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The cardiovascular system can sense and adapt to changes in mechanical stimuli by
remodeling the physical properties of the heart and blood vessels in order to maintain
homeostasis. Imbalances in mechanical forces and/or impaired sensing are now not only
implicated but are, in some cases, considered to be drivers for the development and
progression of cardiovascular disease. There is now growing evidence to highlight the
role of mechanical forces in the regulation of protein translation pathways. The canonical
mechanism of protein synthesis typically involves transcription and translation. Protein
translation occurs globally throughout the cell to maintain general function but localized
protein synthesis allows for precise spatiotemporal control of protein translation. This
Review will cover studies on the role of biomechanical stress -induced translational
control in the heart (often in the context of physiological and pathological hypertrophy).
We will also discuss the much less studied effects of mechanical forces in regulating
protein translation in the vasculature. Understanding how the mechanical environment
influences protein translational mechanisms in the cardiovascular system, will help to
inform disease pathogenesis and potential areas of therapeutic intervention.
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FORCES IN BIOLOGY

Mechanical forces can occur on the whole body to microscopic scale. During development,
mechanical forces govern cell shape and migration and hence orchestrate the growth of
multicellular biological tissues (Mammoto and Ingber, 2010; LeGoff and Lecuit, 2016). Mechanical
signals drive organogenesis in the late stages of embryonic development in nearly every system.
Force drives the formation of the vasculature (Lucitti et al., 2007), lungs (Gutierrez et al.,
2003), brain (Anava et al., 2009), musculoskeletal system (Stokes et al., 2002; Kahn et al., 2009)
hematopoietic system (Adamo et al., 2009; North et al., 2009) and the heart (Hove et al., 2003;
Forouhar et al., 2006). Impaired force sensing or altered mechanotransduction signaling is linked to
defects in development of tissues and organs in addition to disease in later life such as cardiovascular
diseases and cancer (Jaalouk and Lammerding, 2009).
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External forces such as those imposed by gravity and exercise
influence musculoskeletal growth and strength. Skeletal muscle
requires mechanical load which acts to upregulate protein
synthesis and promote myocyte growth and maintenance.
Bone growth and metabolism requires frequent pressure and
tensile forces generated through skeletal muscle contractions
and gravity (Kohrt et al., 2009). Mechanical loading is essential
for musculoskeletal homeostasis as withdrawal of force leads
to regression and atrophy of these tissues (reviewed well by
Felsenthal and Zelzer, 2017). Atrophy is often observed with
aging but also in environments such as microgravity in space
where force bearing on the skeleton is lower than on Earth
(LeBlanc et al., 2007; Amin, 2010). These changes involve
alterations in protein synthesis mechanisms, which, in the
absence of mechanical stimuli, contribute to reduced growth
and cell turnover.

Respiration is another highly mechanical process requiring
repeated expansion and subsequent deflation of the lungs in
order to oxygenate blood and remove gaseous waste from the
body. This vital continual loop generates an array of mechanical
forces within the pulmonary system, such as longitudinal or
circumferential stretch, surface tension on the alveoli cells of
the lungs or fluid shear stress within the pulmonary vasculature
caused by blood flow (Breen et al., 1999). Increased ventilation is
associated with remodeling of the lungs that involves increases in
both protein and DNA as a result of mechanical force (Gutierrez
et al., 2003). Mechanical forces are also implicated in lung
diseases, for example, force imbalances arising from pulmonary
hypertension can remodel the pulmonary vasculature and induce
smooth muscle and fibroblast proliferation in conjunction
with increased collagen and elastin protein synthesis and gene
expression (Wirtz and Dobbs, 2000). Disturbed mechanical
forces exerted on pulmonary vascular endothelial cells induces
changes in protein synthesis and expression of pro-inflammatory
molecules such as IL-8, TNF-α and CXCL5 (Tang et al., 2016).

MECHANICS IN THE CARDIOVASCULAR
SYSTEM

Atherosclerosis is characterized as a chronic inflammatory
disorder resulting from the accumulation of fatty deposits in the
arterial intima which can form plaques occluding blood flow.
This disease is highly focal in nature as a result of differential
mechanical forces exerted by blood flow in different regions of
the vascular network. Briefly, disturbed and complex blood flow
profiles arise where blood vessels branch or curve sharply and
this primes these areas to have low but chronic inflammation,
leaving them more vulnerable to plaque accumulation (Davies,
1995; Hahn and Schwartz, 2009). Conversely, straight regions of
the vasculature experience smooth, uniform blood flow which
promotes anti-inflammatory pathways and thus keeps them
relatively protected from atherosclerotic plaques. Atherosclerotic
lesions leave arteries thicker and less compliant therefore they
cannot modulate or adapt to changes in blood flow. Rapid
changes in shear stress gradients at lesion sites has been shown to
be the primary driver of platelet aggregation and activation which

increases plaque accumulation (Nesbitt et al., 2009). Disturbed
blood flow at injury sites can increase risk of plaque rupture
and thrombotic complications downstream. This can be fatal
if it occurs in the coronary vessels of the heart. In addition
to atherosclerosis, changes to blood flow parameters in the
aorta can promote abnormal swelling and weakening of the
vessel wall known as aortic aneurysms. Under mechanical strain,
these bulges will eventually rupture, leading to potentially fatal
complications (Bäck et al., 2013).

The organ that is perhaps the most influenced by
biomechanical forces is the heart. The heart beats continuously
to transport oxygenated blood and nutrients to the rest of the
body to maintain normal organ function. The activity and
integrity of the heart itself is highly influenced by biomechanics
and mechanical stress is a critical mediator of cardiomyocyte
function and extracellular matrix composition (Voorhees and
Han, 2015). Biomechanical forces regulate the activity and
function of the cells of the heart: cardiomyocytes, fibroblasts,
and the vascular cells of the coronary blood vessels (Hahn
and Schwartz, 2009; Voorhees and Han, 2015; van Putten
et al., 2016; Herum et al., 2017). In response to biomechanical
stress, cardiomyocytes undergo hypertrophic growth (Hannan
et al., 2003). Hypertrophic adaptive remodeling can occur under
physiological settings such as exercise or during pregnancy where
the heart undergoes compensatory hypertrophy to deal with
increased mechanical load in order to maintain cardiac function
and output (Heineke and Molkentin, 2006). In response to
chronic endurance exercise undertaken by elite athletes, the heart
must remodel to handle the considerable increase in mechanical
load (George et al., 2012). Physiological hypertrophy seen in the
athlete’s heart is typically not associated with myocyte damage,
although some studies have shown myocardial death during
intense exercise as well as fibrosis in long-term endurance athletes
(La Gerche et al., 2012; Galderisi et al., 2015). Nevertheless, most
elite athletes will present a healthy physiological adaptation to
prolonged bouts of intense exercise that can be distinguished
from pathological hypertrophy to pressure overload. Under
pathological settings, such as hypertension, the heart deals
with sustained, chronic levels of mechanical strain and this can
lead to persistent activation of protein synthesis pathways such
as mammalian target of rapamycin (mTOR) which regulate
cardiomyocyte growth (Heineke and Molkentin, 2006). This
hypertrophic remodeling response is chronic and can ultimately
result in heart failure (Lyon et al., 2015).

PROTEIN TRANSLATION AND
CARDIOVASCULAR FUNCTION

Protein translation is a highly conserved and tightly regulated
process which is fundamental for cellular homeostasis. The
canonical mechanism of protein synthesis typically involves
two major steps: transcription of a messenger RNA (mRNA)
transcript in the nucleus and translation of this mRNA into
a protein by the translational machinery in the cytoplasm
(Clancy and Brown, 2008). Protein translation occurs globally
throughout the cell to maintain general function but localized
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or polarized protein synthesis occurring for example at the
leading edge of migrating cells (Katz et al., 2012), allows for
efficient translation of specific proteins required for cell motility
in the correct location. It is important to emphasize that mRNA
levels do not always correlate to protein expression levels and
this disconnect is a result of post transcriptional mechanisms
(Spriggs et al., 2010). Having this additional level of translational
control enables cells to rapidly respond and adapt to changing
micro-environmental conditions.

Translation is segmented into four stages: initiation,
elongation, termination and ribosome recycling. Modulation of
translation typically occurs at the initiation stage which requires
the co-ordination of many translational factors and ribosomal
subunits (Sonenberg and Hinnebusch, 2009). Eukaryotic
initiation factors (eIFs) are involved in mediating the start of
translation through assembly of initiation complex on the 40S
ribosomal subunit and chaperoning of the 60S subunit to join
the 40S (Sonenberg and Hinnebusch, 2009). The activity of
eIFs are controlled via phosphorylation and the most common
mechanism for switching off global translation is through
phosphorylation of eIF2α subunit at its Serine 51 (Jackson et al.,
2010). This highlights the importance of translation modulation
under conditions of cell stress or when the cell needs to conserve
energy. Having the ability to switch off global translation and
shift the proteomic landscape to synthesize specific proteins
required to maintain cellular function is critical for cell survival.

The highly conserved regulatory pathway, mTOR plays a
crucial role in many processes including transcription and
protein translation, ribosomal and mitochondrial biogenesis, and
cell growth and division (Sciarretta et al., 2014). mTOR is a
serine/threonine protein kinase, part of the phosphoinositide 3-
kinase (PI3K) family, which interacts with many adaptor proteins
to form two distinct signaling complexes, namely mTORC1 and
mTORC2. These complexes were distinguished by their relative
sensitivity to Rapamycin, which inhibits mTORC1 signaling
without disrupting mTORC2 signaling. Broadly, mTORC1
regulates protein synthesis, cell growth and proliferation, cell
metabolism and stress responses, whereas mTORC2 regulates cell
survival, cytoskeletal organization and polarity (Figure 1). Both
complexes are relatively large with multiple adaptor proteins
which give them their unique signaling identity. Of the two
complexes, mTORC1 has been more extensively studied and its
upstream inputs and downstream targets are better understood
than that of mTORC2, in the cardiovascular system and the rest
of the body (Sciarretta et al., 2018).

The major downstream substrates of mTORC1 related to
protein synthesis are S6 kinase 1 (S6K1) and eukaryotic ignition
factor 4E (eIF4E)-binding protein (4E-BP1) and these have been
thoroughly studied (Shin et al., 2011). Once activated, mTORC1
phosphorylates and in turn activates S6K1 which stimulates
mRNA biogenesis and the protein translation machinery.
mTORC1 negatively regulates 4E-BP1 and in doing so this allows
for the formation of the eIF4F initiation complex that promotes
the canonical cap-dependent pathway of protein translation.
Protein kinase B, or Akt, can directly activate mTOR through
phosphorylation whilst also repressing the endogenous mTORC1
inhibitor, PRAS40, and thereby augment mTOR downstream

effects. The 5′ adenosine monophosphate-activated protein
kinase (AMPK) pathway is a well-established negative regulator
of mTORC1 activity. AMPK is normally activated in times of
cellular stress e.g., when nutrients, amino acids and energy are
scarce. Under stressed conditions, AMPK will stimulate the
tuberous sclerosis protein (TSC) 1/TSC2 complex which can
inhibit mTORC1 signaling indirectly by converting mTORC1
activator Ras homolog enriched in brain (Rheb) into its inactive
GDP-bound form. The active GTP-bound state of Rheb normally
directly interacts with and promotes mTORC1’s kinase functions
(Laplante and Sabatini, 2012). In addition to AMPK, glycogen
synthase kinase (GSK) 3β is a potent activator of the TSC1/TSC2
complex and so can also contribute to dampening of mTORC1
activity during times of cellular stress (see Figure 1 for summary
of signaling). It is well established that mTOR signaling can be
activated by amino acids, stress, oxygen, energy status and growth
factors such as insulin (Laplante and Sabatini, 2012). There is
also evidence indicating mechanical force can stimulate mTOR
signaling (Kraiss et al., 2000; Guo et al., 2007; Hornberger, 2011;
Philip et al., 2011; Jacobs et al., 2017; Vion et al., 2017) and this
will be discussed in more detail below.

PROTEIN TRANSLATION IN RESPONSE
TO BIOMECHANICAL FORCES IN THE
HEART

Force-derived signaling regulates the development of
cardiomyopathy and left ventricular remodeling following
an infarct by contributing to tissue fibrosis and scarring. Elevated
stress and pressure overload on the heart in conditions such
as hypertension and valvular disease can promote ventricular
hypertrophy and diastolic heart failure (Merino et al., 2018).
The most common model used to mimic human cardiovascular
disease and elucidate mechanisms of cardiac hypertrophy and
heart failure is the transverse aortic constriction (TAC) model
in the mouse (Rockman et al., 1991; Merino et al., 2018). In
this model, pressure overload is produced by aortic ligation
and provides a reproducible model of cardiac hypertrophy
and gradual heart failure. Several studies have used this model
to evaluate protein synthesis pathways and investigate the
therapeutic benefit of their modulation.

The mTOR pathway plays an essential regulatory role in
cardiovascular physiology and pathology. Both mTORC1 and
mTORC2 signaling are crucial for embryonic cardiovascular
development and preserving function in the adult (Sciarretta
et al., 2018). Specific cardiac ablation ofmTOR is embryonic lethal
and disruption of mTORC1 components postnatally is associated
with increased cardiac dysfunction, apoptosis, metabolic changes
and heart failure (Sciarretta et al., 2014). It is widely accepted
that mTORC1 activation and signaling is required for the
development of adaptive hypertrophy and maintenance of
heart function in response to pressure overload (Sciarretta
et al., 2018). In the absence of mTOR signaling, inadequate
remodeling of the heart under increased mechanical strain leads
to dilated cardiomyopathy (Zhang et al., 2010). Rapamycin,
a potent mTORC1 inhibitor, alleviates established hypertrophy
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and improves cardiac function following TAC-induced pressure
overload in murine models (Shioi et al., 2003; McMullen
et al., 2004; Gao et al., 2006). Cardiac hypertrophy promoted
by increasing systolic blood pressure in the spontaneously
hypertensive rat model could also be attenuated with application
of rapamycin (Soesanto et al., 2009). It is important to note,
however, that while mTORC1/2 signaling is necessary for
cardiomyocyte survival and adaptive hypertrophy in response to
mechanical or ischemic trauma, persistent activation of mTOR
in a disease setting contributes to pathological hypertrophic
remodeling, accumulation of misfolded proteins, energy stress
and impaired ventricular and overall heart function (Buss et al.,
2009). It has been demonstrated that partial mTORC1 inhibitors
are effective in reducing an exaggerated hypertrophic response
under pressure overload or chronic myocardial infarction and
thereby alleviate tissue damage and heart failure (Shioi et al.,
2003). On its own, mTOR signaling is not enough to induce
hypertrophy but it is a major contributor and hence has

become an attractive target for therapeutic intervention under
settings of sustained mechanical stress on the heart (Shen
et al., 2008). Partial inhibition of mTORC1 during cardiac
stress has been under intense investigation in order to achieve
dampening of the maladaptive effects of sustained mTORC1
signaling without disrupting its normal physiological actions.
Other studies have investigated the role of components of
the mTORC1 complex in the heart under physiological and
pathological conditions, such as the adaptor protein Raptor. Mice
deficient in myocardial raptor display cardiac dysfunction leading
to heart failure in response to pressure overload induced by
TAC; this is associated with a lack of adaptive cardiomyocyte
growth due to reduced protein synthesis (Shende et al., 2011). It
has also been demonstrated that cardiac specific overexpression
of the gene encoding the mTORC1 endogenous inhibitor,
PRAS40, is associated with blunted pathological remodeling
after pressure overload and preservation of cardiac function
(Völkers et al., 2013a,b).

FIGURE 1 | Schematic representation of mTOR signaling. In response to mechanical force, PI3K activates Akt and mTORC2 directly. mTORC2 can further activate
Akt which can also directly activate mTORC1. Rheb can directly activate mTORC1 when in its active GTP bound form. Activation of mTORC1 positively regulates
S6K1/p70S6K leading to downstream ribosome and mRNA biogenesis. In addition, activation of mTORC1 also negatively regulates 4EBP1 allowing for the
formation of the eIF4F translation initiation complex. This combined signaling promotes protein synthesis and cell growth. When mTORC2 is activated it also
promotes cell growth and survival through its downstream effectors SGK1 and PKCα. Adaptor proteins, Raptor and Rictor, are specific to mTORC1 and mTORC2,
respectively, and are required for active signal transduction. The TSC1/2 complex can prevent mTORC1 activation by Rheb by keeping Rheb in its inactive GDP
form. The TSC1/2 complex can be activated by both AMPK and GSK3β signaling to dampen mTORC1 activity in times of cellular stress. GSK3β can also inhibit
eIF2α mediated protein translation again to reduce global protein synthesis during cellular stress. In addition, there are four kinases which can phosphorylate and
inactivate eIF2α mediated protein translation under distinct stress conditions: PERK, GCN2, PKR and HRI. Phosphoinositide-3-kinase–protein kinase B/Akt
(PI3K-PKB/Akt), Mammalian target of rapamycin (mTOR), Tuberous sclerosis protein (TSC), 5′ adenosine monophosphate-activated protein kinase (AMPK),
Glycogen synthase kinase 3β (GSK3β), Ras homolog enriched in brain (Rheb), Eukaryotic initiation factor 2α (eIF2α), Protein kinase R (PKR)-like endoplasmic
reticulum kinase (PERK), General control non-derepressible 2 (GCN2), Protein kinase RNA-activated (PKR), Heme-regulated inhibitor kinase (HRI), Ribosomal protein
S6 kinase beta-1 (S6K1) or p70S6 kinase (p70S6K), Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1), Serine/threonine-protein kinase
Sgk1 also known as serum and glucocorticoid-regulated kinase 1 (SGK1), Protein kinase C alpha (PKCα).
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The role of mTORC2 in cardiac pathology has received
considerably less attention. Bénard et al. showed that stromal
interaction molecule 1 (STIM1) is required for the initiation
of compensatory hypertrophy in response to TAC-induced
overload. STIM1 directly activates mTORC2/Akt signaling in
order to preserve cardiac function (Bénard et al., 2016). The
adaptor protein rictor is unique to and critical for mTORC2
signaling. Cardiomyocyte specific inducible deletion of RICTOR
leads to cardiac dysfunction in response to pressure overload,
again reinforcing the importance of mTOR signaling in the
short term, adaptive response to increased mechanical strain
(Shende et al., 2016). A similar observation of cardiac dysfunction
was seen by Völkers et al. in their RICTOR knockdown
model which was tested under chronic infarction induced
by permanent ligation. In addition to mTOR, the Hippo
pathway is another major regulator of cell growth, division and
apoptosis. While mTOR signaling promotes growth, the Hippo
pathway exerts the opposite effect through negative regulation
of its downstream effectors; transcriptional co-activators, yes-
associated protein (YAP) and transcriptional coactivator with a
PDZ-binding domain (TAZ) (Hansen et al., 2015). The Hippo
kinases, MST1/2 in mammals, when active phosphorylate and
activate the kinases LATS1/2 which in turn phosphorylate and
inactivate YAP and TAZ. When inactive, YAP/TAZ are retained
in the cytoplasm where they undergo degradation. When not
repressed and in their active form, YAP/TAZ translocate to the
nucleus where they predominantly interact with transcription
factors from the TEA domain members (TEADs) to promote
activation of genes linked with growth (Meng et al., 2016).
There has been some research highlighting the cross-talk
between Hippo and mTOR signaling during disease states of
increased cell growth and proliferation such as cancer (Artinian
et al., 2015), however, very little is known with regards to
cardiac hypertrophy. One key study has demonstrated that
mTORC2 signaling preserves cardiac function following pressure
overload induced by TAC by inhibiting the Hippo kinase, MST1
(Sciarretta et al., 2015).

GSK-3β is a negative regulator of protein synthesis and plays
a critical role in the cardiomyocyte hypertrophic response to
increased mechanical strain. The mechanical stimulus of aortic
banding results in a significant decrease in GSK-3β activity which
allows for the classic cardiomyocyte hypertrophic response –
increased protein accumulation as a result of enhanced protein
synthesis, enhanced sarcomere organization and re-expression of
the fetal gene program (Haq et al., 2000). Constitutive activation
or increased expression of the active form of GSK-3β attenuates
pressure overload-induced cardiac hypertrophy in vivo, in part
due to inactivation of NFAT target genes (Haq et al., 2000; Antos
et al., 2001). Active GSK-3β represses eIF2α-mediated protein
translation (Antos et al., 2001) and GSK-3β is the primary kinase
that phosphorylates eIF2Bε at Serine 535 in rat cardiomyocytes
thereby impeding the initiation of translation and resulting in
decreased cardiomyocyte hypertrophy (Hardt et al., 2004).

Protein translation rates in the adult heart are generally one
of the lowest in the body because cardiomyocytes terminally
differentiate soon after birth and therefore show little growth
potential and have low cell turnover (Garlick et al., 1980; Paradis

et al., 2014). It is only once the heart is mechanically stimulated
in an intense and/or prolonged manner e.g., endurance exercise
or heart failure, that protein synthesis rates increase, and
cardiomyocytes become hypertrophic. One possible mechanism
by which biomechanical forces can alter translational control
in the heart is via a poly(A) tail based modulatory mechanism.
All mature mRNA transcripts in mammalian cells possess a
long tail sequence at one end composed of adenosine nucleotide
repeats referred to as the poly(A) tail (Hocine et al., 2010).
Certain factors can bind onto the poly(A)tail and influence
the fate of the mRNA i.e., how efficiently it is translated or
degraded (Burgess and Gray, 2010). PABPC1 is a poly(A)tail
binding protein known to facilitate mRNA translation (Kini et al.,
2016). A recent study by Chorghade, Seimetz and colleagues
investigated how PABPC1 mediates protein translation using
mouse and human cells. They highlight that PABPC1 is highly
expressed in the heart before birth but is downregulated to
almost undetectable levels in the adult heart. They found that
this decrease in PABPC1 expression was not a result of lower
transcription levels but due to changes in translation of the
mRNA transcript. The mRNA for PABPC1 has a much shorter
poly(A) tail in the adult heart and this affects its translational
efficiency causing low protein expression in the adult vs.
neonatal heart. This study highlighted that the length of the
PABPC1 mRNA poly(A) tail can be extended, and therefore,
protein production can be re-established in the adult heart
when it has been subjected to hypertrophic conditions triggered
by endurance exercise or cardiovascular disease. Experimental
re-introduction of PABPC1 in adult hearts allowed for an
interaction with pre-initiation factor, eIF4G, which promotes
the recruitment of ribosomes and the activation of protein
translation (Chorghade et al., 2017).

Impaired force sensing or changes to mechanical signaling
that regulates protein translation are clearly linked to cardiac
remodeling. Further investigation is required into the mechanical
regulation of components of the translational machinery and
factors that govern the initiation of protein translation in the
context of increased mechanical strain, in both physiological and
pathological contexts.

ER STRESS AND BIOMECHANICAL
STRESS

The endoplasmic reticulum (ER) plays a crucial role in protein
synthesis, folding and quality control to maintain cellular and
tissue function (Walter and Ron, 2011). Under pathological
mechanical stress such as pressure overload, the tight balance
of protein expression and quality control is disrupted, leading
to changes in post-translational modifications, increased protein
aggregates and misfolding, decreased protein stability and
ultimately an ER stress response (Doroudgar et al., 2015). The ER
stress response can activate the unfolded protein response (UPR),
thus promoting an acute decrease in protein synthesis, increased
protein degradation of defective or misfolded proteins and
increased synthesis of protective proteins (Glembotski, 2007).
These acute mechanisms are cardioprotective in response to
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FIGURE 2 | Cellular ER Stress signaling in response to mechanical force. Increased protein synthesis results from chronic mechanical activation of pathways such as
mTOR. This results in an increase in protein burden, accumulation of misfolded proteins and ER stress. In an attempt to re-establish ER homeostasis, the UPR is
triggered and this consists of three main branches. The eIF2α kinase PERK is an ER transmembrane protein which acts as a sensor to increased protein load and
accumulation of unfolded proteins in the ER. Once stimulated, PERK will phosphorylate eIF2α and thereby block global translation initiation to help reduce protein
burden in the ER. Phosphorylation of eIF2α also leads to translation of a specific subset of mRNA which will help maintain cellular function and promote cell survival
during stress conditions. In times of ER stress, ATF6 will translocate from the ER to the Golgi where it will become cleaved and function as an active transcription
factor, promoting the transcription of ER chaperones. IRE1catalyses the splicing of key mRNAs that will become functional transcriptions factors and similar to ATF6,
these will promote the transcription and ultimate translation of ER chaperones which will facilitate proper protein folding and degradation to alleviate ER burden.
Endoplasmic reticulum (ER), Mammalian target of rapamycin (mTOR), Unfolded protein response (UPR), Eukaryotic translation initiation factor 2-alpha kinase 3, also
known as protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), Activating transcription factor 6 (ATF6), Serine/threonine-protein
kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), Eukaryotic initiation factor 2α (eIF2α).

dynamic and physiological changes in pressure stimuli, however,
their prolonged activation is associated with cardiac cell death
(Sun et al., 2015).

In response to biomechanical stress, phosphorylation of
eIF2α blocks initiation of translation and, as such, helps
relieve the excess burden of increased protein synthesis and
accumulated unfolded proteins in the ER (see Figure 2)
(Doroudgar et al., 2015). Attenuation of eIF2α phosphorylation
by cardiomyocyte-specific gene deletion of one of its kinases
(PERK) resulted in disruption of the cardiac stress response and
exacerbated cardiomyocyte hypertrophy, fibrosis and apoptosis
(Liu et al., 2014). While deletion of the gene encoding PERK
(EIF2AK3) appears to be detrimental in the overloaded heart,
gene deletion of other eIFα kinases such as GCN2 (EIF2AK4)
and PKR (EIF2AK2) appears to confer some benefit in pressure
overload mouse models. When compared to wildtype mice,
GCN2 gene deletion did not reduce the degree of cardiac
hypertrophy but did protect against ventricular dysfunction,
cardiac fibrosis and apoptosis following pressure overload (Lu
et al., 2014). Similarly, PKR gene knockout mice are less
prone to pressure overload-induced cardiac fibrosis and have

preserved left ventricular function despite displaying similar
cardiac hypertrophy to their wildtype littermates (Wang et al.,
2014). The molecular mechanisms responsible for the different
phenotypes of eIF2α kinase gene knockout mouse models
following pressure overload remain incompletely understood,
but there is increased appreciation for roles of GCN2, PERK
and PKR independent of eIF2α phosphorylation. For instance,
PERK is a transmembrane protein spanning the ER membrane
and not only reduces protein burden via eIF2α-mediated
translation block but has been linked to sensing protein folding
interactions in the ER during the unfolded protein response
(Donnelly et al., 2013). Therefore, cardiac deletion of the
gene encoding PERK would ablate ER homeostasis which the
other cytoplasmic eIF2α kinases may not be able to fully
compensate for and hence cause a more severe reaction to
pressure overload.

Reperfusion of the ischemic heart is essential in order to
salvage the myocardium, however, it also imposes mechanical
stress and injury to the heart. Ischemia-reperfusion (IR) injury
induces marked oxidative stress and intracellular calcium
overload, leading to ER stress and activation of the UPR.
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An important regulator of the UPR in the cardiomyocyte in
response to hypertrophy is Activating Transcription Factor 6
(ATF6) (Glembotski, 2014). Upon ER stress, ATF6 is activated
and triggers expression of key proteins which will re-establish
normal ER function and folding capacity (Figure 2; Martindale
et al., 2006). Acute activation of ATF6 protects the heart
following I/R injury by reducing necrosis and apoptosis (Jin
et al., 2017), however, sustained activation of ATF6 and its
pro-apoptotic target genes could have detrimental effects on
the heart under pathological mechanical stress (Choi et al.,
2016). A possible mechanism by which ATF6 regulates cardiac
function in response to biomechanical stress is via Rheb-
dependent activation of the mTORC1 signaling pathway and
downstream protein synthesis (Blackwood et al., 2019). Rheb
regulates mTORC1’s kinase functions and activity such that
when Rheb is in its active GTP-bound state it will directly
interact with and activate mTORC1. Another mechanism is
via regulation of ubiquitination in the stressed myocardium
during compensatory and pathological hypertrophy via the ATF6
target gene Hrd1 (Sun et al., 2015). Targeted suppression of
Hrd1 in vivo was associated with pronounced pathological
hypertrophic remodeling in response to pressure overload,
whereas overexpression of Hrd1 in the heart led to a significant
repression in hypertrophy and preserved heart function under
pressure overload.

Heat shock proteins and chaperones protect the heart against
pathogenic misfolded and accumulated proteins occurring under
biomechanical stress (Ranek et al., 2017). Heat shock protein
70 and its protein homolog, heat shock cognate 70 (HSP70 and
HSC70, respectively) defend against cardiomyocyte damage by
facilitating folding and transport of new proteins and protein
degradation at the proteasome. In response to biomechanical
stress, HSP70 expression increases in order to alleviate the
increased misfolded protein burden. Animal models of inducible
HSP70 expression have indicated a cardioprotective role for
HSP70 in response to acute cardiac mechanical stress (Bernardo
et al., 2016). Interestingly, increased HSP70 expression may
only provide protection under acute mechanical stress, such
as exercise or I/R, as studies using mice exposed to chronic
pressure overload- induced hypertrophy demonstrated no benefit
having increased expression of HSP70 (Weeks et al., 2012;
Sapra et al., 2014).

Carboxyl terminus of HSC70-interacting protein (CHIP) is
expressed in cardiac muscle and functions as a co-chaperone,
facilitating the refolding of misfolded proteins either by itself
or by mediating its co-chaperones (heat shock proteins HSP70,
HS70 and HSP90) (Kettem et al., 2010). CHIP also plays a critical
role in protein degradation through its ubiquitin ligase activity
therefore it has an essential role in myocardial protein quality
control and expression (McClellan and Frydman, 2001). While
overexpression or loss of the gene encoding CHIP (ATCHIP)
does not affect steady state heart function, manipulation of
CHIP gene expression levels has profound effects on myocardial
function following an increased mechanical load emphasizing
the importance of cardiac CHIP levels in preserving heart
function under stress (Zhang et al., 2005). CHIP gene KO
mouse models exhibit adverse cardiac hypertrophy in response

to either exercise or pressure overload as measured by increased
cardiomyocyte size, heart weights and wall thickness (Schisler
et al., 2013; Willis et al., 2013). Mice with suppressed CHIP
expression and subjected to pressure overload had increased
mortality rate associated with severe cardiac hypertrophy and
fibrosis (Schisler et al., 2013), impaired HSP70 expression (Zhang
et al., 2005) and increased mTOR signaling (Dickey et al., 2008),
while mechanical stress from MI or I/R injury in CHIP KO
mice causes considerably larger, more damaging infarcts and
decreased survival.

MECHANICAL FORCES AND PROTEIN
TRANSLATION IN VASCULAR CELLS

Vascular Smooth Muscle Cells (VSMCs)
VSMCs are the major contractile component of blood vessel
walls and experience cyclic strain but are generally shielded from
shear stress under physiological conditions (Wang et al., 2018).
Endothelial cells (ECs) respond to their mechanical environment
and crosstalk with VSMCs in order to maintain vascular tone
and mediate vascular remodeling. Under stressed or pathological
states where there is vessel injury, the endothelial layer is
compromised or endothelial signaling is dysfunctional, such as in
hypertension or atherosclerosis. Under such conditions, VSMCs
are vulnerable to exposure of shear stress from blood flow or their
signaling and function can change as a result of inappropriate
EC activation (Scott et al., 2012; Kim et al., 2017). Pathological
mechanical trauma and changes to cyclic stretch triggers VSMCs
to undergo gene, protein expression and phenotypic changes.
Examples of this are decreases in contractile genes such as SM22α
and those encoding myosin light chain, and increases in cell
hypertrophy, proliferation and migration (Huang et al., 1999; Feil
et al., 2004; Chiu et al., 2013; Wang et al., 2018). The dysregulated
proliferative VSMC phenotype is associated with cardiovascular
states where the mechanical environment is perturbed such as
pulmonary hypertension and atherosclerosis (Morrell et al., 2009;
Bennett et al., 2016).

The mTOR signaling pathway has been shown to be
activated in VSMCs in response to cyclic strain (Li et al.,
2003) and has since been investigated both in vitro and
in vivo in pathological hypertensive settings. Houssaini et al.
induced pulmonary hypertension in rats and observed both
mTORC1 and mTORC2 activation which contributed to
increased pulmonary artery SMC (PASMC) growth compared
to control rats. When they treated the hypertensive rats with
rapamycin to inhibit mTORC1 signaling, they observed a
decrease in SMC proliferation and reduced vessel remodeling
(Houssaini et al., 2013). A more recent study by Tang
and colleagues evaluated the contribution of mTORC1 and
mTORC2 in the development and progression of pulmonary
hypertension in mouse models. They functionally disrupted
mTORC1 and mTORC2 specifically in SMCs by knocking
out genes encoding the adaptor proteins raptor or rictor,
respectively (Figure 1). When they disrupted mTORC1 signaling,
in agreement with previous studies, they observed amelioration
of SMC proliferation and therefore reduced development of
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hypertension. In contrast, when they knocked out RICTOR
and therefore interfered with mTORC2 signaling, this caused
spontaneous pulmonary hypertension as a result of upregulation
of platelet derived growth factor receptors (Tang et al., 2018).
This therefore suggests that mTORC2 confers some protective
benefit to the SMC phenotype and vascular remodeling,
however, the mechanisms and signaling involved require
further clarification especially as other studies have shown
mTORC2 plays a key role in proliferation and survival of
pulmonary artery SMCs in pulmonary arterial hypertension
(Goncharov et al., 2014).

Mechanical forces can stimulate ER stress signaling in VSMCs
and chronic activation of this response mediates vascular
disease progression such as in atherosclerosis, hypertension and
aneurysms (reviewed in Shanahan and Furmanik, 2017). Cheng
et al. subjected rat aortic SMCs to cyclic stretch to mimic the
hemodynamic environment found in arterial vessels. They found
that the downstream target of ER stress transmembrane protein
PERK, C/EBP homologous protein (CHOP), was upregulated
by cyclic stretch suggesting ER stress activation (Figure 2;
Cheng et al., 2008). Another study by Wan et al. suggested
that under mechanical stress induced by hypertension, a
positive feedback loop is triggered in aortic SMCs whereby
increased mechanical trauma activates the ER stress response
and this further exacerbates hypertension. The mechanism by
which this occurs is increased splicing of the conductance
Ca2+ voltage activated K+ channels which are essential for
maintaining vascular tone and contractility (Wan et al., 2015).
A complementary study by Liang et al. demonstrated that
aberrant ER stress in VSMCs increases their contractility and
as such promotes elevated blood pressure; activation of AMPK
counteracted high blood pressure by reducing the effects of ER
stress in vivo and is therefore essential for vascular homeostasis
(Liang et al., 2013).

It has been established for some time that ribosomal proteins
have extra-ribosomal functions beyond that of the classical
biochemistry of protein translation (Wool, 1996; Graifer et al.,
2014; Zhou et al., 2015). Ribosomal protein L17 (RpL17) is a
component of the large 60S ribosomal subunit but has also
been shown to act as a VSMC growth inhibitor. Smolock et al.
were first to show that RpL17 expression is inversely correlated
with VSMC growth and that RPL17 depletion promotes VSMC
proliferation using a mouse model of partial carotid ligation.
This study suggested that RpL17 could therefore represent a
potential therapeutic candidate for limiting VSMC proliferation
during carotid intima-media thickening (Smolock et al., 2012).
It remains to be further investigated how the ribosome-free
ribosomal proteins are balanced or coordinated with their
traditional roles in protein synthesis and ribosome biogenesis
during normal cell growth and proliferation.

Endothelial Cells (ECs)
There is little study on how mechanical forces from blood
flow influence EC function with regards to protein synthesis
mechanisms and components of the translational machinery
(ribosomes, polysomes, elongation and initiation factors,
aminoacyl-tRNA synthetases) and how they could mediate

general EC-shear stress responses aside from ER stress in
disturbed flow settings. ECs reside in a highly dynamic
mechanical microenvironment, and as such, need to be able
to adapt quickly changing mechanical stimuli. Translation can
occur independently of transcription, suggesting a rationale
for specific force-dependent mechanisms that can regulate
translation of proteins to bring about rapid cellular responses
to force (Brant-Zawadzki et al., 2007). ECs are at the frontline
in responding to mechanical cues which alter their activity and
phenotype and influence the biologic behavior of the vessel wall
i.e., contraction-dilation of blood vessels to mediate changes in
blood pressure and re-direct blood flow under exercise training
or times of stress (Givens and Tzima, 2016). ECs can also respond
to various agonists in the circulation but mechanotransduction,
the sensing of a biophysical signal which is converted into
an intracellular biochemical response, is more rapid than
ligand-receptor signaling (Na et al., 2008). Mechanotransduction
responses in ECs involves the dynamic modification of
proteins via phosphorylation/de-phosphorylation which will
ultimately influence transcriptional and translational control
mechanisms. While transcriptional control mechanisms require
a longer timeframe to employ, separate translation-only control
mechanisms allow ECs to mount a more immediate response
to a change in mechanical stimuli, ensuring cell homeostasis
while longer term transcriptional changes to gene expression can
be put in place.

There is limited study on how fluid shear stress influences
protein translation in ECs independent of changes at the
transcriptome level. Kraiss et al. were first to demonstrate
that fluid shear stress, in the absence of growth factors or
hormones, independently activates the mTOR pathway in ECs
through phosphorylation of mTOR downstream target, p70S6K
(Figure 1). In this same study, the investigators highlighted
that FSS can modulate protein expression without changing
mRNA levels, again revisiting this idea of the disconnect between
mRNA and protein levels as a result of translational control.
The activation of p70S6K controls translation of a specific
set of mRNA transcripts into protein. One of these is the
protooncogene, Bcl-3, which was used in this study to detect
changes in protein expression following p70S6K activation by
shear stress. They found that Bcl-3 expression was rapidly
induced following short-term shear stress and its upregulation
was attenuated in the presence of Rapamycin but not in
response to actinomycin D, suggesting that upregulation is due
to translation and not transcription (Kraiss et al., 2000).

An additional study by Kraiss et al. demonstrated that fluid
shear stress can modulate the protein expression of adhesion
molecule, E-selectin, on the EC cell surface independent of
changes to E-selectin mRNA levels. To further investigate this
post-transcriptional mechanism, they recovered the polysome
fractions of ECs which had been stimulated to express E-selectin
and compared them with pre-stimulated ECs which had then
been subjected to shear stress. Fluid shear stress markedly
reduced the amount of E-selectin mRNA bound to active
polysomes compared to the stimulated only ECs, which had
a high level of mRNA associated with actively translating
polysomes. To ensure this result was not attributed to a general
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overall decrease in protein translation following shear stress, they
used a radiolabeled methionine incorporation assay to measure
relative global protein synthesis occurring in the flowed vs. non-
flowed samples. The predominant response of ECs exposed to
fluid shear stress shifted toward an overall increase in global
protein synthesis compared to their static counterparts therefore
indicating a specific downregulation of E-selectin expression.
This suggests that the mechanical stimulus of shear stress can
influence translational control and specifically control a subset
of mRNAs. Interestingly, unlike with Bcl-3, the application
of Rapamycin did not affect the flow-mediated response of
E-selectin expression suggesting its translation is mTOR/p70S6K
independent (Kraiss et al., 2003).

Other studies have examined the effects of different types of
shear stress on protein translation mechanisms. Both laminar
and disturbed fluid shear stress induce rapid phosphorylation
of mTOR at its Serine 2448 and its downstream target p70S6K
which is important for protein translation and cell growth.
Activation of p70S6K persists under oscillatory shear stress but
shows a transient activation following sustained exposure to
laminar shear stress (Guo et al., 2007). This highlights the
differential actions of different mechanical forces on protein
translational signaling. Additionally, mTOR can be also be
activated in response to low shear stress as shown by increased
phosphorylation of downstream target 4EBP1 (Vion et al., 2017).

In addition to shear stress, pressure also regulates protein
translation signaling. Rice et al. investigated pressure-induced
activation of p70S6K and other protein synthesis regulators,
Akt and GSK3β, in rat aortae from young and aged rats.
P70S6K mediates the translation of mRNA transcripts related
to cell cycle progression and the translational machinery. They
found that pressure-induced phosphorylation of p70S6K and
Akt-dependent GSK3β (Serine 9) was attenuated in the aged
rat aorta compared to the young adult group suggesting that
physiological aging elicits changes to protein synthesis and cell
growth pathways (Rice et al., 2005). This study also showed that
aged vessels are less compliant as aortic wall thickness increased
in the aged animals. More studies are required to highlight
the differential mechanisms that occur with normal aging to
mechanotransduction pathways in the vasculature which may
have different signaling pathways to that which occurs in vascular
disease or with age.

The ER stress response, also referred to as the unfolded
protein response (UPR), promotes an acute decrease in protein
synthesis to ensure ER capacity can match demands of protein
load (Walter and Ron, 2011). Activation of the ER stress response
also leads to increased protein degradation of defective or
misfolded proteins whilst augmenting synthesis of protective
proteins (Glembotski, 2007). Protein misfolding is a result of
increased protein synthesis, changes in protein oxidation, post-
translational modifications and decreased proteasome capacity
(Sun et al., 2015). In regions of disturbed flow, such as the
inner curvature of the aortic arch, ER stress activates adaptive
UPR signaling (see Figure 2; Davies et al., 2013). A study by
Civelek et al., 2009 observed upregulated gene expression of
ERN1 (IRE-1) and ATF6, both transducers of the UPR response,
in the aortic arch compared to the descending aorta. This stress

response in the aortic arch could be persistently active in order to
mitigate the effects of the imbalanced mechanical environment
which promotes sustained protein translation and contributes to
the accumulation of pathological levels of misfolded proteins.
Further analysis of differential effects of shear stress on the EC
ER stress response was performed by Bailey and colleagues.
They subjected human aortic ECs to low and high shear stress
and examined the levels of key factors involved in the ER
stress response. They found that low shear stress (2 dynes/cm2)
induced high expression of eIF2α and Xbp1 and high shear stress
(12 dynes/cm2) was associated with low Xbp1 expression (Bailey
et al., 2017). This data coincides with Zeng et al. who found
that Xbp1 was highly expressed in areas of the vasculature which
are susceptible to disturbed flow patterns e.g., branch points. In
addition, there were similar high and low expression patterns in
their in vitro studies when analyzing disturbed and laminar flow,
respectively (Zeng et al., 2009).

Perspectives
The control of protein expression in the cardiovascular system
is incredibly sensitive to the effects of mechanical forces. Protein
translation in the heart is relatively low unless mechanical
signaling increases substantially and/or is sustained which can
be of a physiological or pathological nature. Endurance exercise
causes increases in hemodynamic forces which, if sustained,
will trigger protein synthesis mechanisms and adaptive cardiac
hypertrophy to cope with increased mechanical demands. In
conditions where hemodynamic forces are perturbed, such as
hypertension, atherosclerosis and heart failure, dysregulated
protein synthesis can contribute to worse outcomes in heart
and vessel function and disease progression. These can
include dysregulation of mTOR signaling or components which
modulate protein translation initiation, such as eIF2α. Signaling
systems such as those involved in the ER stress response
are highly mechanosensitive and help to regulate protein
burden in conditions of mechanical disturbance. Pharmacologic
and/or genetic inhibition of protein translation pathways has
been shown to extend life span in mammals and reduce
cardiac remodeling and heart failure in response to increased
biomechanical stress. These studies suggest that targeting of
protein translation pathways, especially when they are aberrantly
activated in conditions of mechanical disturbance, may represent
a novel therapeutic strategy to confer cardioprotection and
vessel homeostasis.
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