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Microstructure imaging by means of multidimensional diffusion encoding is increasingly
applied in clinical research, with expectations that it yields a parameter that better
correlates with clinical disability than current methods based on single diffusion
encoding. Under the assumption that diffusion within a voxel can be well described by a
collection of diffusion tensors, several parameters of this diffusion tensor distribution
can be derived, including mean size, variance of sizes, orientational dispersion,
and microscopic anisotropy. The information provided by multidimensional diffusion
encoding also enables us to decompose the sources of the conventional fractional
anisotropy and mean kurtosis. In this study, we explored the utility of the diffusion
tensor distribution approach for characterizing white-matter degeneration in aging and
in Parkinson disease by using double diffusion encoding. Data from 23 healthy older
subjects and 27 patients with Parkinson disease were analyzed. Advanced age was
associated with greater mean size and size variances, as well as smaller microscopic
anisotropy. By analyzing the parameters underlying diffusion kurtosis, we found that the
reductions of kurtosis in aging and Parkinson disease reported in the literature are likely
driven by the reduction in microscopic anisotropy. Furthermore, microscopic anisotropy
correlated with the severity of motor impairment in the patients with Parkinson disease.
The present results support the use of multidimensional diffusion encoding in clinical
studies and are encouraging for its future clinical implementation.

Keywords: aging, Parkinson disease, diffusion MRI, double diffusion encoding, microstructure

INTRODUCTION

Parkinson disease (PD) is a neurodegenerative disorder characterized by motor symptoms
(akinesia, resting tremor, and rigidity) and a wide range of cognitive, neuropsychiatric, and
autonomic dysfunctions (Poewe et al., 2017). Advanced age is a major risk factor for the
development of PD and is also associated with faster motor decline (Levy, 2007; Collier et al., 2017).
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Pathologically, PD is characterized by widespread aggregation
of α-synuclein-immunoreactive inclusions in the form of Lewy
pathology within both the neuronal cytoplasm (Lewy bodies) and
axons (Lewy neurites) (Braak et al., 2003; Kanazawa et al., 2012;
Poewe et al., 2017). Neuropathological studies have indicated that
Lewy pathologies evolve along major fiber pathways, beginning
in the brain stem and eventually advancing to the neocortical
regions (Braak et al., 2003). Accumulating evidence has suggested
that axonal degeneration is an early event in the process of
neurodegeneration that is common to PD and other age-related
neurological diseases (Kurowska et al., 2016; Salvadores et al.,
2017). Non-invasive characterization of the neurodegeneration
underlying the pathogenesis and progression of PD is of high
clinical demand, because it will aid in the development of novel
therapeutic strategies and in monitoring the effects of treatment.

Diffusion MRI (dMRI) is uniquely sensitive to tissue features
on the micrometer scale and therefore has been widely used to
study neurodegeneration in aging (Madden et al., 2012; Coutu
et al., 2014; Billiet et al., 2015; Benitez et al., 2018; Guerreri et al.,
2019) and diseases (Goveas et al., 2015; Andica et al., 2019b).
In PD, the majority of studies have applied diffusion tensor
imaging (DTI) (Basser, 1995) and have consistently reported
smaller fractional anisotropy (FA) and greater mean diffusivity
(MD) in the white matter of patients than of controls (for a
recent review and meta-analysis see Atkinson-Clement et al.,
2017). Several groups (Wang et al., 2011; Kamagata et al., 2013,
2014; Surova et al., 2016, 2018) further explored the utility of
dMRI acquisition with higher b-values than used in DTI, which is
typically analyzed by means of diffusion kurtosis imaging (DKI)
(Jensen et al., 2005). The works by Kamagata et al. (2013, 2014)
showed that kurtosis in the white matter is reduced in patients
and that DKI is more sensitive to white-matter degeneration than
is DTI. Of note, several studies demonstrated that white-matter
degeneration as detected by dMRI precedes macroscopic gray
matter atrophy (Agosta et al., 2013; Duncan et al., 2016; Rektor
et al., 2018), suggesting the potential of dMRI parameters as early
biomarkers of PD.

Regarding acquisition, both DTI and DKI use single diffusion
encoding (SDE), which uses one pair of diffusion-sensitizing
gradients. Multidimensional diffusion encoding (Mitra, 1995;
Topgaard, 2017), that can be realized by using either double
diffusion encoding (DDE) (Cory et al., 1990; Callaghan and
Xia, 1991), triple diffusion encoding (Mori and Van Zijl, 1995),
or continuous gradient waveforms (Caprihan et al., 1996;
Callaghan, 1997; Eriksson et al., 2013), has recently gained
attention in clinical studies because these methods provide
more specific information about the tissue microstructure. For
example, cumulant expansion of the DDE signal up to the
fourth-order term of the gradient amplitude (Jespersen, 2012)
shows DDE provides unique information that is not contained
in the standard diffusion and kurtosis tensors available with
SDE. In addition to DTI/DKI parameters, at least two new
properties of biological interest can be obtained: the microscopic
anisotropy (Cory et al., 1990; Cheng and Cory, 1999; Callaghan
and Komlosh, 2002; Özarslan and Basser, 2008; Shemesh et al.,
2009; Lawrenz et al., 2010; Jespersen et al., 2013; Lasič et al.,
2014) and the variance of isotropic diffusivities among individual

microenvironments (compartments) (Szczepankiewicz et al.,
2016; Westin et al., 2016). Several works have demonstrated that
the microscopic anisotropy, a measure of diffusion anisotropy
that is not confounded by orientational dispersion of axons or
fibers, can be estimated reliably in nervous tissues (Komlosh
et al., 2007, 2008; Shemesh and Cohen, 2011; Shemesh et al.,
2012; Jespersen et al., 2013; Lawrenz and Finsterbusch, 2013;
Lawrenz et al., 2015). Microscopic anisotropy has been shown
to be useful for characterizing white-matter degeneration in
aging (Lawrenz et al., 2016) and in multiple sclerosis (Yang
et al., 2018; Andersen et al., 2020). The variance of isotropic
diffusivities has also been suggested to be promising for
deducing the microstructural underpinnings of the diffusion
changes in diseases like schizophrenia (Westin et al., 2016).
Moreover, multidimensional diffusion encoding enables us to
decompose the sources of DTI/DKI parameters (Lasič et al., 2014;
Szczepankiewicz et al., 2016; Westin et al., 2016; Henriques et al.,
2020). Such analyses are expected to improve our understanding
of neurodegeneration and the sensitivity of imaging to pathology.
For example, if the pathology affects two underlying sources of
a particular DTI/DKI parameter in opposite directions, as has
been suggested in Douaud et al. (2011); Lawrenz et al. (2016),
Lampinen et al. (2019), the sensitivity and interpretability of that
parameter would be limited, whereas separation of each source
may provide useful information.

In this study, we analyzed DDE data by using the covariance
tensor framework (Westin et al., 2016) that works under the
diffusion tensor distribution (DTD) model (Jian et al., 2007).
Given the DTD model, continuous waveforms would offer more
efficient diffusion weighting and faster acquisition than DDE
(Nilsson et al., 2020). We adopted DDE here because this study
was planned before the definition of diffusion time for the
continuous waveform was made by Lundell et al. (2019). As
DTD is a model for the long diffusion time limit where time-
dependence is negligible (Novikov et al., 2019), we needed to
compare the diffusion time of our measurement with the previous
studies (Clark et al., 2001; Portnoy et al., 2013) to rationalize our
assumption. The potential limitation arising from neglecting the
effects of diffusion time is detailed in “Discussion.”

The aim of this study was to identify the sources of DTI/DKI
changes previously reported in aging and PD in terms of the
DTD model parameters. We first analyzed correlation with age
in healthy older subjects and then examined group differences
between the healthy subjects and patients with PD. Finally,
we investigated the correlations with the severity of motor
impairment in the patients.

MATERIALS AND METHODS

Theory
Model and Assumptions
Linking the MRI signal to specific tissue properties involves
modeling, simplification of the complex reality relying on a
few assumptions. By adopting the DTD model, we assume
that the voxel consists of multiple, non-exchanging Gaussian
compartments. More precisely, we model the diffusion within
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a voxel by a distribution of diffusion tensors (free, anisotropic
diffusion) (Jian et al., 2007; Topgaard, 2017). In such case, the
measurement can be fully characterized by the b-tensor (i.e.,
b-tensor encoding). In this regard, SDE is linear tensor encoding
(LTE), whereas DDE provides planar tensor encoding (PTE)
if we apply two diffusion encodings in non-colinear directions
(Westin et al., 2016; Topgaard, 2017). Although the DTD model is
certainly a crude assumption and not fully validated yet in human
brain, describing the tissue by a combination of several diffusion
tensors is a common starting point in most dMRI models
currently used in clinical studies (Jelescu and Budde, 2017).

Under the DTD model, the signal can be written as:

S (B) = S0
〈
exp

(
−B : Dc)〉 (1)

where S(B) is the signal, S0 is the signal without diffusion
weighting, B is the b-tensor, and Dc is the diffusion tensor of each
compartment. The bracket < > denotes the ensemble average
over the voxel. The colon denotes a generalized scalar product
between the two tensors, B : D=

∑
i
∑

j BijDij.

Diffusion Parameters
Multidimensional diffusion encoding provides us means to
extract summarizing statistics of the distribution of diffusion
tensors. Eq. 1 can be expanded (Westin et al., 2016; Topgaard,
2017) to:

S ≈ S0exp
(
−B : D+

1
2

(B⊗ B) : C
)

(2)

where ⊗ denotes a tensor outer product. Here, D is the well-
known, voxel-averaged diffusion tensor, and C is a fourth-order
tensor called the covariance tensor. From D and C, several scalar
parameters that summarize microstructural features, including
DTI/DKI parameters, can be computed (Westin et al., 2016;
Topgaard, 2017; Henriques et al., 2020). Below, we briefly
describe the meanings of the parameters used in this study and
their relations to each other. First, the DTI parameters MD and
FA are defined (Basser, 1995; Westin et al., 2016; Henriques et al.,
2019) as:

MD = Tr(D)/3, (3)

and FA =

√
3
2

Vλ(D)

Vλ(D)+ (Tr(D)/3)2 (4)

Vλ(D) denote the variance of eigenvalues of D, defined by

using the eigenvalues λ1, λ2, and λ3 as Vλ (D) =
1
3

3∑
i=1

λi
2
−(

1
3

3∑
i=1

λi

)2

. MD and FA can be understood as the size and shape

of the voxel-averaged diffusion tensor. The definition of µFA has
a similar form to that of FA (Westin et al., 2016; Henriques et al.,
2019):

µFA =

√
3
2

〈Vλ(Dc)〉

〈Vλ (Dc)〉 + (〈Tr(Dc)〉 /3)2 (5)

Unlike FA, µFA is not influenced by orientational dispersion
and purely reflects the anisotropy (shape) of microstructural
environments. In addition, a measure of orientational dispersion
(the orientational order parameter, OP) is defined (Lasič et al.,
2014; Westin et al., 2016) as:

OP2
=

Vλ(D)

〈Vλ(Dc)〉
(6)

OP equals 1 for perfectly aligned orientations and equals 0 for
fully isotropic dispersion. FA is influenced by both µFA and OP
(Lasič et al., 2014):

FA = OP
[
µFA−2

+
2
3
(
OP2
− 1

)]−1/2
(7)

Furthermore, under the DTD assumption, mean kurtosis (MK),
as defined in Hansen et al. (2013), can be decomposed into two
kurtosis sources (Westin et al., 2016; Henriques et al., 2020):

MK = Kiso + Kaniso −ψ (8)

where

Kiso = 3
V(Dc)

(Tr(D)/3)2 (9)

and Kaniso =
6
5
〈Vλ(Dc)〉

(Tr(D)/3)2 (10)

are the isotropic and anisotropic kurtosis sources. Here, V(Dc)
is the variance of isotropic diffusivities among compartments
(variance of sizes). The last term in Eq. 8 is a factor related to
orientational dispersion and can be expressed as (Westin et al.,
2016; Henriques et al., 2020)

ψ =
2
5

Dxx
2
+ Dyy

2
+ Dzz

2
+ 2Dxy

2
+ 2Dyz

2
+ 2Dzx

2

(Tr(D)/3)2 −
6
5

=
6
5

1
(Tr(D)/3)2

1
9
(
2
(
Dxx

2
+ Dyy

2
+ Dzz

2)
−2

(
DxxDyy + DyyDzz + DzzDxx

)
+6

(
Dyz

2
+ Dxy

2
+ Dzx

2))
=

6
5

Vλ (D)

(Tr(D)/3)2

= OP2Kaniso (11)

Using Eq. 11, Eq. 8 can be re-written as:

MK = Kiso +
(
1−OP2)Kaniso (12)

In this study, we report MD, FA, MK, Kiso, Kaniso, µFA, OP,
and V(Dc). Although the information represented by some
parameters overlaps (e.g., both µFA and Kaniso are measures of
microscopic anisotropy), having multiple forms of expression
helps us to understand how the DTD parameters affect FA and
MK (Eqs 7 and 12).
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Participants
This study was carried out in accordance with the Declaration
of Helsinki for experiments involving humans. The Institutional
Review Board approved this study, and all subjects gave written
informed consent prior to participation. Twenty-three healthy
older subjects (63.1 ± 7.2 years old) and 27 patients with PD
(66.1 ± 6.6 years old) were enrolled. Patients with PD were
diagnosed by neurologists on the basis of clinical diagnostic
criteria of the Movement Disorder Society (Postuma et al., 2015).
Motor function and disease stage were evaluated with the Unified
Parkinson’s Disease Rating Scale motor part (UPDRS-III) (Goetz
et al., 2008) and the Hoehn and Yahr staging scale (Hoehn
and Yahr, 1967). White-matter T2 hyperintensities (WMH) were
rated according to the Fazekas scale (Fazekas et al., 1987). The
clinical and demographic characteristics of the participants are
summarized in Table 1.

Because DDE is a relatively new technique for clinical
research, we also examined the stability of the dMRI parameters
in terms of scan–rescan repeatability in a separate group
of 4 young healthy subjects (3 male and 1 female, 25–
37 years old), who underwent two scans on different days
within a week. In these subjects, we also acquired conventional
SDE for comparison.

Image Acquisition
The subjects were scanned by using a clinical 3T scanner
(MAGNETOM Prisma, Siemens Healthcare, Erlangen,
Germany) equipped with a 64-channel head coil using a
prototype sequence. DDE data were acquired using a monopolar
spin-echo type acquisition. We used parallel (LTE) and
perpendicular (PTE) pairs of diffusion sensitizing gradient
blocks, with 30 uniformly distributed directions. Note that,
under the DTD assumption, the direction of PTE can be
characterized by the normal vector. For both LTE and PTE, we
used two shells, which had b-values of 1000 and 2000 s/mm2.
One volume without diffusion weighting was also obtained.
Thus, a total of 121 volumes were acquired. Other settings were
image resolution = 3 × 3 × 3 mm3, TE = 93 ms, TR = 6300 ms,
1 = 18.3 ms, δ = 16.8 ms, mixing time = 24.9 ms, in-plane

TABLE 1 | Demographic features of the study participants.

Healthy controls Patients with PD P*

Number 23 27 –

Age 63.1 ± 7.2 66.1 ± 6.6 0.14

Sex (male/female) 8/15 16/11 0.08

Disease duration (years) – 13.4 ± 7.1 –

UPDRS-III – 13.6 ± 7.7 –

Hoehn–Yahr stage – 1.7 ± 0.8 –

Levodopa equivalent dose (mg) – 1040 ± 556 –

Fazekas periventricular white matter 0.57 ± 0.66 0.63 ± 0.69 0.74

Fazekas deep white matter 0.57 ± 0.73 0.70 ± 0.67 0.49

*Group differences between patients and controls were examined by using the
χ2 test for sex and Welch’s t-test for age and Fazekas scales. The significance
threshold was set at P < 0.05.

GRAPPA with acceleration factor 2, through-plane GRAPPA
(SMS) with multiband factor 2, partial Fourier 6/8, 44 axial
slices, and scan time 14 min. In addition, anatomical T1-
and T2-weighted images were acquired and inspected by a
neuroradiologist to rate Fazekas grade and to check for any other
co-existing pathologies. SDE acquisition in the young subjects
used the same b-values and 30 directions, resulting in a total
of 61 volumes. The acquisition settings were identical to those
of DDE, except 1 = 43.3 ms and δ = 36.4 ms. The scan time
for SDE was 7 min.

Image Processing
Images were pre-processed by using FSL 6.0.1 (Jenkinson et al.,
2012) and MRTrix3 (Tournier et al., 2019). Raw images were
denoised (Veraart et al., 2016) and corrected for Gibbs artifact
(Kellner et al., 2016), eddy currents and motion (Andersson
and Sotiropoulos, 2016), and B1 inhomogeneity (Tustison et al.,
2010). For eddy-current correction of DDE, the second diffusion
direction was used as the input to eddy in FSL (Yang et al.,
2018). The dMRI parameter maps were computed using the
multidimensional diffusion MRI toolbox (Nilsson et al., 2018).
In a small number of voxels where the fitting resulted in
negative values of V(Dc), the fitting was repeated by using
data smoothed with an isotropic 3D Gaussian kernel with
sigma = 0.7× voxel size.

Stability of Measurements
Using the scan-rescan data from the 4 young subjects, we
computed the within-subject coefficient of variation (CVws),
defined as CVws =

σws

µ
× 100%. Here, µ is the grand mean

and σws is the within-subject standard deviation. To compute
CVws across the white-matter voxels, each subject’s FA map
was non-linearly registered into the Johns Hopkins University
(JHU) template in FSL. The other dMRI parameter maps
were also transferred into the standard space by using the
same deformation. A white-matter mask was generated by
thresholding the FA template at FA > 0.2. To mitigate partial
volume effects with the gray matter and cerebrospinal fluid (CSF),
the mask was further eroded by one voxel. We also report
CVws for the mean value of each white-matter region of interest
(ROI) that was used for the analyses of aging and PD (Section
“Statistical Analysis”).

Statistical Analysis
We examined the effects of the subjects’ characteristics (age,
diagnosis, and UPDRS-III score) on the dMRI parameters by
means of whole-brain voxel-wise analyses using tract-based
spatial statistics (TBSS) (Smith et al., 2006) and atlas-based
ROI analyses. First, all subjects’ FA images were aligned into
a common space by means of non-linear registration, followed
by creation of a mean FA skeleton. The threshold for creating
the FA skeleton was set at FA > 0.2. Then, the aligned FA
map of each subject was projected onto the FA skeleton. The
other parameter maps were projected onto the mean FA skeleton
by using the same transformation. Subsequently, the TBSS-
processed skeletons were subjected to ROI analyses. Twelve
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white-matter ROIs were defined as the intersection of the white-
matter skeleton and the JHU and Harvard–Oxford atlases in
FSL as in Guerreri et al. (2019) (Figure 1), and the mean value
within each ROI was extracted. Specifically, the deep white-
matter ROIs (the anterior corona radiata [ACR], posterior corona
radiata [PCR], superior corona radiata [SCR], anterior and
posterior limb of the internal capsule [ALIC, PLIC], and genu
and splenium of the corpus callosum [GCC, SCC]) were defined
by using the JHU atlas, and the subcortical white-matter ROIs
(frontal, sensory-motor, parietal, occipital, and temporal cortices)
were defined by using the Harvard–Oxford atlas.

We opted not to exclude voxels with WMH from the
analyses for the following two reasons. First, evidence suggests
associations between WMH and the severity of motor and
non-motor symptoms in PD (McDonald et al., 2016; Veselý
et al., 2016). The pathophysiology of WMH is complex, and
whether WMH are present in the patients because of incidental
cerebrovascular disease or are a consequence of PD remains
unclear (McDonald et al., 2016). Second, although TBSS allows
the exclusion of voxels by using subject-specific lesion masks,
this process causes differences in the degrees of freedom across
voxels and may complicate the interpretation of statistical results
(Benitez et al., 2018).

For both the TBSS and ROI-based analyses, we fit linear
models where the dependent variable was each dMRI parameter.
First, we examined the effect of age in the healthy subjects, using
sex as a nuisance covariate. Then, we examined the differences
between the healthy subjects and the patients with PD, using
age and sex as nuisance covariates. Finally, we examined the
correlation with UPDRS-III score in the patients, using age
and sex as nuisance covariates. Because motor impairment
might be correlated with age, we checked for multi-collinearity
using the variance inflating factor (VIF) (Hair et al., 2010).
Although we used a stringent criterion of VIF < 4.0 (Hair
et al., 2010), VIF was below this threshold for all predictors in
the linear models. Statistical inference of the linear models was

FIGURE 1 | Atlas-based ROIs. Twelve ROIs were defined as the intersections
between the TBSS-processed white-matter skeleton and the JHU and
Harvard–Oxford atlases in FSL (ACR/SCR/PCR, anterior/superior/posterior
corona radiata; ALIC/PLIC, anterior/posterior limb of the internal capsule;
GCC/SCC, genu/splenium of the corpus callosum).

conducted by using permutation analysis (Winkler et al., 2014).
For computational efficiency, we used 2000 permutation and tail
approximations (Winkler et al., 2016). For TBSS, threshold-free
cluster enhancement (Smith and Nichols, 2009) was applied. The
significance threshold was set at P < 0.05, corrected for family-
wise error (FWE) for multiple comparisons across voxels or
ROIs. For the ROI-based analyses, we also report results without
FWE correction (Puncorrected < 0.05) because these data may be
informative for future studies with larger samples.

RESULTS

Scan-Rescan Repeatability
MD, FA, and MK showed excellent repeatability, with CVws
below 6–8% for most of the white-matter voxels (Figure 2). The
values of CVws were similar between DDE and SDE. µFA and
OP also showed CVws below 8% for most of the voxels. The
parameters of size variance [Kiso and V (Dc)] showed greater
CVws, falling in the range of 10–25% for most of the voxels. As
for ROI-based measurements, CVws was below 2% in all ROIs for
MD, FA, µFA, and OP (Table 2). MK and Kaniso exhibited slightly
greater values of CVws ranging from 0.5 to 4.8%. Although
Kiso and V (Dc) showed CVws below 6% for most of the ROIs,
poorer repeatability was found in the internal capsule and corpus
callosum with CVws around 10%, reflecting the challenges of
dMRI in these regions due to partial volume effects with the CSF
and the gray matter, Gibbs artifact, and CSF pulsation.

Correlation With Age in the Healthy
Subjects
To display the results of ROI-based correlations, we adopted a
figure format used in Billiet et al. (2015) and Guerreri et al. (2019)
(Figure 3). For MD and V (Dc), positive correlation with age
was seen in extensive regions of the white matter in both ROI-
based analyses and TBSS (Figures 3–5). FA, MK, Kaniso, and
µFA showed negative correlation with age within these regions.
OP demonstrated a unique behavior in that both positive and
negative correlations were observed, depending on anatomical
locations. In particular, although the correlation was negative
in most of the white-matter regions, positive correlation was
observed in the ALIC and PLIC, external capsule, and SCR. Kiso
showed positive correlation with age, although in fewer regions
compared with the other diffusion parameters.

Difference Between the Healthy Control
and the Patients With PD
The ROI-based analyses revealed that the patients with PD had
greater values of MD, Kiso, and V (Dc) in the subcortical white-
matter regions than the controls (Figure 6), although only the
differences in Kiso and V (Dc) of the parietal ROI remained
significant after the FWE correction. The group differences were
below the significance threshold for Kaniso and µFA for all ROIs.
Slightly greater values of MK were observed in the patients in
the PLIC and SCC. Smaller values of FA and OP were observed
in the ALIC and PLIC, respectively. In TBSS, only OP revealed
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FIGURE 2 | Scan–rescan repeatability of the dMRI parameters derived from DDE. Top: the diffusion parameter maps from a representative subject. Middle:
scatterplots comparing the first and the second sessions. Values from the white-matter voxels of all 4 subjects are shown. Warmer color represents higher density of
that point. Bottom: within-subject coefficient of variation (CVws) in the white-matter voxels. The blue and orange histograms represent CVws of the dMRI parameters
derived from DDE and SDE, respectively.

TABLE 2 | Within-subject coefficients of variation of the ROI means (values are percentages).

ROIs MD FA MK Kaniso Kiso µFA OP V(Dc) MDSDE FASDE MKSDE

Frontal 0.5 1.1 1.3 2.1 0.8 0.6 0.8 1.4 1.1 3.2 0.7

Sensory- motor 0.5 0.8 0.5 1.8 1.9 0.5 0.9 2.9 0.4 1.4 0.6

Parietal 0.4 0.7 0.6 2.6 3.0 0.9 0.9 3.1 0.4 0.8 0.8

Occipital 0.6 1.1 1.0 3.0 3.9 1.0 0.9 4.2 0.5 0.6 0.8

Temporal 0.6 1.0 0.7 3.3 3.3 1.5 1.0 3.6 0.6 2.5 1.5

ALIC 0.9 1.1 3.4 2.3 9.8 1.0 1.3 10.3 0.6 1.6 2.0

PLIC 0.6 0.8 1.7 1.7 6.1 0.5 0.4 6.4 1.4 1.9 1.2

ACR 1.1 1.6 1.3 3.6 3.5 1.2 0.5 4.5 0.7 1.5 1.0

SCR 0.4 1.3 1.0 2.1 3.2 0.7 0.7 3.5 0.8 1.1 1.0

PCR 0.6 0.9 1.2 2.2 1.7 0.7 0.5 2.2 1.4 0.9 0.7

GCC 0.7 1.2 4.8 4.2 10.9 0.9 0.3 7.5 3.9 2.7 2.4

SCC 0.5 0.6 1.2 2.2 4.0 0.4 0.7 3.4 2.5 1.1 2.1

ACR/SCR/PCR, anterior/superior/posterior corona radiata; ALIC/PLIC, anterior/posterior limb of the internal capsule; GCC/SCC, genu/splenium of the corpus callosum.

statistically significant results: the patients exhibited smaller
values in the left internal capsule, the left cerebral peduncle, the
left thalamus, and the right external capsule (Figure 7).

Correlation With Motor Impairment in PD
The ROI-based analyses revealed positive correlations with
UPDRS-III score for MD, Kiso, and V(Dc), and negative
correlations for FA, MK, Kaniso, and µFA in GCC and
SCC (Figures 8, 9). MK, Kaniso, and µFA exhibited negative
correlations also in the subcortical white-matter ROIs. TBSS
showed negative correlations for MK, Kaniso, and µFA in
extensive areas in the frontal and parietal lobes and the corpus

callosum, and positive correlation for V(Dc) in SCC (Figure 10).
For MD, FA, and OP, the correlations were below the significance
threshold in TBSS.

DISCUSSION

This study investigated the utility of DTD parameters derived
from DDE to characterize white-matter degeneration in aging
and PD. Advanced age was associated with greater MD and
smaller FA, MK, Kaniso, and µFA, in agreement with previous
studies that used SDE (Madden et al., 2012; Coutu et al., 2014;
Billiet et al., 2015; Benitez et al., 2018; Guerreri et al., 2019)
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FIGURE 3 | Correlation with age in the healthy control subjects. Pearson’s
correlation coefficients are shown where a correlation between a diffusion
parameter and age was found (Puncorrected < 0.05). Red denotes positive
correlation; blue indicates negative correlation. Asterisks indicate significant
correlations after FWE correction. ACR/SCR/PCR, anterior/superior/posterior
corona radiata; ALIC/PLIC, anterior/posterior limb of the internal capsule;
GCC/SCC, genu/splenium of the corpus callosum.

and DDE (Lawrenz et al., 2016). OP decreased with age for
most of the voxels, which, together with the decrease of µFA,
led to the age-related decrease of FA. At the same time, a
positive correlation between OP and age was observed in some

white matter regions including the ALIC, PLIC, and SCR. Our
results of age-related changes in µFA and OP replicated the
findings by the earlier study (Lawrenz et al., 2016). Age-related
OP increase in some regions can be understood as selective
degeneration of the secondary crossing fibers, thus increasing
the proportion of aligned fibers. The work by Lawrenz et al.
(2016) employed a different approach than the DTD model,
i.e., microscopic anisotropy estimation proposed in Lawrenz
et al. (2010) which is based on the signal equation of restricted
diffusion provided by Mitra (1995). Though it is beyond the
scope of this study to examine which model should be preferred,
it seems that the observed trends in age-related changes of
µFA and OP are robust against this difference in model
assumptions. We also found an age-related increase in the
measures of size variance [Kiso and V(Dc)]. The effects of aging
and PD were in the same directions for most of the diffusion
parameters and anatomical locations, such as increases of MD,
Kiso, and V(Dc) and decreases of FA, Kaniso, and µFA. This is
biologically plausible, because neurodegeneration in aging and
PD have many features in common, including a declined ability
to homeostatically regulate proteostasis, neuroinflammation,
mitochondrial dysfunction, oxidative stress, degeneration of the
myelin sheath, accumulation of cellular debris, alteration of
axonal transport, axonal swelling/beading, and loss of axons
(Tagliaferro et al., 2015; Collier et al., 2017; Salvadores et al., 2017;
Calabrese et al., 2018; Datar et al., 2019). The present results also
suggest that the measures of microscopic anisotropy (Kaniso and
µFA) might be useful to track white-matter degeneration related
to the motor impairment in PD.

Through the analysis of underlying kurtosis sources via the
DTD model, we found that the reductions of MK reported in
aging (Coutu et al., 2014; Benitez et al., 2018; Guerreri et al.,
2019) and PD (Kamagata et al., 2013, 2014) are likely driven
by the reduction of microscopic anisotropy. The decomposition
of kurtosis sources (Eq. 12) suggests that either an increase of
Kiso or a decrease of OP would lead to an increase of MK.

FIGURE 4 | Correlation with age in two representative ROIs. Red lines represent linear fitting where a significant correlation was found (Puncorrected < 0.05). The
shaded area represents the 95% confidence interval. ALIC, anterior limb of the internal capsule; SCC, splenium of the corpus callosum.
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FIGURE 5 | TBSS results for correlation with age in the healthy control
subjects. Voxels with significant correlation after the FWE correction
(P < 0.05) are shown. Hot colors denote positive correlation, whereas cold
colors denote negative correlation. To aid visualization, the results were
thickened by using the fill function in FSL.

We indeed observed slightly greater MK in the PLIC and SCC
in the patients than in the controls. Although this appears to
contradict previous reports of smaller MK in patients (Kamagata
et al., 2013, 2014), it may instead indicate that the increase of
Kiso and decrease of Kaniso have different time trajectories during
disease progression. If the increase of Kiso is related to early
neuroinflammation and the decrease of Kaniso represents the
subsequent degeneration, as speculated by Andica et al. (2019a),
MK may possibly have a non-monotonical trajectory, with an
initial increase followed by decrease, assuming constant OP
(Eq. 12). Future studies to investigate the trajectories of the DTD
parameters in relation to disease progression are warranted. We
also demonstrated that microscopic anisotropy can be estimated
with excellent repeatability comparable to that of SDE-derived
DTI/DKI parameters in both the present study and the literature
(Shahim et al., 2017; Ades-Aron et al., 2018). Taken together, the
present results are encouraging that multidimensional diffusion
encoding could be implemented clinically. Although we used a
relatively long acquisition for this exploratory study, µFA can be

estimated reliably with a reduced DDE acquisition (Yang et al.,
2018; Kerkelä et al., 2020) to make the scan time clinically feasible.

Our results support several hypothetical interpretations of
previous SDE studies that relied on more restrictive assumptions.
(Chad et al., 2018) and (Andica et al., 2019a) applied regularized
fitting of the bi-tensor free-water DTI model (Pasternak et al.,
2009) to study aging and PD, respectively. Their results showed
that aging and PD are associated with an increase of the free-
water fraction in the white matter. A larger free-water fraction
would lead to greater size variance and smaller microscopic
anisotropy (Szczepankiewicz et al., 2015; Westin et al., 2016),
as observed in our study. Certainly, an increase in free water
is not the only possible mechanism, and further investigation is
required to elucidate specific pathological features. For example,
patchy axonal loss and demyelination may lead to similar
results via heterogenous increase of the radial diffusivities of
compartmental diffusion tensors. Changes in axon morphology
such as swelling and beading, which would reduce axial
diffusivities of compartmental diffusion tensors (Budde and
Frank, 2010; Palombo et al., 2018) and hence µFA, also occur
heterogeneously within a voxel and may lead to an increase
of size variance. (Ikenouchi et al., 2020) estimated µFA by
using SDE under the assumption of uniform size and shape
of compartmental diffusion tensors (Kaden et al., 2016) and
reported a reduction of µFA in patients with PD and correlation
with UPDRS-III score, in line with our observations. Although
the methods of Pasternak et al. (2009) and Kaden et al. (2016)
were designed to be practical for use with clinical SDE data, the
dependence on regularization or strongly restrictive assumptions
may bias the output parameters (Molina-Romero et al., 2018;
Henriques et al., 2019) and therefore confirmation with extended
acquisition, as we used in the current study, is important.

Although the differences between the controls and the patients
were less prominent than the effects of age, smaller OP in the
patients was identified in the left cerebral peduncle and left
internal capsule (Figure 7). This overlaps the anatomical location
of the medial forebrain bundle (Coenen et al., 2018), a fiber
bundle that is involved early in PD (Tagliaferro et al., 2015). Our
results are in line with those of previous studies that observed
reduced FA within this region (Planetta et al., 2013; Zhang et al.,
2015), as well as with reports of left-predominant involvement
(Prakash et al., 2012; Scherfler et al., 2012).

Interestingly, we observed Kaniso and µFA were not very
sensitive to the group differences between the normal subjects
and the patients with PD (Figure 6), despite their correlation
with the motor impairment. In contrast, MD, Kiso, and V(Dc)
showed some sensitivity to the group differences in several ROIs
but their correlation with motor impairment was limited to
the callosal ROIs (Figure 8). Although the mechanisms behind
these observations remain unknown, our speculation is that
these two groups of diffusion parameters weigh different facets
of neurodegeneration. It has been hypothesized that age-related
changes form pathological foundation on which PD-related
neurodegeneration build (Collier et al., 2017), and that there
is a biological interaction between aging and PD (Levy, 2007).
We speculate that microscopic anisotropy has relatively greater
weight on the accumulation of age-related neuronal damage
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FIGURE 6 | Differences between the healthy control subjects (light blue) and the patients with PD (dark blue) in the ROI-based analyses. The red asterisks denote
statistically significant differences (*Puncorrected < 0.05, **P < 0.05). ACR/SCR/PCR, anterior/superior/posterior corona radiata; ALIC/PLIC, anterior/posterior limb of
the internal capsule; GCC/SCC, genu/splenium of the corpus callosum.

that is perhaps accelerated in PD and exacerbates the clinical
expression of symptoms, while reduced microscopic anisotropy
is less specific to the diagnosis of PD. On the other hand, MD,
Kiso, and V(Dc) may be influenced more by the factors that
differentiate PD from normal aging but are not proportional to
disease progression.

Several possible confounding effects with regard to acquisition
and parameter estimation need to be mentioned. First, by
adopting the DTD model, which does not feature the effects
of timing parameters (diffusion gradient duration, separation
between the gradients, and the mixing time), we assumed the
effects of timing parameters were negligible. Though this has

Frontiers in Neuroscience | www.frontiersin.org 9 October 2020 | Volume 14 | Article 584510

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-584510 October 11, 2020 Time: 10:21 # 10

Kamiya et al. DDE in Aging and PD

FIGURE 7 | TBSS results for group differences between the healthy control
subjects and the patients with PD. Voxels with significant differences after the
FWE correction (P < 0.05) are shown. Voxels where the patients exhibited
smaller values are represented in cold colors. In no voxels did patients exhibit
greater values. To aid visualization, the results were thickened by using the fill
function in FSL.

FIGURE 8 | Correlation with UPDRS-III score in the patients with PD. The
Pearson correlation coefficients shown indicate significant correlation between
a diffusion parameter and UPDRS-III score (Puncorrected < 0.05). Red denotes
positive correlations; blue indicates negative correlations. Asterisks indicate
significant correlations after FWE correction. ACR/SCR/PCR,
anterior/superior/posterior corona radiata; ALIC/PLIC, anterior/posterior limb
of the internal capsule; GCC/SCC, genu/splenium of the corpus callosum.

some support by earlier studies observing the effects of diffusion
time were small in brain tissue for the range above 10 ms
(Clark et al., 2001; Portnoy et al., 2013), more recent studies
suggest observable time-dependence in the human white matter
for even longer times (Fieremans et al., 2016; Lee et al., 2020).
A recent observation of intra-compartmental kurtosis in mouse
brains (Henriques et al., 2020) also indicate the contribution
of restricted compartments might be non-negligible. Taken
together, the DTD model employed in this study may not fully
capture the microstructural complexities and a more adequate
model would need to feature the effects that explain the reported
time-dependence, like restricted compartments (Yolcu et al.,

2016; Özarslan et al., 2017), structural disorder (Novikov et al.,
2014), or inter-compartmental exchange (Nilsson et al., 2013).
Incorporating the timing parameters as additional measurement
dimensions of DDE is expected to identify a suitable extension
of the model in future. Though dependence on the DTD
model is an essential limitation to our study, in Kerkelä et al.
(2020), µFA estimated under this assumption approximated
the gold-standard model-free method (Ianuş et al., 2018) very
well in human white matter. Therefore, we believe that any
bias introduced by the model assumption was not large, at
least for µFA and Kaniso. Second, the expansion Eq. 2 is valid
only in the vicinity of b = 0 (Westin et al., 2016; Topgaard,
2017), as in the case of DTI/DKI (Kiselev, 2013). Although
the covariance tensor framework is computationally efficient,
a possible bias in case of finite signal-to-noise ratio has been
pointed out (Reymbaut et al., 2020). In addition, our scan–
rescan analyses revealed problematic instability of the V(Dc)
and Kiso estimation, which needs to be addressed before clinical
application of these metrics. Third, the acquisition used in this
study was not controlled for the concomitant fields (transverse
magnetic field components accompanying the applied gradient to
satisfy Maxwell’s equations) (Baron et al., 2012), which cause bias
in the signal and hence the DTD parameters (Szczepankiewicz
et al., 2019). This issue would be mitigated by the use of multiple
refocusing pulses to make the diffusion encoding symmetric
(Callaghan and Komlosh, 2002).

Our study has several limitations. First, PD is a heterogenous
disease whose clinical manifestations vary widely among
individual patients (Fereshtehnejad et al., 2017). Robust
determination of PD subtypes based on cross-sectional data
remains a challenge (Simuni et al., 2016) and needs to be
addressed in future work. Also, though we merged the left and
right ROIs for this exploratory study, neurodegeneration in
PD has some asymmetry which correlates with the laterality
of symptoms (Riederer et al., 2018). Further investigation with
a large sample will be necessary to elucidate the relationships
between white-matter degeneration and detailed clinical features,
including both motor and non-motor symptoms. Second, we
did not prove clinical benefit of DDE as compared to the
standard SDE. Though µFA showed better correlation with
age and motor impairment than FA, similar correlation could
be observed with MK. Given the longer scan time of DDE,
DTI/DKI based on standard SDE is still a powerful option for
clinical studies. However, the strength of this study is that we
showed the sensitivity of MK to neurodegeneration is likely
attributed to its link to microscopic anisotropy. Such knowledge
can be informative for future researches in selecting dMRI
acquisition and parameter to study particular diseases. Third,
we applied simplistic linear models for statistical analyses, but
the effects of age might differ between the patients and the
controls (Zhang et al., 2016; Pozorski et al., 2018). Also, the
effect of PD might differ between males and females (Gillies
et al., 2014). Although adding age × disease and sex × disease
interactions in the linear model did not reveal any significant
interactions for the present data (not shown), several imaging
studies have suggested that these interactions are non-negligible
(Dean et al., 2016; Yadav et al., 2016). The absence of these
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FIGURE 9 | Correlation with UPDRS-III score in two representative ROIs. Red lines represent linear fitting where significant correlation was found
(Puncorrected < 0.05). The shaded area represents the 95% confidence interval. SCC, splenium of the corpus callosum.

interaction effects in the present study may be attributed to the
relatively small sample size which was not optimally matched
regarding male/female ratio. Fourth, the majority of patients
had relatively long disease duration and were already under
medication, and therefore we could not quantify the effects of
medication (Atkinson-Clement et al., 2017) and/or the non-
linear (U-shaped) trajectories presumably related to neuronal
compensation (Sanjari Moghaddam et al., 2020). Lastly, the
scan–rescan repeatability should ideally be measured in a cohort
similar to the patients because motion artifacts might be severer
in these subjects than in young and healthy subjects. Also, the
within-subject variability needs to be evaluated relative to the
between-subject variability in the patients.

FIGURE 10 | TBSS results for correlation with UPDRS-III score in the patients
with PD. Voxels with significant correlation after the FWE correction (P < 0.05)
are shown. Hot colors denote positive correlation, whereas cold colors denote
negative correlation. To aid visualization, the results were thickened by using
the fill function in FSL.

CONCLUSION

In this study, we explored the utility of DDE-derived parameters
for characterizing white-matter degeneration in aging and PD.
Advanced age was associated with greater mean size and size
variance of the compartmental diffusion tensors and with smaller
microscopic anisotropy. We found the reductions of MK in
aging and PD reported in the literature are likely driven by the
reduction of microscopic anisotropy. Furthermore, microscopic
anisotropy correlated with the severity of motor impairment
in PD. We further showed that microscopic anisotropy can
be estimated with excellent repeatability by using modern
clinical scanners. In conclusion, multidimensional diffusion
encoding can provide more comprehensive and clinically
relevant information about the white-matter degeneration in
aging and PD than conventional SDE-based methods.
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Ianuş, A., Jespersen, S. N., Serradas Duarte, T., Alexander, D. C., Drobnjak, I., and
Shemesh, N. (2018). Accurate estimation of microscopic diffusion anisotropy
and its time dependence in the mouse brain. Neuroimage183, 934–949. doi:
10.1016/j.neuroimage.2018.08.034

Ikenouchi, Y., Kamagata, K., Andica, C., Hatano, T., Ogawa, T., Takeshige-Amano,
H., et al. (2020). Evaluation of white matter microstructure in patients with
Parkinson’s disease using microscopic fractional anisotropy. Neuroradiology62,
197–203. doi: 10.1007/s00234-019-02301-1

Jelescu, I. O., and Budde, M. D. (2017). Design and validation of diffusion MRI
models of white matter. Front. Phys.28:61. doi: 10.3389/fphy.2017.00061

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., and Smith,
S. M. (2012). FSL. Neuroimage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.
015

Jensen, J. H., Helpern, J. A., Ramani, A., Lu, H., and Kaczynski, K. (2005).
Diffusional kurtosis imaging: the quantification of non-Gaussian water
diffusion by means of magnetic resonance imaging. Magn. Reson. Med.53,
1432–1440. doi: 10.1002/mrm.20508

Jespersen, S. N. (2012). Equivalence of double and single wave vector diffusion
contrast at low diffusion weighting. NMR Biomed.25, 813–818. doi: 10.1002/
nbm.1808

Jespersen, S. N., Lundell, H., Sønderby, C. K., and Dyrby, T. B. (2013).
Orientationally invariant metrics of apparent compartment eccentricity from
double pulsed field gradient diffusion experiments. NMR Biomed.26, 1647–
1662. doi: 10.1002/nbm.2999

Jian, B., Vemuri, B. C., Özarslan, E., Carney, P. R., and Mareci, T. H. (2007). A novel
tensor distribution model for the diffusion-weighted MR signal. Neuroimage37,
164–176. doi: 10.1016/j.neuroimage.2007.03.074

Kaden, E., Kruggel, F., and Alexander, D. C. (2016). Quantitative mapping of the
per-axon diffusion coefficients in brain white matter. Magn. Reson. Med.75,
1752–1763. doi: 10.1002/mrm.25734

Kamagata, K., Tomiyama, H., Hatano, T., Motoi, Y., Abe, O., Shimoji, K., et al.
(2014). A preliminary diffusional kurtosis imaging study of Parkinson disease:
comparison with conventional diffusion tensor imaging. Neuroradiology56,
251–258. doi: 10.1007/s00234-014-1327-1

Kamagata, K., Tomiyama, H., Motoi, Y., Kano, M., Abe, O., Ito, K., et al.
(2013). Diffusional kurtosis imaging of cingulate fibers in Parkinson disease:
comparison with conventional diffusion tensor imaging. Magn. Reson.
Imaging31, 1501–1506. doi: 10.1016/j.mri.2013.06.009

Kanazawa, T., Adachi, E., Orimo, S., Nakamura, A., Mizusawa, H., and Uchihara,
T. (2012). Pale neurites, premature α-synuclein aggregates with centripetal
extension from axon collaterals. Brain Pathol.22, 67–78. doi: 10.1111/j.1750-
3639.2011.00509.x

Kellner, E., Dhital, B., Kiselev, V. G., and Reisert, M. (2016). Gibbs-ringing artifact
removal based on local subvoxel-shifts. Magn. Reson. Med. 76, 1574–1581.
doi: 10.1002/mrm.26054

Kerkelä, L., Henriques, R. N., Hall, M. G., Clark, C. A., Shemesh, N., Hall,
M. G., et al. (2020). Validation and noise robustness assessment of microscopic
anisotropy estimation with clinically feasible double diffusion encoding MRI.
Magn. Reson. Med.83, 1698–1710. doi: 10.1002/mrm.28048

Kiselev, V. G. (2013). “The cumulant expansion: an overarching mathematical
framework for understanding diffusion NMR,” in Diffusion MRI, ed. D. K.
Jones(Oxford:Oxford University Press).doi: 10.1093/med/9780195369779.003.
0010

Komlosh, M. E., Horkay, F., Freidlin, R. Z., Nevo, U., Assaf, Y., and Basser, P. J.
(2007). Detection of microscopic anisotropy in gray matter and in a novel tissue
phantom using double Pulsed Gradient Spin Echo MR. J. Magn. Reson.189,
38–45. doi: 10.1016/j.jmr.2007.07.003

Komlosh, M. E., Lizak, M. J., Horkay, F., Freidlin, R. Z., and Basser, P. J. (2008).
Observation of microscopic diffusion anisotropy in the spinal cord using
double-pulsed gradient spin echo MRI. Magn. Reson. Med.59, 803–809. doi:
10.1002/mrm.21528

Kurowska, Z., Kordower, J. H., Stoessl, A. J., Burke, R. E., Brundin, P., Yue,
Z., et al. (2016). Is axonal degeneration a key early event in Parkinson’s
disease?J. Parkinsons Dis.6, 703–707. doi: 10.3233/JPD-160881

Lampinen, B., Szczepankiewicz, F., Novén, M., van Westen, D., Hansson, O.,
Englund, E., et al. (2019). Searching for the neurite density with diffusion
MRI: challenges for biophysical modeling. Hum. Brain Mapp.40, 2529–2545.
doi: 10.1002/hbm.24542
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