideResnet [14] 3 × 3 standard accuracy
Demonstrated that widening a residual
network can decrease its depth and
improve its performance

A state-of-the-art model, not designed for
constrained environments. Less efficient at smaller
scales than our approach

PyramidNet [16] 3 × 3 standard accuracy
Gradually increasing the feature map size
of deep networks led to performance
improvements on ResNet

A deep state-of-the-art model, not designed for
constrained environments. Gradual depth increase
led to a larger model size

MobileNet [3,6] 3 × 3 depth-wise efficiency Traded accuracy with efficiency by using
depth-wise separable convolutions

Contained bottlenecks during downsampling
which impeded data flow

ShuffleNet [4] 3 × 3 depth-wise efficiency
Shuffling channels helped information
flowing when performing depth-wise
separable convolutions

Shuffle resulted in additional operations and
contained bottlenecks which impeded data flow

EffNet [5] 1 × 3 and 3 × 1 depth-wise efficiency

Factorized 3 × 3 depth-wise convolutions
into 1 × 3 and 3 × 1 depth-wise
convolutions to reduce complexity.
Addressed bottlenecks of prior
efficiency-focused models

Based on depth-wise separable convolutions
which traded accuracy with efficiency less
optimally than our approach

LiteNet [20] 1 × 2 and 1 × 3 depth-wise and standard efficiency Combined ideas from Inception and
MobileNet

A combination of drawbacks of Inception and
MobileNet (see above)

Ours 1 × 3 and 3 × 1 standard efficiency

Factorized 3 × 3 into 1 × 3 and 3 × 1
standard convolutions to retain the
strength of standard convolutions,
i.e., superior performance while reducing
model complexity

Designed for constrained environments and not to
outperform state-of-the-art accuracy-focused
models in extremely large configurations on GPU
machines.

Sensors 2019, 19, 5541 6 of 27

Figure 3. ShuffleNet [4] uses a 3 × 3 convolution for the depth-wise phase of the convolution which is
performed after a channel shuffle. DWConv denotes depth-wise convolution. This architecture uses
skip connections.

MobileNetV2 [6], as illustrated in Figure 4, builds on the original MobileNet architecture using
3 × 3 depth-wise separable convolutions but with the addition of an inverted residual structure
where shortcut connections are used between thin bottleneck layers to reduce input and output sizes.
This model outperformed the state-of-the-art networks such as MobileNet and ShuffleNet, at the time
for the evaluation of ImageNet.

Figure 4. MobileNetV2 [6] uses a 3 × 3 convolution for the depth-wise phase of the convolution and
makes use of skip connections. DWise indicates depth-wise convolution.

LiteNet [20], as illustrated in Figure 5, takes an inception block which contains 1 × 1, 1 × 2 and
1 × 3 standard convolutions arranged side by side and makes modifications (inspired by MobileNet)
by replacing half of the 1× 2 and 1× 3 standard convolutions with their depth-wise equivalents. Their
proposed block, therefore, contains a mix of both standard and depth-wise separable convolutions.
Their work also makes use of a SqueezeNet fire block [21] to further reduce the total network
parameters. The model was trained on the MIT-BIH electrocardiogram (ECG) arrhythmia database [22]
and improved the accuracy rate against baseline models of ≈0.5%. The drawback of their proposed
model is the side-by-side structure employed, since side-by-side blocks increase the total number of
parameters for a given depth. The inception model originally proposed a side-by-side block to reduce

Sensors 2019, 19, 5541 7 of 27

the need to select appropriate filter sizes upfront. By including a variety of different filter sizes side by
side, the network could learn which ones are best to use. We have since learnt in related works that the
most common filter used is 3 × 3 and deeper models perform better. Therefore, our model eliminates
their constraint by focusing on one filter size.

Figure 5. LiteNet [20] takes an inception block and replaces one of the 1x2 convolutions and one of the
1 × 3 convolutions with their depth-wise counterparts, respectively.

A common drawback of MobileNet, MobileNetV2 and ShuffleNet is a substantial reduction in the
total number of floats-out when downsampling is performed. The authors of EffNet [5] highlighted
this as a weakness as the aggressive nature of the reduction is that floats cause a bottleneck which
impedes data flow when the model is small, causing them to diverge. The motivation for EffNet
as illustrated in Figure 6 was to deploy networks in performance constrained environments and to
increase the efficiency of existing off-shelf models. EffNet achieves this by gradually reducing the total
number of FLOP outputs throughout the network to avoid bottlenecks. EffNet also replaced 3 × 3
convolutions with pairs of 1× 3 and 3× 1 convolutions performed as a depth-wise separable operation
to further reduce computational cost. A weakness to such an approach is that the computational saving
of performing a 1 × 3 convolution as a depth-wise operation is less than that of a 3 × 3 convolution as
elaborated in Section 1.2.

Besides the above methods, post-processing techniques exist which reduce model complexity and
therefore the computational cost. Related studies in this field include [23–26], which employed pruning
algorithms for post-processing. These developments indicated that a model can be compressed to
reduce complexity, with minimal impact on performance. Ref. [23] is a pruning algorithm based
on Taylor series expansion of a cost function which was applied to SqueezeNet [21], resulting in
a 67% model reduction. Some limitations of this approach include a 1% drop in accuracy. It obtains
better results when training from scratch, rather than using transfer learning on top of a pre-trained
network. Ref. [24] prunes based on a filter stability which is calculated during training. As an example,
unstable filters are candidates for pruning. This approach was applied to LeNet-5 [27] on MNIST [28],
VGG-16 [29] on CIFAR-10 [7], ResNet-50 [13] on ImageNet [30], and Faster R-CNN [31] on COCO [32]
and reduced the number of FLOPs by a factor of 6.03X. A limitation to this approach is that it can only
be used on new models trained from scratch.

Sensors 2019, 19, 5541 8 of 27

Figure 6. EffNet [5] uses 1× 3 and 3× 1 depth-wise separable convolutions to reduce model complexity.
DWConv denotes depth-wise convolution.

In contrast to post-processing techniques, architecture generation algorithms such as [33–37] have
demonstrated that architectures can be automatically generated by exploring different architecture
choices and hyper-parameter settings. Ref. [34] used a Q-Learning method [38] with an epsilon-greedy
exploration strategy [39] to speed up the time taken when generating new model architectures.
The algorithm was able to choose from 1 × 1, 3 × 3 or 7 × 7 convolutions and was trained on
CIFAR-10. The approach was able to reduce the time required to generate suitable architectures from
22 days for the current state-of-the-art approach [40] to 3 days with a 0.1% reduction in the error
rate. Ref. [33] recently proposed an ageing evolution algorithm which extended the well-established
tournament selection in genetic algorithm [41] by introducing an age property to favor younger
genotypes. The algorithm chose from 3 × 3, 5 × 5 or 7 × 7 separable convolutions, 1 × 7 then 7 × 1
standard convolutions, 3× 3 max or average pooling and dilated convolutions. The approach achieved
a new state-of-the-art 96.6% top-5 accuracy rate on ImageNet. These evolving model generation
methods require additional computational resources owing to the large search space and complex
evolving processes with the involvement of fitness evaluations.

Parameter quantization is an area of research which aims to make a network have a smaller
memory footprint by compressing 32-bit parameters to 16-bit or even smaller. Related developments
such as [42–44] have explored compression to various degrees, e.g., including reducing weights to
binary values. Bi-Real Net [42] significantly reduced memory footprint and computational cost by
setting all weights and activations to binary values. This process was achieved by using a sign
function which replaced the true activations and weights with either −1 or 1. It also reduced the
memory usage of the previous state-of-the-art 1-bit CNN XNOR-Net [45] by 16 times and reduced
computational cost by 19 times. Ref. [44] introduced chunk-based accumulation and floating-point
stochastic rounding functions which compressed weights from 32-bit to 8-bit. In comparison with

Sensors 2019, 19, 5541 9 of 27

a wide spectrum of popular CNNs, for the evaluation of several benchmark data sets, their network
achieved similar accuracy rates as those of the baseline models, but with reduced computational costs.
However, the study also indicated that their model suffered from loss of precision over the 32-bit
model counterparts.

Learning data augmentation strategies which can be transferred across different data sets and
models such as [46] have proved extremely effective at improving model accuracy by discovering novel
combinations of data augmentations which can be applied to specific data sets and often transferred
to others.

The above studies on pruning algorithms, automatic architecture generation and parameter
quantization are examples of related work, which could complement ours and be embedded for future
development.

1.2. Distinction Between Standard Convolutions and Depth-Wise Separable Convolutions

The following section aims to make a clear distinction between a standard convolution found
in our proposed model and depth-wise separable convolutions found in related works, pertaining
to their differences in methodology and computational cost. Subscripts have been used because our
kernels are not square as they are either 1 × 3 or 3 × 1 in shape.

1.2.1. Standard Convolution

For an input f of size D f1 × D f2 ×M, a standard convolution uses a kernel k which extends the
entire depth of the input. The kernel therefore has a size of Dk1 × Dk2 ×M. Convolving k with input
f produces an output g of size Dg1 × Dg2 as seen in Figure 7.

Figure 7. A standard convolution uses a kernel which extends the entire depth of an input.

We can use N such kernels to produce multiple output channels. The computational cost of
a standard convolution can be calculated with Equation (1)

standard = N · Dg1 · Dg2 · Dk1 · Dk2 ·M (1)

1.2.2. Depth-Wise Separable Convolution

A depth-wise separable convolution is performed in two stages, i.e., a depth-wise stage,
and a point-wise stage. To calculate the computational cost of a depth-wise separable convolution,
we calculate and sum the computational costs of both phases.

The depth-wise stage uses a kernel k which spans only one channel of input f . M such kernels are
used to span the entire depth of the input to produce an intermediate output g of size Dg1 × Dg2 ×M
as shown in Figure 8.

Sensors 2019, 19, 5541 10 of 27

Figure 8. In the depth-wise phase, multiple kernels are used to exploit the entire depth of an input as
each kernel only spans one channel.

The computation cost of this phase can be calculated with Equation (2)

depthwise = M · Dg1 · Dg2 · Dk1 · Dk2 (2)

The point-wise stage combines the intermediary output from the depth-wise stage using
a standard convolution, commonly with a 1× 1 kernel. As with the standard convolution we can have
N such kernels to produce multiple output channels as shown in Figure 9.

Figure 9. In the point-wise phase, a standard convolution is performed on the intermediate output
from the depth-wise phase.

The computational cost of this phase can be calculated with Equation (3)

pointwise = N · Dg1 · Dg2 ·M (3)

The motivation when using a depth-wise separable convolution is to reduce the computational
cost. The cost saving can be calculated as Equation (4) which simplifies to Equation (5).

cost =
depthwise + pointwise

standard
(4)

cost =
Dk1 · Dk2 + N
N · Dk1 · Dk2

(5)

It is more likely to perform a convolution as a depth-wise convolution rather than a standard
convolution when using a 3 × 3 kernel than it is when using a 1 × 3 kernel. This becomes clearer
if we compare the savings of both kernel types. Equation (6) shows that a convolution with a 3 × 3
kernel and 64 channels will require only 12.7% of the total FLOPs a normal convolution would require
if performed depth-wise, which is a significant saving. On the other hand, Equation (7) illustrates

Sensors 2019, 19, 5541 11 of 27

that a convolution with a 1 × 3 kernel and 64 channels will use 34% of the total FLOPs a normal
convolution would require. This means that the cost saving is greater on a 3 × 3 kernel, therefore we
are more motivated to explore the proposed mechanisms on a 3 × 3 kernel instead of a 1 × 3 kernel.

Dk1 · Dk2 + N
N · Dk1 · Dk2

=
3 · 3 + 64
64 · 3 · 3 = 0.127 (6)

Dk1 · Dk2 + N
N · Dk1 · Dk2

=
1 · 3 + 64
64 · 1 · 3 = 0.34 (7)

2. Materials and Methods

Our proposed model consists primarily of groups and blocks. A group is a logical collection of
blocks. A group also contains metadata such as to what degree resolution downsampling and widening
should be applied. A block is a collection of operations such as convolutions which are performed in
a repeatable sequence.

Our model has an initial 3 × 3 convolution, followed by at least one group of blocks. The
depth of our model is controlled by increasing or decreasing the number of groups with g ∈ {1, 2, 3}
and controlling the number of n blocks within each group where n ≥ 1. A block consists of batch
normalization [47] followed by a pair of 1 × 3 and 3 × 1 standard convolutions and contains a skip
connection. A block is defined in Equation (8) from [14] as xl and xl+1 represent the input and output
of the l-th block in the network, respectively. F is a residual function and Wl is the parameter matrix of
the block. Each convolution is preceded with a ReLU [48].

xl+1 = xl + F(xl , Wl) (8)

Our proposed network block is shown in Figure 10.

Figure 10. Our network block contains a batch normalization, followed by a pair of 1 × 3 and 3 × 1
standard convolutions. Each convolution is preceded with a ReLU. Each block also contains a skip
connection [13].

Sensors 2019, 19, 5541 12 of 27

The width within our model is controlled with a widening factor of k. The first block of each
group is responsible for increasing width. The initial 3 × 3 convolution has a width of f loor(16 ∗ k).
Group one has a width of f loor(16 ∗ k), while group two has a width of f loor(32 ∗ k), and group three
has a width of f loor(64 ∗ k). Except for the initial 3 × 3 convolution, these settings were taken from
related studies of [14].

Resolution downsampling is performed in groups two and three if they are present. The first
blocks of groups two and three reduce the resolution by performing average pooling using a 2 × 2
filter, which halves the output resolution. Figure 11 shows how depth, width and resolution can be
controlled, and how our model is made up of g groups, containing n blocks.

The linear layer which performs final classification is preceded by batch normalization, ReLU and
average pooling.

We opted not to use the data augmentation policies learnt through related works, such as
AutoAugment [46], as while they have great potential to improve model performance. We simply
opted to instead use mean/std normalization for all data sets so that the architectures themselves can
be compared fairly. In addition to this, for the CIFAR-10 data set, we also use the approach taken
in [14] of horizontal flip, random crop and padded by 4 pixels. Missing pixels added through padding
are repopulated using reflections of the original input image.

Figure 11. Our network width is controlled by a widening factor k. Resolution is reduced within the
first blocks of groups two and three if present.

2.1. Approach to Identify Candidate Models

In this research, we use multiple filtering steps to reduce the architecture search space and identify
the optimal network configurations for each test data set. The detailed process is provided below.

Step 1—We calculate the FLOPs for all combinations of groups, i.e., g ∈ {1, 2, 3}, number of blocks
per group, i.e., n ∈ {1, 2, 3, 4, 5}, data set classes, i.e., c ∈ {10, 43}, and the widening factor in the range
of [0.1, 2.0] in intervals of 0.01.

Step 2—We filter the results down to networks within a target FLOP range. We set the range
to between 50% and 100% of the FLOPs of the smallest baseline benchmark model for each data
set. For example, the ShuffleNet large model for CIFAR-10 has the smallest number of FLOPs,

Sensors 2019, 19, 5541 13 of 27

i.e., 11.1 million (see Table 2). Therefore, our filtering range for candidate model selection would be
between 5.5 and 11.1 million FLOPs.

Table 2. Evaluation results for the CIFAR-10 data set grouped by network sizes in FLOPs. The first
group contains larger configurations, while the second group comprises smaller ones.

Model Widening Factor k Mean Acc Mil. FLOPs

EffNet V1 large 0.99 85.02% 79.8
MobileNet large 0.14 78.18% 11.6
ShuffleNet large 0.14 77.90% 11.1
EffNet V1 0.14 80.20% 11.4
EffNet V2 0.22 81.67% 18.1
MobileNetV2 0.20 76.47% 16.4
IoTNet-3-4 0.7 89.9% 9.9

MobileNet 0.07 77.48% 5.8
ShuffleNet 0.06 77.3% 4.7
IoTNet-3-2 0.68 87.19% 4.2

Step 3—We narrow the results down further by selecting the minimum and maximum widths for
every unique combination of g and n. This process results in a list of configurations which contain two
candidate models for each unique combination of g and n.

Step 4—We train the narrowed list of model configurations obtained from Step 3 using a reduced
epoch count of 25 to reduce training cost. Then the trained models are tested with the test data set.

Step 5—We finally select the most promising models (e.g., 2–3 models) based on the test accuracy
rates obtained in Step 4 as candidate models for full training with 200 epochs.

Automatic architecture generation techniques, such as Particle Swarm Optimization-based deep
CNN model generation, will also be explored in future directions.

2.2. Complexity Analysis

The main indicator of computational cost, used in efficiency-focused related studies, such as our
benchmark models MobileNet [3], MobileNetV2 [6], ShuffleNet [4] and EffNet [5], is to report the
number of floating-point operations, i.e., FLOPs. Therefore, we adopt the same indicator for direct
computational cost comparison.

Influential studies such as [3] highlighted that computational cost depends multiplicatively and
therefore varies based on the number of FLOPs. The number of FLOPs for a standard convolution
as used in this study depends on the number of input channels M, the number of output channels
N, the kernel size Dk1 · Dk2 and the feature map size D f1 · D f2, as shown in Figure 7. Full details of
how convolutional cost is calculated in terms of FLOPs, and a complexity analysis of the proposed
modifications and customizations, i.e., cost differences between standard and depth-wise convolutions,
and differences between 3 × 3 and 1 × 3 convolutions, are provided in Section 1.2. The impact of
selecting different widening factors W to the computational cost of a convolution within our model can
be compared by scaling Equation (1) from [3] with W, as illustrated in Equation (9). This shows that
for the proposed models which share the same numbers of groups and blocks, the computational cost
of convolutions scales proportionately with W. In other words, when other network configurations
remain intact, the computational cost increases as the widening factor scales up and vice versa.

cost = N · Dg1 · Dg2 · Dk1 · Dk2 ·M ·W (9)

3. Results

We present our experimental studies in this section. Specifically, in Section 3.1, we provide
a detailed overview of the test data sets employed in our experiments, as well as the model training
scheme. We compare our approach against efficiency-focused benchmark models and the 3 × 3

Sensors 2019, 19, 5541 14 of 27

standard convolution-based models in Sections 3.2 and 3.3, respectively. We conduct in-depth model
and result analysis in Section 3.4.

3.1. Data Sets

The data sets used within our experiments include CIFAR-10 [7], SVHN [8] and GTSRB [9].
These data sets offer realistic and varied representations of the types of image classification problems
that could be encountered in resource-constrained environments. All these employed data sets have
pre-defined training and test sets meaning that all benchmark models and our model have been trained
and tested under the same experimental settings, i.e., using the same data splits, samples and image
resolutions. The selected data sets are summarized in Table 3 and introduced in more detail in the
following subsections.

Table 3. Overview of the data sets used in our experiments.

Data Set Total Sample Size Training Samples Test Samples Image Resolution

CIFAR-10 60,000 50,000 10,000 32 × 32
SVHN 99,289 73,257 26,032 32 × 32
GTSRB 51,839 39,209 12,630 32 × 32

3.1.1. CIFAR-10

The CIFAR-10 data set [7] consists of 60,000 images in 32 × 32 resolutions. They are split into
50,000 and 10,000 samples for training and test, respectively. Each image is categorized as one of the
ten classes, including airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. Figure 12
illustrates some example images extracted from this data set.

Figure 12. Example images extracted from the CIFAR-10 data set.

3.1.2. SVHN

The SVHN data set [8] contains house numbers obtained from Google Street View images. It is
divided into 73,257 training and 26,032 test images. We used a 32 × 32 crop of the original images
which produces a MNIST-like data set. In this format, each image contains one digit of interest
belonging to one of 10 classes, i.e., a number between 0–9, along with some distracting digits in both
sides of each image. Some example images in the SVHN data set are shown in Figure 13.

Sensors 2019, 19, 5541 15 of 27

Figure 13. Example images extracted from the SVHN data set.

3.1.3. GTSRB

The GTSRB [9] data set is composed of 51,839 images of traffic signs covering 43 different classes
of signs including stop, no entry and speed limits. Images within the same class are of different
physical signs with various lighting conditions and image qualities. The data set is split into 39,209
and 12,630 samples for training and test, respectively. Figure 14 illustrates some example images from
this data set.

Figure 14. Example images extracted from the GTSRB data set.

Moreover, GTSRB illustrates imbalanced class distributions with relatively small numbers of
examples for some of the classes as shown in Figure 15. Such characteristics make the data set challenging
as it is prone to overfitting.

Sensors 2019, 19, 5541 16 of 27

Figure 15. The imbalanced class distributions within the GTSRB data set.

3.1.4. Training Scheme

When training using the CIFAR-10 [7] and GTSRB [9] data sets, we adopt stochastic gradient
descent (SGD) optimizer with cross-entropy loss. A total of 200 epochs are used for model training.
The initial learning rate lr is set to 0.1, and dropped by lr ∗ 0.2 at epochs 60, 120 and 160. For the
SVHN [8] data set, we use the Adam optimizer [49] with cross-entropy loss. A total of 200 epochs
with a fixed learning rate of 0.001 have been applied. The above experimental settings are obtained by
trial-and-error to achieve the best model performance. We employ the mean result for a total of 5 runs
as the main criterion for comparison. The proposed model has been implemented using PyTorch [50].

3.2. Comparison Against Efficiency-Focused Benchmark Models

A comprehensive evaluation has been conducted to compare the proposed block architectures
against the baseline efficiency-focused models, i.e., EffNet [5], MobileNet [3], MobileNetV2 [6] and
ShuffleNet [4]. Our evaluation also compares the proposed approach directly against a standard
3 × 3 convolution method typically used in state-of-the-art accuracy-focused models. We denote
the depth settings for our proposed model as IoTNet-g-n where g is the number of groups, and n
is the number of blocks within each group. IoTNet-3-2 for example contains three groups, each of
which contain two blocks. We adopt the same experimental settings to ensure a fair comparison,
i.e., by using the aforementioned data sets with pre-defined training and test sets and input resolutions.
The experimental results are presented separately for each test data set.

The evaluation results of the baseline networks were obtained from the work of EffNet [5].
The authors of EffNet constructed models of comparable sizes by adjusting the networks width using
a widening factor, adding additional layers or a combination of both. A summary of the models with
brief configuration descriptions employed for performance comparison in this research is provided in
Table 4. Further details can be obtained from their original studies [5].

Sensors 2019, 19, 5541 17 of 27

Table 4. A summary of models used for evaluation. We have referenced two variations of EffNet
introduced by [5] as EffNet V1 and EffNet V2.

Model Name Brief Description

IoTNet-g-n The proposed model with g as the number of groups, and n as the number
of blocks per group

EffNet V1 An implementation of EffNet [5]. Model architecture contains 1 × 3 and
3 × 1 depth-wise separable convolution and pooling-based blocks

EffNet V1 large As per EffNet V1 with two additional layers and more channels

EffNet V2 As per EffNet V1, introduced also in [5] in response to MobileNetV2,
model contains minor changes relating to network expansion, extension
rates (depth and width) and the replacement of ReLU on the point-wise
layers with leaky ReLU

MobileNet An implementation of MobileNet [3] of varying widths.
Model architecture contains 3 × 3 depth-wise separable convolutions

MobileNet large As per MobileNet implementation with two extra layers

MobileNetV2 An implementation of MobileNetV2 [6] of varying widths.
Model contains 3 × 3 depth-wise convolutions and inverted residual
structures where shortcut connections are between bottleneck layers

ShuffleNet An implementation of ShuffleNet [4] of varying widths. Model
contains 3 × 3 depth-wise convolutions in addition to point-wise group
convolution and channel shuffle

ShuffleNet large As per ShuffleNet implementation with two extra layers

3.2.1. Evaluation Using CIFAR-10

The baseline models are split into two categories according to model sizes, measured in FLOPs.
We adopt the multi-filtering steps as discussed in Section 2.1 to identify suitable candidate models
for each network category, which contain fewer FLOPs than those of the baselines. Three candidate
models of the proposed approach were identified and trained with 200 epochs on CIFAR-10 for both
large and small network configurations, respectively. The detailed results are shown in Table 5.

As illustrated in Table 5, all top candidate models of the proposed approach contain three groups
since those with two groups performed worse than such networks, while those with one group
performed worse than the models with two groups. This indicates that multiple downsampling stages
and network depth are important factors. Candidate models favored a balance between depth and the
widening factor owing to the comparatively challenging nature of CIFAR-10. The empirical results
also indicate that shallow but wide models, or deep and narrow models performed worse.

Table 5. Accuracy of the best candidate models found using multi-filtering search, then trained and
tested on CIFAR-10. The first group contains networks with larger configurations, while the second
group comprises smaller ones.

Model Widening Factor k Mean Acc Mil. FLOPs

IoTNet-3-2 1.08 89.79% 11
IoTNet-3-4 0.7 89.9% 9.9
IoTNet-3-3 0.66 88.98% 6.2

IoTNet-3-2 0.68 87.19% 4.2
IoTNet-3-2 0.5 81.47% 2.6
IoTNet-3-3 0.41 83.49% 2.5

Table 2 shows the detailed results of the best candidate models and the baseline networks for
the CIFAR-10 data set while Table 6 indicates the performance improvements of the best performing

Sensors 2019, 19, 5541 18 of 27

candidate models over the benchmark networks. The results in both tables are split into two categories
according to model sizes.

Table 6. The improvements of the proposed best model for the CIFAR-10 data set over the
state-of-the-art networks, grouped by network sizes.

Model Acc Improvement FLOPs Saving

EffNet V1 large 4.88% 87.59%
MobileNet large 11.72% 14.66%
ShuffleNet large 12.0% 10.81%
EffNet V1 9.7% 13.16%
EffNet V2 8.23% 45.3%
MobileNetV2 13.43% 39.63%

MobileNet 9.71% 27.59%
ShuffleNet 9.89% 10.64%

Within the first groups (i.e., the larger networks) of Tables 2 and 6, we compare our best candidate
model against larger versions of the efficiency-focused benchmark networks. The best performing
benchmark baseline model is EffNet V1 large with an accuracy rate of 85.02%, with 79.8 million FLOPs.
Our proposed model achieves an accuracy rate of 89.9% with 9.9 million FLOPs. It outperforms EffNet
V1 large by 4.88% in terms of accuracy with 87.59% fewer FLOPs. The proposed model also delivers
a considerable improvement in terms of accuracy compared to MobileNetV2 with a 13.43% accuracy
improvement, with 39.63% fewer FLOPs.

Within the second group (i.e., the networks with smaller configurations), we compare our
proposed model against smaller versions of the efficiency-focused benchmark models. The best
performing baseline model is MobileNet with an accuracy rate of 77.48% and 5.8 million FLOPs.
Our proposed model achieves an accuracy rate of 87.19% with 4.2 million FLOPs, i.e., an improvement
of 9.71%, with 27.59% fewer FLOPs against those of MobileNet. The proposed model also beats
ShuffleNet with a 9.89% accuracy improvement, with 10.64% fewer FLOPs.

The results also indicate that the difference between MobileNet and MobileNet large, and the
difference between ShuffleNet and ShuffleNet large, in terms of performance when scaling up from
smaller to larger sizes, result in less than a 1% improvement in accuracy, respectively. On the contrary,
the performance improvement of the proposed models, i.e., between IoTNet-3-4 and IoTNet-3-2, is by
2.71% indicating that diminishing returns when scaling up MobileNet and ShuffleNet, which the
proposed model overcomes.

3.2.2. Evaluation Using SVHN

We adopt a multi-filtering search strategy to identify suitable candidate models which contain
fewer FLOPs than those of the baselines. Two top candidate models were subsequently identified and
trained with 200 epochs on SVHN. The evaluation results on the test set are shown in Table 7.

Table 7. Accuracy of the best candidate models found using the multi-filtering search, then trained and
tested on SVHN.

Model Widening Factor k Mean Acc kFLOPs

IoTNet-3-5 0.14 89.22% 499.7
IoTNet-3-2 0.21 88.4% 474.3

As indicated in Table 7, the candidate models containing three groups performed the best which
again indicates that multiple downsampling stages and depth are influential factors. Owing to the
less challenging nature of SVHN, the candidate models favored depth over width. Since SVHN
contains digits which vary much less between samples than a more general data set would such as

Sensors 2019, 19, 5541 19 of 27

CIFAR-10, this indicates that fewer filters are required to extract fine detail and perform classification
well. Therefore, less width was required.

Within Tables 8 and 9, we compare the best candidate model against efficiency-focused benchmark
models on the SVHN data set. Motivated by the related research [5] where the comparison was
conducted using one category of smaller networks owing to the simplicity of the problem, we perform
the comparison for SVHN using a similar style, i.e., purely with the smaller network category.
As illustrated in Tables 8 and 9, the best performing benchmark baseline model is EffNet V1 with
an accuracy rate of 88.51%, with 517.6 kFLOPs. Our proposed model achieves an accuracy rate of
89.22%, with 499.7 kFLOPs, and outperforms EffNet V1 by 0.71% in terms of accuracy with 3.46%
fewer FLOPs. It also makes a considerable improvement, i.e., 6.49%, in terms of accuracy with 31.84%
fewer FLOPs as compared with those of ShuffleNet. Our model is also able to make a significant
reduction, i.e., 57.03% in FLOPs, when compared against MobileNetV2 while also improving accuracy
by 2.51%. The empirical results indicate that the proposed architecture substantially reduces the trading
of accuracy over computational cost by making significant reductions in FLOPs while improving
performance across the board.

Table 8. Evaluation results for the SVHN data set.

Model Widening Factor k Mean Acc kFLOPs

EffNet V2 0.34 87.3% 1204.2
MobileNetV2 0.33 86.71% 1162.8
EffNet V1 0.14 88.51% 517.6
MobileNet 0.22 85.64% 773.4
ShuffleNet 0.21 82.73% 733.1
IoTNet-3-5 0.14 89.22% 499.7

Table 9. The improvements of the proposed best model for the SVHN data set over the
state-of-the-art networks.

Model Acc Improvement FLOPs Saving

EffNet V2 1.92% 58.5%
MobileNetV2 2.51% 57.03%
EffNet V1 0.71% 3.46%
MobileNet 3.58% 35.39%
ShuffleNet 6.49% 31.84%

3.2.3. Evaluation Using GTSRB

The baseline models are split into two categories according to model sizes, measured in FLOPs.
We adopt a multi-filtering search method to identify suitable candidate models with fewer FLOPs
than those of the baselines, for each network category. Three candidate models were identified for
each network configuration, which were subsequently trained with 200 epochs and tested on GTSRB.
The detailed results are shown in Table 10.

As shown in Table 10, all top candidate models contained three groups. They outperformed all the
networks with one group or two groups, which ascertains the importance of multiple downsampling
stages and network depth. The candidate models required less width than on those used for CIFAR-10,
yet more width than those tested upon SVHN. Since GTSRB is imbalanced with comparatively more
classes (i.e., 43) and contains images with a range of lighting conditions, it is more challenging than
SVHN. Therefore, more filters are required in the models than those used in SVHN. On the other
hand, GTSRB consists of images with road traffic signs which are comparatively consistent in design
and have fewer variations. Thus, it is less challenging than CIFAR-10. Therefore, fewer filters are
required than those used in CIFAR-10. Also, the results indicate that shallow but wide, or deep and
narrow models performed worse. As an example, the empirical results in Table 10 indicate that when

Sensors 2019, 19, 5541 20 of 27

constructing small models, depth must be compromised with width. This can be observed by the
improvement in performance when reducing the number of blocks per group from three to two,
while increasing width.

Table 10. Accuracy of the best candidate models found using the multi-filtering search, then trained
and tested on GTSRB. The first group contains networks with larger configurations, while the second
group comprises smaller ones.

Model Widening Factor k Mean Acc kFLOPs

IoTNet-3-2 0.22 93.17% 531.0
IoTNet-3-5 0.15 90.57% 531.5
IoTNet-3-3 0.18 91.84% 427.1

IoTNet-3-3 0.15 88.25% 342.1
IoTNet-3-3 0.13 88.72% 323.9
IoTNet-3-1 0.24 73.33% 310.3
IoTNet-3-2 0.18 88.82% 301.6

Within Tables 11 and 12, we compare the best candidate model for each network category against
efficiency-focused benchmark models on the imbalanced GTSRB data set. For the larger network
comparison, the best performing benchmark baseline model is MobileNetV2 with an accuracy rate
of 90.74%, with 710.7 kFLOPs. The proposed model achieves an accuracy rate of 93.17%, with
531.0 kFLOPs. It outperforms MobileNetV2 by 2.43% in terms of accuracy with 25.28% fewer FLOPs.
It also makes a significant improvement, i.e., 5.02%, in terms of accuracy with 0.38% fewer FLOPs as
compared with those of MobileNet. Our model is also able to make a significant reduction in FLOPs,
i.e., 24.63%, when compared against EffNet V2 while also improving accuracy by 2.77%. The empirical
results also indicate that when scaling down to 301.6 kFLOPS, it was not possible to increase the width
beyond 0.18 but at the same time also staying within the target FLOP range of below 344.1 kFLOPs.
Therefore, further studies will be conducted around different widening schemes to address this.

Table 11. Evaluation results of the GTSRB data set. The results are grouped by network sizes in
FLOPs. The first group contains larger networks, with the second group showing comparatively
smaller models.

Model Widening Factor k Mean Acc kFLOPs

EffNet V2 0.3 90.4% 704.5
MobileNetV2 0.31 90.74% 710.7
MobileNet 0.23 88.15% 533.0
ShuffleNet 0.23 88.99% 540.7
IoTNet-3-2 0.22 93.17% 531.0

EffNet V1 0.15 91.79% 344.1
IoTNet-3-2 0.18 88.82% 301.6

Table 12. The improvements of the proposed best model for the GTSRB data set over the state-of-the-art
networks, grouped by network sizes.

Model Acc Improvement FLOPs Saving

EffNet V2 2.77% 24.63%
MobileNetV2 2.43% 25.28%
MobileNet 5.02% 0.38%
ShuffleNet 4.18% 1.79%

EffNet −2.97% 12.35%

Sensors 2019, 19, 5541 21 of 27

3.3. Evaluation Against 3 × 3 Standard Convolutions

To prove the effectiveness of our proposed architecture against a scaled-down state-of-the-art
model based on the popular 3× 3 standard convolution, we construct a 3× 3-based model by replacing
our 1 × 3 and 3 × 1 pairs with a 3 × 3 convolution for comparison. We then scale our proposed model
and its 3 × 3 standard convolution counterpart to contain between 1 to 10 million FLOPs. The 3 × 3
configuration closely resembles scaled-down variants of popular models proposed by [13,14]. With
some minor alterations to the width calculation, it would also resemble the architecture proposed
by [16]. We train both models on CIFAR-10, SVHN and GTSRB data sets as discussed earlier.

3.3.1. Evaluation against 3 × 3 Standard Convolution-Based Models Using CIFAR-10

Figure 16 demonstrates that on the CIFAR-10 data set, our proposed model offers significantly
improved accuracy rates over its 3 × 3 counterpart in all cases when scaled between 1 and 10 million
FLOPs. The empirical results also indicate that scaling both model variants to sizes greater than
3 million FLOPs results in an improvement of accuracy, but with greater diminishing returns between
the model complexity and the observed accuracy improvement.

Figure 16. CIFAR-10: The proposed model based on 1 × 3 and 3 × 1 convolution pairs compared
with a 3 × 3-based approach. Both variants are scaled to match in terms of FLOPs ranging from
1 to 10 million.

3.3.2. Evaluation against 3 × 3 Standard Convolution-Based Models Using SVHN

Figure 17 compares our proposed model against its 3 × 3 counterpart on the SVHN dataset.
The empirical results indicate that due to SVHN representing a simpler problem when compared to
CIFAR-10, scaling the 3 × 3 model to more than 3 million FLOPs does not result in any significant
performance improvements. Also, the accuracy rate achieved by the 3 × 3 model when scaled
to 3 million FLOPs is surpassed by that of the proposed model containing just 1 million FLOPs.
This indicates a significant reduction in computational cost by using the proposed model. For
experiments scaled above 6 million FLOPs, the proposed model achieves greater accuracy when
using just 5 million FLOPs, which represents another significant reduction in computational cost.

Sensors 2019, 19, 5541 22 of 27

Figure 17. SVHN: The proposed model based on 1 × 3 and 3 × 1 convolution pairs compared with a
3 × 3-based approach. Both variants are scaled to match in terms of FLOPs ranging from 1 to 10 million.

3.3.3. Evaluation against 3 × 3 Standard Convolution-Based Models Using GTSRB

Figure 18 compares the proposed model against its 3 × 3 counterpart on the GTSRB data set.
The empirical results indicate that scaling either model larger than 3 million FLOPs does not result in
any significant real-world accuracy gains. The empirical results for models containing between 1 and
3 million FLOPs indicate significant accuracy improvements with the proposed model outperforming
its 3 × 3 counterpart throughout. While both models with 4 million FLOPs result in the same accuracy
rates, the proposed model scaled above 4 million FLOPs again shows superior performance over its
3 × 3 counterpart.

Figure 18. GTSRB: The proposed model based on 1 × 3 and 3 × 1 convolution pairs compared with a
3 × 3-based approach. Both variants are scaled to match in terms of FLOPs ranging from 1 to 10 million.

Sensors 2019, 19, 5541 23 of 27

3.3.4. Computational Comparison

We evaluate our model’s suitability for deployment on a resource-constrained environment
by measuring the time and space required to process one image from a batch size of 128 images
with 32 × 32 resolutions. The tests are performed using our best performing models obtained from
Tables 2, 8 and 11. We measure time and space using a Raspberry Pi 3 Model B+ device and compare
them against those of a desktop PC. The specifications of both devices can be found in Table 13,
while the results of the tests are recorded in Table 14. All tests are performed using the CPUs, as
resource-constrained environments are often lack of GPUs. We generate the processing time per image
for both environments as follows. First, the time spent for the processing of a batch of 128 images in
milliseconds is collected, then we divide it by 128 to obtain a mean time elapsed per image.

Table 13. Specifications and environmental settings of the desktop PC and Raspberry Pi.

Device CPU Memory Operating System Library

PC I7-2600k@4GHz 16 GB Ubuntu 18.04 LTS PyTorch 1
Raspberry Pi 3 Model B+ ARM Cortex@1.4GHz 1 GB Raspbian Buster 4.19 PyTorch 1

Table 14. Comparison of time and space required to process one image from a batch of 128 between
a PC and Raspberry Pi. Time is reported as the time taken to process one image, in milliseconds.

Model Widening Factor Data Set kFLOPs Memory (MB) Pi - Time (ms) PC - Time (ms)

IoTNet-3-4 0.7 CIFAR-10 9900 392 87.50 0.78
IoTNet-3-2 0.68 CIFAR-10 4200 192 46.09 0.39
IoTNet-3-5 0.14 SVHN 499.7 15 5.94 0.20
IoTNet-3-2 0.22 GTSRB 531.0 27 4.61 0.13
IoTNet-3-2 0.18 GTSRB 301.6 14 4.06 0.16

As expected, the processing time of the Raspberry Pi is longer than that of the desktop PC owing
to the significantly faster CPU in the PC. However, the empirical results indicate that the time required
to process one image on the Raspberry Pi is very reasonable, ranging between 4.06 ms on our smallest
model and 87.5 ms on our largest model. The empirical results also indicate that indeed time is
correlated with FLOPs as our slowest model was also the largest in FLOPs. The space requirements
across all data sets were well within the bounds of both devices meaning that multiple models could
comfortably be deployed within both environments simultaneously. Space could be further reduced if
required by decreasing the batch size from 128 to a suitable lower value.

3.4. Discussion

The related studies such as [3,4,6] employ depth-wise separable convolutions as a strategy to reduce
computational cost, which have proven to be successful pertaining to cost when compared with much
larger, state-of-the-art standard convolution-based models such as ResNet. However, in comparison
with the most recent works such as [5,20], they are still quite large, e.g., the MobileNet models contain
between 41 and 569 million FLOPs. For much smaller models, more suited to constrained IoT devices,
we find that our approach of trading accuracy with computational cost by factorizing 3 × 3 standard
convolutions into pairs of 1 × 3 and 3 × 1 standard convolutions leads to significant improvements
over the efficiency-focused benchmark models. The empirical results indicate that depth-wise separable
convolution-based networks scale down worse than our approach due to a lack of parameters at smaller
scales, as demonstrated in our experimental studies. This detrimentally impacts their model training
processes as well as their performance as indicated within Tables 2, 8 and 11.

Comparing our proposed approach against scaled-down 3 × 3 standard convolution-based
models as illustrated in Figures 16–18, the empirical results indicate that on all data sets, the proposed
model outperforms its 3 × 3 counterpart greater at smaller scales, i.e., with less than 3 million FLOPs.

Sensors 2019, 19, 5541 24 of 27

One explanation for this was provided by [13], which highlighted that the important factors to
overall model accuracy are network depth and multiple downsampling stages. In other words, deep
models that perform downsampling in multiple stages are likely to lead to promising accuracy rates,
while shallower models with fewer downsampling operations are more inclined to suffer from poor
performance. This is confirmed by our findings in Tables 5, 7 and 10 where our best proposed candidate
models always contained three groups. A second explanation pertaining to an interesting side effect to
our approach of factorizing a 3 × 3 standard convolution into a pair of 1 × 3 and 3 × 1 convolutions
is that it also doubles model depth. The empirical results indicate that this increase in depth was a
key factor leading to the significant performance improvements observed in our studies. An increase
in depth can, however, lead to overfitting within larger models, i.e., over 3 million FLOPs, which is
indicated by a narrower improvement in performance at larger scales against its 3 × 3 counterparts.
As the proposed model is designed to improve performance at smaller scales for resource-constrained
environments, we argue that this trade-off is acceptable and could be addressed in future directions by
incorporating with cutting-edge data augmentation strategies such as [46].

4. Conclusions

In this research, we have proposed a new deep architecture, i.e., IoTNet. Based on pairs of 1 × 3
and 3 × 1 standard convolutions, the empirical results confirm that the proposed architecture greatly
improves the trade-off between accuracy and computational cost over existing, depth-wise-based
approaches which are typically used in efficiency-focused models.

We report state-of-the-art accuracy improvement over influential efficiency-focused architectures
such as MobileNetV2 on CIFAR-10 of 13.43% with 39.63% fewer FLOPs, over ShuffleNet on SVHN of
6.49% with 31.84% fewer FLOPs and over MobileNet on GTSRB of 5% with 0.38% fewer FLOPs. We also
outperform the current state-of-the-art efficiency-focused model, EffNet (EffNet V1 or EffNet V2),
across all data sets, i.e., improving accuracy on CIFAR-10 by 9.7% with 13% fewer FLOPs, on SVHN by
1.92% with 58.5% fewer FLOPs and on GTSRB by 2.77% with 24.63% fewer FLOPs.

Moreover, the experimental studies also indicate that the proposed model delivers greater accuracy
with a lower computational cost in comparison with those of the scaled-down 3 × 3 convolution-based
counterpart model, representative of state-of-the-art WideResnet, ResNet and PyramidNet.

The benefit of our work is that more powerful models can now be deployed within tightly constrained
environments. We believe this is significant as the use cases for CNNs within resource-constrained
environments are extremely broad, e.g., IoT and smartphone-based deployments, medical diagnosis,
image and video analysis. Lighter and faster models also enable researchers to prototype ideas faster with
fewer resources.

Extensions of our work may include using augmentation strategies highlighted in related works
such as [46] to further improve performance. Methods such as these will be especially helpful on
imbalanced data sets such as GTSRB. We also aim to explore hyper-parameter fine-tuning [51–53]
using automated processes and parameter quantization techniques to further reduce the memory
footprint of the proposed architecture.

Author Contributions: The authors have contributed equally to this work.

Funding: This work was supported by the European Regional Development Fund—Industrial Intensive
Innovation Programme.

Acknowledgments: We appreciate the support and resources provided by Northumbria University and
Ocucon Ltd.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wei, G.; Li, G.; Zhao, J.; He, A. Development of a LeNet-5 Gas Identification CNN Structure for Electronic
Noses. Sensors 2019, 19, 217.

Sensors 2019, 19, 5541 25 of 27

2. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019,
arXiv:1905.11946.

3. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.;
Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017,
arXiv:1704.04861.

4. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for
mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856.

5. Freeman, I.; Roese-Koerner, L.; Kummert, A. Effnet: An efficient structure for convolutional neural networks.
In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece,
7–10 October 2018; pp. 6–10.

6. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520.

7. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features From Tiny Images; Technical Report; University
of Toronto: Toronto, ON, Canada, 2009.

8. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A. Reading Digits in Natural Images with
Unsupervised Feature Learning. 2011. Available online: http://ufldl.stanford.edu/housenumbers/
nips2011_housenumbers.pdf (accessed on 12 December 2019).

9. Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. The German Traffic Sign Recognition Benchmark:
A multi-class classification competition. In Proceedings of the IEEE International Joint Conference on
Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 1453–1460.

10. Karray, F.; Jmal, M.W.; Garcia-Ortiz, A.; Abid, M.; Obeid, A.M. A comprehensive survey on wireless sensor
node hardware platforms. Comput. Netw. 2018, 144, 89–110.

11. Saia, R.; Carta, S.; Recupero, D.R.; Fenu, G. Internet of entities (IoE): A blockchain-based distributed paradigm
for data exchange between wireless-based devices. In Proceedings of the 8th International Conference on
Sensor Networks, SENSORNETS 2019, Prague, Czech Republic, 26–27 February 2019; pp. 77–84.

12. Castaño, F.; Strzelczak, S.; Villalonga, A.; Haber, R.E.; Kossakowska, J. Sensor Reliability in Cyber-Physical
Systems Using Internet-of-Things Data: A Review and Case Study. Remote Sens. 2019, 11, 2252.

13. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

14. Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146.
15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.

In Advances in Neural Information Processing Systems; NIPS: Vancouver, BC, Canada, 2012; pp. 1097–1105.
16. Han, D.; Kim, J.; Kim, J. Deep pyramidal residual networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5927–5935.
17. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer

vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vegas, NV,
USA, 27–30 June 2016; pp. 2818–2826.

18. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual
connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 4–9 February 2017.

19. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

20. He, Z.; Zhang, X.; Cao, Y.; Liu, Z.; Zhang, B.; Wang, X. LiteNet: Lightweight neural network for detecting
arrhythmias at resource-constrained mobile devices. Sensors 2018, 18, 1229.

21. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

22. Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001,
20, 45–50.

23. Gaikwad, A.S.; El-Sharkawy, M. Pruning convolution neural network (squeezenet) using taylor
expansion-based criterion. In Proceedings of the 2018 IEEE International Symposium on Signal Processing
and Information Technology (ISSPIT), Louisville, KY, USA, 6–8 December 2018; pp. 1–5. [CrossRef]

http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://dx.doi.org/10.1109/ ISSPIT.2018.8705095

Sensors 2019, 19, 5541 26 of 27

24. Singh, P.; Kadi, V.S.R.; Verma, N.; Namboodiri, V.P. Stability Based Filter Pruning for Accelerating Deep
CNNs. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV),
Village, HI, USA, 7–11 January 2019; pp. 1166–1174. [CrossRef]

25. Galar, M.; Fernández, A.; Barrenechea, E.; Bustince, H.; Herrera, F. Ordering-based pruning for improving the
performance of ensembles of classifiers in the framework of imbalanced datasets. Inf. Sci. 2016, 354, 178–196.

26. Lin, S.; Ji, R.; Li, Y.; Deng, C.; Li, X. Toward Compact ConvNets via Structure-Sparsity Regularized Filter
Pruning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 1–15. [CrossRef]

27. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. LeNet-5, Convolutional Neural Networks. 2015; Volume 20, p. 5.
Available online: Http://yann.Lecun.Com/exdb/lenet (accessed on 15 November 2019).

28. LeCun, Y.; Cortes, C. MNIST Handwritten Digit Database. 2010. Avaliable online: http://yann.lecun.com/
exdb/mnist/ (accessed on 15 November 2019).

29. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556.

30. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015,
115, 211–252. [CrossRef]

31. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Advances in Neural Information Processing Systems; NIPS: Vancouver, BC, Canada, 2015; pp. 91–99.

32. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco:
Common objects in context. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014;
pp. 740–755.

33. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized evolution for image classifier architecture search.
arXiv 2018, arXiv:1802.01548.

34. Zhong, Z.; Yan, J.; Wu, W.; Shao, J.; Liu, C. Practical Block-Wise Neural Network Architecture
Generation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 19–21 June 2018; pp. 2423–2432. [CrossRef] .

35. Wang, B.; Sun, Y.; Xue, B.; Zhang, M. Evolving deep convolutional neural networks by variable-length particle
swarm optimization for image classification. In Proceedings of the 2018 IEEE Congress on Evolutionary
Computation (CEC). IEEE, Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.

36. Bochinski, E.; Senst, T.; Sikora, T. Hyper-parameter optimization for convolutional neural network
committees based on evolutionary algorithms. In Proceedings of the 2017 IEEE International Conference on
Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3924–3928. [CrossRef]

37. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. Automatically designing CNN architectures using genetic algorithm
for image classification. arXiv 2018, arXiv:1808.03818.

38. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292.
39. Tokic, M. Adaptive ε-greedy exploration in reinforcement learning based on value differences. In Annual

Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2010; pp. 203–210.
40. Baker, B.; Gupta, O.; Naik, N.; Raskar, R. Designing neural network architectures using reinforcement

learning. arXiv 2016, arXiv:1611.02167.
41. Goldberg, D.E.; Deb, K. A comparative analysis of selection schemes used in genetic algorithms.

In Foundations of Genetic Algorithms; Elsevier: Amsterdam, The Netherlands, 1991; Volume 1, pp. 69–93.
42. Liu, Z.; Wu, B.; Luo, W.; Yang, X.; Liu, W.; Cheng, K.T. Bi-real net: Enhancing the performance of 1-bit cnns

with improved representational capability and advanced training algorithm. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 722–737.

43. Umuroglu, Y.; Fraser, N.J.; Gambardella, G.; Blott, M.; Leong, P.; Jahre, M.; Vissers, K. Finn: A framework for
fast, scalable binarized neural network inference. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2017; pp. 65–74.

44. Wang, N.; Choi, J.; Brand, D.; Chen, C.Y.; Gopalakrishnan, K. Training deep neural networks with 8-bit
floating point numbers. In Advances in Neural Information Processing Systems; NIPS: Vancouver, BC, Canada,
2018; pp. 7675–7684.

45. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary
convolutional neural networks. In European Conference on Computer Vision; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 525–542.

http://dx.doi.org/10.1109/WACV.2019.00129
http://dx.doi.org/10.1109/TNNLS.2019.2906563
Http://yann. Lecun. Com/exdb/lenet
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/CVPR.2018.00257
http://dx.doi.org/10.1109/ICIP. 2017.8297018

Sensors 2019, 19, 5541 27 of 27

46. Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning Augmentation Strategies
From Data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 16–20 June 2019; pp. 113–123.

47. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv 2015, arXiv:1502.03167.

48. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, Lauderdale, FL, USA, 11–13 April 2011;
pp. 315–323.

49. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
50. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A.

Automatic Differentiation in PyTorch. In NIPS Autodiff Workshop; NIPS: Vancouver, BC, Canada, 2017.
51. Tan, T.Y.; Zhang, L.; Lim, C.P.; Fielding, B.; Yu, Y.; Anderson, E. Evolving Ensemble Models for Image

Segmentation Using Enhanced Particle Swarm Optimization. IEEE Access 2019, 7, 34004–34019. [CrossRef]
52. Tan, T.Y.; Zhang, L.; Lim, C.P. Adaptive melanoma diagnosis using evolving clustering, ensemble and deep

neural networks. Knowl.-Based Syst. 2019, 187, 104807.
53. Tan, T.Y.; Zhang, L.; Lim, C.P. Intelligent skin cancer diagnosis using improved particle swarm optimization

and deep learning models. Appl. Soft Comput. 2019, 84, 105725.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2903015
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Distinction Between Standard Convolutions and Depth-Wise Separable Convolutions
	Standard Convolution
	Depth-Wise Separable Convolution

	Materials and Methods
	Approach to Identify Candidate Models
	Complexity Analysis

	Results
	Data Sets
	CIFAR-10
	SVHN
	GTSRB
	Training Scheme

	Comparison Against Efficiency-Focused Benchmark Models
	Evaluation Using CIFAR-10
	Evaluation Using SVHN
	Evaluation Using GTSRB

	Evaluation Against 3 3 Standard Convolutions
	Evaluation against 3 3 Standard Convolution-Based Models Using CIFAR-10
	Evaluation against 3 3 Standard Convolution-Based Models Using SVHN
	Evaluation against 3 3 Standard Convolution-Based Models Using GTSRB
	Computational Comparison

	Discussion

	Conclusions
	References

