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Abstract

The microstructure changes associated with degeneration of spinal axons in amyotrophic

lateral sclerosis (ALS) may be reflected in altered water diffusion properties, potentially

detectable with diffusion-weighted (DW) MRI. Prior work revealed the classical mono-expo-

nential model fails to precisely depict decay in DW signal at high b-values. In this study, we

aim to investigate signal decay behaviors at ultra-high b-values for non-invasive assess-

ment of spinal cord alterations in the transgenic SOD1G93A mouse model of ALS. A multiex-

ponential diffusion analysis using regularized non-negative least squares (rNNLS) algorithm

was applied to a series of thirty DW MR images with b-values ranging from 0 to 858,022 s/

mm2 on ex vivo spinal cords of transgenic SOD1G93A and age-matched control mice. We

compared the distributions of measured diffusion coefficient fractions between the groups.

The measured diffusion weighted signals in log-scale showed non-linear decay behaviors

with increased b-values. Faster signal decays were observed with diffusion gradients

applied parallel to the long axis of the spinal cord compared to when oriented in the trans-

verse direction. Multiexponential analysis at the lumbar level in the spinal cord identified ten

subintervals. A significant decrease of diffusion coefficient fractions was found in the ranges

of [1.63×10−8,3.70×10−6] mm2/s (P = 0.0002) and of [6.01×10−6,4.20×10−5] mm2/s (P =

0.0388) in SOD1G93A mice. Anisotropic diffusion signals persisted at ultra-high b-value

DWIs of the mouse spinal cord and multiexponential diffusion analysis offers the potential to

evaluate microstructural alterations of ALS-affected spinal cord non-invasively.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder with unclear

underlying etiology that involves progressive degeneration of motor neurons in the motor cor-

tex, brain stem and spinal cord [1–3]. Degeneration of upper and lower motor neurons in ALS

is associated with both sporadic and genetic alterations in various cellular pathways [2]. Cur-

rent assessment of ALS is based upon a combination of clinical symptoms and examinations

of upper and lower motor neurons including: electromyogram and nerve conduction studies,

genetic testing, magnetic resonance spectroscopy and structural MRI [2,4]. The application of

novel MRI techniques may contribute to the identification of nerve tissue changes ultimately

advancing the early diagnosis, stratification and prognosis of ALS and other neurodegenera-

tive diseases.

The microstructure of damaged nerves in ALS spinal cord tissue can potentially be reflected

in altered diffusion properties amenable to detection by diffusion-weighted (DW) MRI [2,5,6].

A recent large-scale diffusion tensor MRI study demonstrated decreasing fractional anisotropy

(FA) of corticospinal tracts in ALS affected patients [7]. However, multiple pathological alter-

ations can lead to insufficient reliability in DTI measurements, including coexistence of axonal

degeneration, inflammation, and demyelination [8]. Diffusion behavior in biological tissues

can be complex due to tissue heterogeneity, vascularity and cellularity. Studies have revealed

that, in biological systems, water proton signal attenuation due to diffusion weighting deviates

from free diffusion or mono-exponential behavior at relatively high b-values (�3000 s/mm2)

[9–13]. Even at ultra-high b-values (up to 850,000 s/mm2), strong signals were found to persist

in DW images (DWI) of the mouse spinal cord [14]. Variation of these strong signals acquired

at ultra-high b-values can provide important information related to the pathological changes

of ALS during neuronal degeneration.

The potential new information carried by DWI at ultra-high b-values and its relationship to

pathological changes necessitate systematic studies on MR signal decay spanning a wide range

of b-values. Various diffusion models have been explored to interpret the complicated water

diffusion behavior in living tissues [15–17]. In order to interpret signal attenuation with b-val-

ues over a wide range that covers extensive high b-values, biexponential and other complex

models have been applied [18–22]. While these diffusion models provide various means to

capture tissue complexity, a multiexponential relaxation model, proposed by Whittall, can be

applied to analyze complicated diffusion behaviors [23]. This multiexponential model assumed

multiple compartments with various diffusion coefficients exist in tissues. This multiexponen-

tial model has been widely used for T2 relaxation analysis, and is based on a regularized non-

negative least squares (rNNLS) algorithm, to identify and characterize multiple water compart-

ments in normal and pathologic tissues, for example, multiple sclerosis [23], cartilage degener-

ation [24], and myelin water imaging [25]. An NNLS approach was recently applied to

measure diffusion and perfusion fraction in vertebral bone marrow [26]. In addition, NNLS

was used as a method to remove undesired signal contamination in diffusion compartments

and for multifiber reconstruction in the presence of intravoxel orientational heterogeneity for

DTI tractography [27,28]. However, no study has been reported using the NNLS approach to

evaluate tissue diffusion relaxation over a broad range of high b-values in the spinal cord.

Here, we hypothesize that multiple diffusion compartments can be depicted in the mouse

spinal cord by the multiexponential relaxation model. We further anticipate that ALS-induced

microstructure alterations can be defined by changes in the distribution of diffusion compart-

mentation using multicomponent analysis. To evaluate this hypothesis, we used an rNNLS to

identify potential diffusion measurement differences in the lumbar spinal cord of wild type

and transgenic SOD1G93A mice, a well-established ALS model. Specifically, we analyzed a
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series of DWIs from the spinal cords of SOD1G93A mice and controls with b-values ranging

from 0 to 8.5 x 105 s/mm2 using the rNNLS method, making no prior assumptions about the

number of diffusion components present.

Materials and methods

Sample preparation

Two groups of male mice were used for this study: A SOD1G93A group (n = 7) and a wild type

control group (n = 8) at early symptomatic stage (postnatal days 90–100). All experimental

procedures were reviewed and approved by the Institutional Animal Care and Use Committee

(IACUC) of Northwestern University (Northwestern IACUC Approval number: IS00002018)

and were in accordance with the National Institute of Health Guide for the Care and Use of

Laboratory Animals. Mutant SOD1G93A mouse and its wild type control were purchased from

the Jackson Laboratory (B6SJL-Tg (SOD1�G93A) 1Gur/J and stock No: 002726), and were

housed and cared by the Center for Comparative Medicine of Northwestern University. In

brief, all animals were housed under diurnal lighting conditions (12-h light/12-h dark cycles)

with free access to food and water. The room was controlled to provide a relative humidity of

45 ± 5% and a temperature of 20 ± 2˚C. Before the MRI scans, the mice were euthanized by

CO2 chamber and followed by opening of the chest cavity, procedures approved by our

IACUC. The spinal cords were dissected for histological analysis after MRI.

MRI

All MRI studies were performed using a 9.4 T MRI scanner (Agilent, Santa Clara, CA), a gradi-

ent set with maximal gradient strength of 100 Gauss/cm, and a 39 mm birdcage quadrature RF

coil (Rapid, Germany). A diffusion weighted stimulated echo sequence was applied with the

following acquisition parameters: TR/TE = 2000/30.5 ms, mixing time = 382 ms, diffusion

time (Δ) = 400 ms, diffusion gradient duration (δ) = 11 ms, slice thickness = 1.5 mm, field of

view (FOV) = 36 mm × 50 mm, matrix = 64 × 96, average = 25, and 30 b-values ranging from

0 to 858,022 s/mm2 with a maximal diffusion gradient strength of 50 Gauss/cm. Two diffusion

gradient directions were applied with one oriented parallel and the other perpendicular to the

long axis of the spinal cord. T2 weighted images were acquired using a fast spin echo sequence

with parameters: TR/TE = 1000/12 ms, echo train length = 8, matrix = 192 × 256, FOV = 36

mm × 50 mm, slice thickness = 1.5 mm, averages = 2. The bore temperature was 18–20˚C mea-

sured with a thermocouple (SA Instruments, NY)

Data processing

Image post-processing was performed in Matlab (MathWorks). Signal-noise-ratios (SNRs)

were calculated from regions of interest (ROIs) manually drawn at the lumbar level in the spi-

nal cords of both SOD1G93A and wild type mice. Normalized signal intensities (In) were calcu-

lated for each mouse in both groups with the following equation:

In ¼ Im=I0 ½1�

, where Im is the measured signal intensities at all b-values, and I0 is the measured signal inten-

sities when the b-value was equal to zero.

The multiexponential relaxation model was used to analyze normalized signal intensities

on 200 possible diffusion coefficients (D) that were logarithmically spaced over the interval of

[1×10−8,1×10−1] mm2/s. Briefly, for a given matrix A, the normalized signal intensity of each
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voxel in DWIs at different b-values can be considered as a column vector I!n (Eq 2)

I!n ¼ A � W�!

A ¼ e� b
!
�D! ½2�

, where b
!

is a row vector containing the thirty b-values from 0 to 858,022 s/mm2, D! is a col-

umn vector with 200 possible diffusion coefficients that were logarithmically spaced over the

interval of [1×10−8,1×10−1] mm2/s and W�! denotes the weights of possible diffusion coeffi-

cients (or D weights). To minimize noise influence in analysis, we employed the rNNLS

method (Eq 3) to find the optimized W�! by minimizing the “energy” in the spectrum [29],

Argmin
W�!
jjA � W�! � I!njj2 þ m � W

�!H W�!; subject to W�! � 0 ½3�

, where W�!H W�! is a regularizer and μ is the weight of the regularization term. To pick up an

appropriate μ value for this study, we employed a ‘least squares-based constraints’ method that

slightly regularizes the optimization function on a percentage basis of χ2 misfit [30]. The χ2

was defined as

w2 ¼ ð I!n � ÎÞHð I!n � ÎÞ=s2 ½4�

, where σ2 is the variance of noise, I!n and Î denote the normalized acquired data and esti-

mated data respectively. The μ was iteratively updated until Eq 5 was achieved

w2
reg ¼ w

2
nonregð1þ aÞ ½5�

, where χ2
reg and χ2

nonreg are the regularized and unregularized least squares misfit. In our

study, α was set to 9% considering the relatively low SNRs [30].

The extracted D weights (or W�!) corresponding to each diffusion coefficient were averaged

in SOD1G93A and wild type groups respectively. To simplify comparison of diffusion compo-

nent fractions, the “crossover points”, where the values of averaged D weights (<W>) in

SOD1G93A and wild type groups invert, were then determined. These “crossover points” divided

the total D spans into subintervals. The sum of averaged D weights (SaDw) for each subinterval,

defined by Eq 6, was computed respectively for both SOD1G93A and wild type groups.

SaDw ¼
P

i<W >i; i � subinterval ½6�

The difference (ΔSaDw) was further calculated by subtracting SaDw of wild type from that of

SOD1G93A in each subinterval.

In addition, the sum-of-D-weights (SDw) for each subinterval was computed using Eq 7 for

each sample.

SDw ¼
P

iWi; i � subinterval ½7�

Voxel-wise SDw maps were calculated in the identified subintervals for each sample. A one-

dimension multiscale local polynomial transform de-noising filter was applied voxel-wise on

In at different b-values prior to applying the rNNLS analysis aforementioned [31,32]. D

weights were estimated for each voxel from all animals and SDw maps at individual subinterval

were calculated correspondingly. The maps were overlaid with T2 weighted images using

FSLeyes (FMRIB Analysis Group, Oxford, UK).
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Statistical analysis

A two-tailed Student t test was performed on SDw of each subinterval for both groups with

Stata software (Stata11, Stata-Corp, College Station, TX). The statistically significant level was

defined as P< 0.05.

Results

Representative images of a SOD1G93A (red arrow) and a wild type mouse (blue arrow) are

shown in Fig 1. In T2 weighted images (Fig 1A), similar image intensities were observed in the

spinal cord of the SOD1G93A and wild type animals. In contrast, diffusion weighted images

(DWIs) showed relatively higher signal intensities, as b-value increased, in the spinal cord of

wild type mouse, compared to SOD1G93A mouse (Fig 1B, 1C, 1D and 1E). The measured SNRs

from an ROI obtained from lumbar level of spinal cord were lower in the SOD1G93A mouse

than in control mouse at all b-values (Fig 2). Relatively higher SNRs were identified in both

experimental groups when diffusion gradients were applied perpendicular to the long axis of

spinal cord, compared to those oriented in the parallel diffusion-weighting direction (Fig 2).

In both SOD1G93A and wild type mice, a non-linear behavior between the log-scaled SNRs and

b-values was explicitly shown (Fig 2). Furthermore, faster SNR decays were found in the paral-

lel diffusion direction than in the transverse direction in both groups.

As shown in Fig 3A, a good fit was confirmed by representative rNNLS fitting curves

obtained from one SOD1G93A and one wild type mice when plotted on a semi-log scale from

the lumbar level ROIs. The calculated weighted distributions on all 200 Ds are shown in Fig

3B. Four main peaks at 1.10 x 10−6 mm2/s, 1.47 x 10−5 mm2/s, 1.20 x 10−4 mm2/s and 6.08 x

10−4 mm2/s were observed in the control mouse. Four peaks were detected at 7.32 x 10−7 mm2/

s, 1.06 x 10−5 mm2/s, 1.42 x 10−4 mm2/s and 1.37 x 10−3 mm2/s in the mutant mouse. Averaged

D weights of all animals in each group provided an overall view of D weight distributions in

both groups (Fig 3C). Furthermore, the largest three differences of SaDw, 0.0946, -0.0749,

and −0.0422, were respectively located at the subintervals of [1.66×10−4,8.41×10−4] mm2/s,

[6.01×10−6,4.20×10−5] mm2/s and [1.63×10−8,3.70×10−6] mm2/s (Table 1 and Fig 3D). A two-

tailed student t test showed a significant decrease of SDw at the subintervals of [1.63×10−8,

3.70×10−6] mm2/s (P = 0.0002) and of [6.01×10−6,4.20×10−5] mm2/s (P = 0.0388) in the mutant

group. Fig 4 shows representative examples of T2 weighted images with color-coded overlays

of the SDw maps of the identified subintervals of [1.63×10−8,3.70×10−6] mm2/s at the lumbar

level spinal cord of a wild type (Fig 4A) and a SOD1G93A mouse (Fig 4B) and of [6.01×10−6,

4.20×10−5] mm2/s (Fig 4C, wild type; Fig 4D, SOD1G93A). Heterogeneous distribution patterns

were observed in each of the SDw maps with hyperintense signals observed in the ventral por-

tions of the spinal cord in the SOD1G93A mouse.

Discussion

MRI techniques to assess ALS progression can be beneficial in both clinical and research set-

tings, as they may allow early diagnosis/prognosis or treatment efficacy, respectively. In this

study, we found that anisotropic diffusion signals persist at ultra-high b-value in the mouse

spinal cord, and that differences in signal intensity between the spinal cords of SOD1G93A mice

and wild type controls can be observed at an early symptomatic phase of the disease. We fur-

ther demonstrated the feasibility of using multicomponent analysis to interpret DWI signal

dispersion spanning an extremely large range of b-values with no a priori assumptions about

the number of diffusion components present. Our results imply that the rNNLS multiple com-

ponent analysis of a series of DWIs with b-values extended to ultra-high values can detect
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microstructural changes in the spinal cord associated with degeneration of motor neurons in a

mouse model of ALS at early symptomatic stage.

ALS patients display extensive white matter changes involving primary and secondary

motor connections indicating a network basis for the spread of pathology that can be detected

by diffusion-based MRI techniques [33,34]. Diffusion neuroimaging techniques are an impor-

tant assessment tool for making a precise ALS diagnosis [35,36]. Particularly, using diffusion

tensor MRI, a decrease of FA within the corticospinal tract in ALS patients was consistently

found to correlate with disease severity and progression in several studies [37–42]. Although

MR imaging of the spinal cord is challenging, the ubiquity and non-invasive nature of MRI

has supported its continued development and it now plays a leading role in ALS biomarker

discovery. A better knowledge of spinal cord diffusion properties in relationship to ALS

pathology could aid the assessment of ALS progression in human patients. Novel diffusion-

weighted MRI techniques can be beneficial to non-invasively monitor disease progression and

to evaluate treatment outcomes. Our previous study showed that strong signals persist in

DWIs of mouse spinal cord, even at ultra-high b-values [14]. In this study, our results further

validated the existence of complicated water diffusion behaviors in the spinal cord, as shown

by the dependency of measured SNRs on the diffusion gradient directions (Fig 2) and the non-

linear relationship between the measured signal intensities on log scales and corresponding b-

values (Fig 3A). Additionally, we documented differences in signal intensity that arise in high

b-value DWIs between the spinal cords of wild type and SOD1G93A mice at disease onset (Fig

2), which can potentially reveal pathological changes of ALS. Furthermore, the high SNRs

(shown in Fig 2) measured with the diffusion gradient oriented perpendicular to the long axis

of spinal cord can improve the reliability of subsequent analysis on diffusion attenuation. The

slower signal decay of transverse diffusion can indicate the presence of well-packed obstruc-

tions to water or other molecules (e.g., lipids in myelin) in the microstructures. Accordingly,

degradation of these microstructures might be detected by transverse diffusion, even at ultra-

high b-values. That being the case, DWIs with a combination of optimal diffusion gradient

Fig 1. Representative T2- and diffusion-weighted images of a SOD1G93A mouse (red arrows) and a wild type mouse (blue arrows). (A) T2-weighted anatomical

image. (B) Diffusion-weighted image at b = 1.34×104 s/mm2 with diffusion gradient direction oriented parallel to the long axis of spinal cord. (C) Diffusion-weighted

image at b = 8.58×105 s/mm2 with parallel diffusion gradient. (D) Diffusion-weighted image at b = 1.34×104 s/mm2 with transverse diffusion gradient direction. (E)

Diffusion-weighted image at b = 8.58×105 s/mm2 with transverse diffusion gradient direction. Seven SOD1G93A and eight wild type control mice were scanned to

produce these representative images.

https://doi.org/10.1371/journal.pone.0231598.g001
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direction and ultra-high b-value offer the potential to probe fine structure with ultra-small dif-

fusion coefficients.

Successful interpretation of the complex nature of tissue water diffusion and the changes

that occur in disease depends on data acquisition and on the method chosen for analysis of the

diffusion decay. We, in this study, utilized an rNNLS method to delineate the complex diffu-

sion behaviors of spinal cord in a mouse model of ALS. This method allows for the separate

identification of multiple diffusion components with few a priori assumptions of possible com-

partments present. As shown in Fig 3B, multiple distinct compartments with the rNNLS were

extracted in this study. These diffusion components could represent water diffusion from vari-

ous spinal cord white matter tracts, gray matter, and CSF filled in the central canal of the spinal

cord and in the cavity between spinal cord and vertebrae, that are embodied in each DWI

slice. On the averaged D weight distributions of both groups (Fig 3C), obvious differences

were observed in the 7th, 4th and 2nd subintervals between mutant and wild type groups

(Table 1). Among them, the 7th subinterval [1.66×10−4,8.41×10−4] mm2/s incorporates the

radial diffusivity (RD) of mouse spinal cord (approximately 4.5×10−4 mm2/s) reported in the

literature [43,44]. The likely higher SaDw in the mutant mouse existed when comparing to that

Fig 2. The measured SNRs from lumbar level ROIs of the representative wild type and SOD1G93A mice with diffusion gradient direction parallel and

perpendicular to the long axis of spinal cord. Seven SOD1G93A and eight wild type control mice were scanned to produce these representative graphs.

https://doi.org/10.1371/journal.pone.0231598.g002
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of the control (Fig 3D), but no statistically significant differences (P = 0.2013) were found

between the two groups in this subinterval. In the literature, RD changes in SOD1G93A mice

were reported inconsistently [43,45–47]. Hence, further studies on changes of D weights in

this subinterval could help to explain the RD inconsistency in DTI measurements and might

provide information about fine variations of microenvironment where inflammation, axonal

loss, axonal injury, and demyelination coexist. We found decreased SaDw in the 2nd subinterval

of [1.63×10−8,3.70×10−6] mm2/s, as shown in Fig 3C and 3D. From the Einstein’s theory for

Brownian particles [48], the mean distances along the diffusion direction were in the range of

Fig 3. Multiexponential analysis results in a representative SOD1G93A and a wild type mice and averaged D weights (<W>) for both groups (n = 7 for the

SOD1G93A group and n = 8 for the wild type control group). (A) Representative multiexponential fitting curves of lumbar level ROIs from a wild type and an

SOD1G93A mouse; (B) the corresponding distribution of D weights from multiexponential analysis. (C) The distribution of averaged D weights for both groups. (D) D

weight distributions in subintervals of [1.63×10−8,3.70×10−6] mm2/s, [6.01×10−6,4.20×10−5] mm2/s and [1.66×10−4,8.41×10−4] mm2/s. These subintervals are labeled as

(a), (b) and (c) respectively.

https://doi.org/10.1371/journal.pone.0231598.g003
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[0.11,1.72] μm, which is well matched to the mean axon diameters, 0.81 μm to 1.82 μm, of vari-

ous tracts of the spinal cord in B/c 57 mouse measured from histology [49]. More importantly,

a significant decrease was found on SDw in SOD1G93A mice at this subinterval (P = 0.0002). We

speculate that this decrease of SDw might directly disclose the disturbance of axons in

SOD1G93A mice well documented in previous studies [50,51]. SDw in the 2nd subinterval of

[1.63×10−8,3.70×10−6] mm2/s can, thus, have the potential to serve as an imaging biomarker

for detecting axon damage and be useful for evaluating therapeutic responses. Likewise, we

found a significant decrease (P = 0.0388) of SaDw in mutant mice at the 4th subinterval of

[6.01×10−6,4.20×10−5] mm2/s that has a mean diffusion distance range of [2.19,5.80] μm from

the Einstein’s theory. The decreased SaDw in this range might relate to more ‘open’ space

between the remaining clusters of cellular remnants caused by destruction of neuron cell bod-

ies and the loss of their associated axons as reported previously [50–52]. Such microstructure

degradations, for example, spongiform changes of the neuropile and vacuolization of motor

neurons, can lead to loss of the corresponding diffusion components and variations of other

diffusion components, for example, the increase of SaDw in 5th subinterval (Table 1). On this

account, the D weight distribution changes in the spinal cord of SOD1G93A mice compared

with the control could be due to changes of microstructure in both neurons in gray matter and

axons in white matter. The D weights extracted from the rNNLS algorithm, hence, have the

potential to interpret changes in water diffusion compartment size. Future studies are neces-

sary to fully establish the relationship of D weight with microstructure changes at different dis-

ease stages, segmental levels of spinal cord, and the MRI acquisition parameters in both

research and clinical settings.

Several limitations exist in the current study. First, relatively low spatial resolution was used

in order to increase the SNR at the ultra-high b-values. One of the major challenges in spinal

cord MRI arises from the small cross-sectional dimensions of the spinal cord. As a result, the

large image voxel could contain multiple regions in the spinal cord e.g., gray matter, white

matter tract and cerebrospinal fluid. Therefore, acquired MRI signals could have contributions

from various tissues with different diffusion properties in the spinal cord, as well as from adja-

cent tissues such as bone, and paraspinal muscles that were also included in the imaging voxel.

We also noticed that the spinal cord of wild type mice showed a greater amount of heterogene-

ity in the ventral portions in both high b-value diffusion weighted images (Fig 1D and 1E) and

the SDw map of subinterval of [1.63×10−8,3.70×10−6] mm2/s and of [6.01×10−6,4.20×10−5]

Table 1. Sum of averaged D weights (SaDw) for the identified subintervals within D span.

D (mm2/s) SaDw of SOD1G93A n = 7 SaDw of wild type n = 8 Δ SaDw

1 1E-8 to 1.63E-08 0.0034 0.0033 0.0001

2 1.63E-08 to 3.70E-06 0.0731 0.1153 -0.0422�

3 3.70E-06 to 6.01E-06 0.0319 0.0315 0.0004

4 6.01E-06 to 4.20E-05 0.1676 0.2425 -0.0749�

5 4.20E-05 to 1.11E-04 0.2077 0.1779 0.0298

6 1.11E-04 to 1.66E-04 0.1596 0.1679 -0.0083

7 1.66E-04 to 8.41E-04 0.3653 0.2707 0.0946

8 8.41E-04 to 9.89E-04 0.0173 0.0191 -0.0017

9 9.89E-04 to 2.05E-03 0.0513 0.0283 0.0231

10 2.05E-03 to 1.22E-02 0.0076 0.0414 -0.0338

11 1.22E-02 to 1E-01 0.0077 0 0.0077

� indicates subinterval with significant difference (P< 0.05)

https://doi.org/10.1371/journal.pone.0231598.t001
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mm2/s (Fig 4). The complexity of tissue diffusion benefits the multiple components analysis

with rNNLS, but on the other hand, the partial volume artifact might offset the distribution of

the D weights. Therefore, while these heterogeneities have the potential to reflect microstruc-

tures and pathological changes, further studies are necessary to confirm and elucidate the

source(s) of this measurement variability. Second, the subintervals were identified from the

“crossover points” of average D weights in both groups. This way of analyzing the distributions

of D weights is simple and straightforward, particularly when compared with other modeling

methods such as the Gaussian Mixture Model [27]. However, identification of subintervals

with this method is affected by the sample size of each group. Therefore, systematic studies

with a large sample size and validated with other methods such as immunohistochemical and

spinal cord optical coherence tomography are necessary in order to define subintervals that

can precisely reflect microstructure degradation. Third, the measurements in this study were

applied on ex vivo animals at the onset stage of ALS. However, progressive studies at multiple

time points of disease development are necessary to establish the relationship between multiex-

ponential diffusion analysis parameters and the early changes in the spinal cord, especially

changes at the pre-symptomatic stage. One additional limitation was the high magnetic field

and high gradient strength used in this study to elevate the SNR and to approach the ultra-

high b-values. Further studies with clinical settings will be of value to inform the clinical trans-

lation of this method.

In conclusion, this preliminary study demonstrated the feasibility of using ultra-high b-

value diffusion-weighted MRI and a multiple diffusion component analysis to evaluate micro-

structural alterations in the spinal cord of SOD1G93A mice, a widely used ALS animal model.

Further preclinical and translational studies are needed to validate the suitability of this

method for monitoring disease progression and therapeutic responses in ALS and other

neurodegenerative diseases.

Fig 4. Representative SDw maps of the subinterval [1.63×10−8,3.70×10−6] mm2/s with color-coded overlaid on T2 weighted images at the lumbar level spinal cord of a

wild type (A) and an SOD1G93A (B) mice, and the SDw maps of the subinterval [6.01×10−6,4.20×10−5] mm2/s with color-coded overlaid on T2 weighted images at the

lumbar level spinal cord of a wild type (C) and an SOD1G93A (D) mice. Seven SOD1G93A and eight wild type control mice were scanned to produce these representative

images.

https://doi.org/10.1371/journal.pone.0231598.g004
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