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Abstract

Background: Recent epidemics have entailed global discussions on revamping epidemic control and prevention
approaches. A general consensus is that all sources of data should be embraced to improve epidemic preparedness.
As a disease transmission is inherently governed by individual-level responses, pathogen dynamics within infected
hosts posit high potentials to inform population-level phenomena. We propose a multiscale approach showing that
individual dynamics were able to reproduce population-level observations.

Methods: Using experimental data, we formulated mathematical models of pathogen infection dynamics from
which we simulated mechanistically its transmission parameters. The models were then embedded in our
implementation of an age-specific contact network that allows to express individual differences relevant to the
transmission processes. This approach is illustrated with an example of Ebola virus (EBOV).

Results: The results showed that a within-host infection model can reproduce EBOV’s transmission parameters
obtained from population data. At the same time, population age-structure, contact distribution and patterns can be
expressed using network generating algorithm. This framework opens a vast opportunity to investigate individual
roles of factors involved in the epidemic processes. Estimating EBOV’s reproduction number revealed a
heterogeneous pattern among age-groups, prompting cautions on estimates unadjusted for contact pattern.
Assessments of mass vaccination strategies showed that vaccination conducted in a time window from five months
before to one week after the start of an epidemic appeared to strongly reduce epidemic size. Noticeably, compared to
a non-intervention scenario, a low critical vaccination coverage of 33% cannot ensure epidemic extinction but could
reduce the number of cases by ten to hundred times as well as lessen the case-fatality rate.

Conclusions: Experimental data on the within-host infection have been able to capture upfront key transmission
parameters of a pathogen; the applications of this approach will give us more time to prepare for potential epidemics.
The population of interest in epidemic assessments could be modelled with an age-specific contact network without
exhaustive amount of data. Further assessments and adaptations for different pathogens and scenarios to explore
multilevel aspects in infectious diseases epidemics are underway.
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Background
Epidemics of infectious diseases are currently listed
among the potential catastrophes that can set the world
back in the next decades [1]. Overwhelming research
efforts have been developed to predict the danger of
the epidemics but their crisis nature often left scientists
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no better option than learning from the past [1, 2].
Confronting outbreaks of emerging infections, however,
requires a swift response and thus the ability to evaluate
quickly and early possible outcomes [1]. As such, com-
puter simulations of epidemic models undoubtedly hold
the potential as the first-aid toolbox for decision making
amid the crisis [1, 3, 4].
Computational approaches in epidemic modelling date

back a few centuries ago [5]. Since then, an overwhelm-
ing amount of research has been conducted and con-
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tributed profoundly to understanding of epidemic con-
trol and prevention [5, 6]. The aims of epidemic mod-
elling are to address questions such as whether or not a
substantial population fraction is getting infected? how
large would the outbreak spread? or how can the out-
break be mitigated with intervention approaches at hand?
among others [7, 8]. Answering these questions requires
the quantification of these models using disease data on
a population level [7, 9–11], which are often delayed
[12, 13], under-reported [14], or not readily available [9].
As a result, epidemic models using population data, while
progress understanding on diseases, might have limited
applications to an ongoing epidemic [15]. A potentially
useful way to predict future disease dynamics is using
within-host processes [11].
In reality, the within-host infection process determines

key parameters in a disease transmission ([16–18], Fig. 1).
In an infected subject, interactions between the pathogen
and immune responses shape the pathogen dynamics
which, ultimately, define the incubation period, the trans-
mission potential, and the recovery rate [11, 18]. It is also
evident that susceptibility to infection is not the same for
all the susceptible but, among others, it is highly corre-
lated with a subject’s age due to age-related changes of
the immune system [19, 20]. These observations together
point towards some inherent biological processes where
individual dynamics can help to predict population-level
epidemics. Differences in the within-host infection pro-
file as well as the susceptibility to infection complicate
greatly epidemic models but at the same time underline
their influential roles in determining epidemics features
and intervention effects [21–23].
The interplays between within-host infection and

between hosts transmission led to arising attempts con-
necting the two levels [4, 17, 18, 24–28], but the approach
is still at its infancy [16]. On one hand, most of these
models were conceptual and theoretical [16, 28] or relied

on assumptive and previously obtained parameter esti-
mates [10, 11, 29]. We propose that this limitation can be
overcomed by using explicitly within-host infectionmodel
as a unit in epidemic simulations. This allows not only a
high level of heterogeneity to be expressed, but also the
study of stochasticity effects in epidemic spreading.
On the other hand, implementations of population

level models were either a general representation using
probabilistic assumptions [30, 31] or a computationally
demanding implementation of a particular population
[11, 29, 32]. These approaches, while able to recover valu-
able insights, may not be representative and accessible
for another population of interest, because either none
or large amount of data were needed. In this case, an
implementation of an epidemic model with social mix-
ing attributes, i.e., number of contacts per day and to
whom the contact occurs, could be less computation-
aly intensive [33], consistent across populations [34, 35],
and more representative for a realistic disease spreading
process [36, 37].
Improving understanding on EBOV transmission is cru-

cial: EBOV can cause a large scale outbreak with a high
fatality rate [14] and it re-emerges continuously [38]; as
of May 2018, a total of 32 EBOV disease cases have been
reported from Democratic Republic of the Congo, includ-
ing 18 deaths [38]. Based on our previous studies of the
within-host EBOV infection [39–41], we brought forward
a within-host infection model to study the transmission
fitness of EBOV at the population level. We built a net-
work model based on social contact data [34] and the
respective epidemic simulation algorithm that embedded
the within-host model into the contact network. Thus,
this multiscale model was data-informed at each level of
the epidemic process.
Our multi-scale model aimed to express the link

between pathogen load and transmission potential of an
infected host, the immune responses to the infection

Fig. 1 Schematic presentation of the within-host infections processes and their relation to transmission parameters. At the within-host level, viral
replication and immune responses race with each other that eventually determines an individual infectivity, for example, his symptoms and possibly
behaviours. At the between hosts level, infected individuals make contact(s) with susceptible individual(s) that eventually lead to a transmission,
depending on both the infectivity of the infectious and the susceptibility of the susceptible. Noting that while the contact network can be fixed, the
portion actively partake in epidemic spreading dynamically change over time [75]
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and vaccination, and the heterogeneity of the contact
frequency distribution in a population. The parameters
obtained frommodel simulations were compared to those
estimated from population-level data and empirical obser-
vations. The results showed that within-host infection
model reproduced estimates of the transmission param-
eters and allowed detailed evaluations of the effects of
intervention timing on the course of the epidemic. Imple-
mentations of the network model from social contact data
was straightforward and scalable for large simulations
on high-performance computer clusters. In that capac-
ity, epidemic assessments and preparations can be con-
ducted quickly, ahead of time, and with high-resolution
requirements.

Methods
In an EBOV-infected subject, the immune system com-
ponents dynamically evolve in response to the virus repli-
cation dynamic [42]. As a result, a series of events is
triggered determining the infection outcomes such as
infectious status, symptoms, recovery, or death [42–44].
In this paper, the EBOV replication dynamic within a host
was used to infer its transmission parameters.

Within-host model
Using virus dynamics and the immune response data
within a host, mathematical relations can be defined to
test hypothesized infection mechanisms [39, 45]. In this
context, non-human primates (NHPs) are the standard
animal model for developing EBOV’s therapeutics and
vaccines in humans [46–48]. Epidemiological and phar-
macological studies reported that a viral load level higher
than 106 copies/mL [47, 49] was associated with a higher
mortality rate, whereas observations based on experimen-
tal data in NHPs showed that a viral load level higher than
106 TCID50 was fatal [43, 44]. Here the viral load dynamics
were simulated based on a model as follows [41]:

dV
dt

= rVV
(
1 − V

KV

) (
V

In + V

) (
1 − Ab

KAb

)
(1)

where rV ,KV , and In denote the viral replication rate, the
carrying capacity of the infected host, and a threshold
expressing a lag-phase of viral replication. In particular,
a logistic growth was assumed for EBOV, with a short
delay when the virus level was low. The parameter KAb
represents the strength of the immune system at which
the antibody titre (Ab) completely inhibits the viral net
growth rate [41, 44], i.e., it was assumed that the higher
antibody level required to inhibit the viral replication the
weaker the immune strength. An antibody titre level of
104 appeared to be protective in NHPs and it required
approximately one week after vaccination to reach this
threshold [44]. The model parameters were obtained pre-

viously [41] using two experimental datasets on NHPs
[43, 44]. The antibody dynamic (Ab) was also fitted in
[41] to the data of NHPs vaccinated with a recombinant
vesicular stomatitis virus vaccine (rVSV-EBOV) [44]. This
vaccine had shown a high efficacy in human [48]. Details
of model fitting, data, and the parameter set can be found
in [41] and “Code and examples — Epidemic simulations”
section.

Simulated subject-specific infection course
To simulate subject-specific infection course, the anti-
body response strength KAb was varied from a normal
level of approximately 102.5 [44, 50] to the highest
observed level of 104.5 [44]. This parameter was assumed
to follow a U-shaped function of an individual’s age,
where infants and elderly have a higher susceptibility
([19], Fig. 1) (the extracted function is presented in
“Code and examples — Epidemic simulations” section).
As the infective dose can alter the course of infection [51],
the initial condition V (0) of the model Eq. 1 was varied
depending on fromwhom a subject acquired the infection,
i.e., the infection dose was assumed as equal to the lethal
dose (Vc = 100.15 [41]) times the transmission potential of
a subject transmitting the infection. Here we assumed a
direct relation between the transmission potential and the
viral load at the time of infection [16], i.e., the transmis-
sion potential pTrans(t) = V (t)/KV . Note that pTrans(t) =
1 does not guarantee a successful transmission, but it
was considered collectively with its contact’s susceptibil-
ity and with the existence of such a contact’s (details in
“Code and examples — Epidemic simulations” section).

Infection outcomes definitions
Empirical observations from EBOV infected human and
NHPs showed that the time from symptom onset to
death was approximately one week [43, 44, 52]. Based
on this, we used the total area under the viral load
curve (AUC) seven days post-infection obtained from
the subjects that died as a threshold above which the
infection is lethal, i.e., AUC7 = ∫ 7

0 V (t)dt. Otherwise,
infected subjects were assumed to have recovered once
the viral load was no longer detectable (Fig. 2). Depend-
ing on the infective dose and the adaptive immune
response strength, the infection model manifests different
viral dynamics and consequently the infection outcomes.
Based on that, we defined the transmission parameters as
in Table 1A-C (detailed implementations can be seen in
“Code and examples — Epidemic simulations” section).

Network model
The European’s contact patterns survey data [34] were
used to generate a network model reflecting the number
of contacts and the mixing patterns among age-groups.
This dataset is currently the largest collection available
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Fig. 2 Simulated infection course using within-host infection dynamics. The viral replication, the antibody dynamics, and their interaction were
modelled to define epidemiological parameters. It is assumed that when the EBOV-specific antibody concentration reaches a certain threshold, it
can inhibit the viral replication [76]. The total viral load under the curve (AUC) in lethal cases is used to define infection outcomes [77]

on human contact patterns; moreover, a similar pattern
has also been observed outside Europe [35]. To make
the contact pattern more specific to an EBOV-affected
population, the age distribution of Freetown city in Sierra
Leon [53] was used to weight the contact pattern towards
Table 1 Definitions of transmission parameters

Measure Definition

A Incubation period the interval between exposure to a
pathogen and initial occurrence of
symptoms [79] was defined as from
the infection time to the first time the
viral load crosses over the detectable
threshold (Fig. 2).

B Time from symptom
onset to recovery [79]

defined as the interval between the
first day of detectable viral load and
the first day the viral load becomes
undetectable (Fig. 2).

C Time from symptom
onset to death [79]

defined as the interval between the
first day with detectable viral load and
the day the area under the viral load
curve (AUC) crosses the reference
threshold AUC7 (Fig. 2).

D Basic reproductive
number (R0)

calculated based on the network of
infected subjects at the end of an
epidemic in an initially susceptible
population. In a network model, this
equals the mean degree distribution
of the infected network, considering a
directed network without loops (e.g.,
Fig. 5). The R0 by age-group was also
calculated in the same fashion based
on the assigned age-attribute. In epi-
demics with intervention or when the
population is not fully susceptible, the
R0 is called the effective reproduction
number (Re).

E Final infected fraction the proportion of infected nodes at
the end of an epidemic simulation.

F Case-fatality rate the proportion of nodes who died as
a result of EBOV infection counted at
the end of an epidemic simulation.

this area. In particular, while the contact frequency and
pattern remain the same, these data were imposed on a
network that has more young and less elderly subjects. A
detailed description of the network implementation can
be found in Code and examples—Generating age-specific
contact network.
Because EBOV spreads through direct contacts with

infectious subjects [51], and the highest risk of infec-
tion is contacting with blood, faeces, and vomit [54],
we used only the data of physical contacts and excluded
those contacts with a duration of less than five minutes.
In the 2014 EBOV epidemic, an important transmission
route was through contacting with the deceased who
had not been buried [2]. To account for this we consid-
ered deceased EBOV-infected subjects as infectious until
they were buried. During the 2015 EBOV epidemic, the
time from death to burial was from one to two days
on average, but it can be a week [55]. This information
was used to formulate a truncated normal distribution
for the time from death to burial, i.e., the distribution
was truncated at zero and seven and had unit mean
and variance (detailed implementations can be seen in
Code and examples — Epidemic simulations).

Transmission outcomes definitions
To obtain EBOV’s epidemic metrics, the within-host
infection model was embedded into the network model.
Simulations of EBOV epidemic are detailed in Fig. 3. In
short, a network of ten thousand nodes was generated.
Scenarios in which the population was randomly vacci-
nated during one-week vaccination program were tested
and compared to a control simulation without vaccina-
tion. To isolate the effect of vaccination, we assumed
that no other interventions were in place, e.g., no treat-
ments were provided and no quarantine or isolation
programs occurred. For each scenario, one thousand
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Fig. 3 EBOV epidemic simulation process

simulations were performed, each of which started with
a single random index case. Each time when a contact
occurred, the viral load at that time point was extracted
to determine the transmission potential. Next, the sus-
ceptibility of the contact persons was computed as a
function of their age [19]. A Bernoulli trial was then
used to determine if the contact results in an infection
given the overall transmission probability. If the trans-
mission succeeded, for the newly infected subject his/her
own infection profile was computed. Based on simula-
tion outputs, the epidemic outcomes were determined as
in Table 1D-F (detailed implementations can be seen in
Code and examples — Epidemic simulations).

Potential weaknesses and remedial approaches
The following assumptions were used given the lack of
specific experimental data, but further efforts to produce
the data can be done to address the issues listed here:

(i) Secondary antibody responses were assumed to be
similar to primary responses. This underestimates
the effect of vaccination strategies conducted before
an epidemic. Experimental studies on secondary
immune responses to EBOV infection are needed,
especially those with a longer follow-up period.

(ii) The transmission potential was assumed as directly
related to viral load. While this is reasonable, non-
linear relationships might exist [16, 28]. Dedicated
animal experiments to define the exact relationship
between the viral load and the ability to transmit the
virus are needed.

(iii) The contact pattern was assumed similar for Ebola
affected regions as in European countries. Although
the contact patterns seemed similar across countries
[34], a more sociable population would have higher
contact rate and thus increase R0. As collecting this
data for all countries can be laborious, simulation
studies addressing the effect of contact patterns on
the connectivity in network models are needed.

(iv) Infection status was assumed to have no influence on
the network structure, except that those buried were
removed from the network. This could overestimate

R0 [56]. Taking people’s behaviour changes into epi-
demic modelling remains a grand challenge [56].

(v) Susceptibility to EBOV infection was assumed sim-
ilar to a general viral infection disease. Studies on
susceptibility functions are lacking and require more
attention of the infection research community.

Computational implementation
The simulations were written in vectorized R lan-
guage [57]. Ordinary differential equations (ODEs) were
solved with deSolve package [58]. The network was
generated as an adjacency matrix and was visual-
ized with the package igraph [59]. Computations of
infection dynamics of the newly infected nodes were
done during the epidemic simulation after obtaining
its infective dose and immunization status. For nodes
with identical conditions, their infection courses were
copied instead of recomputing the ODEs for speed
(Code and examples — Epidemic simulations). Repeated
runs of epidemic simulations to obtain uncertainty esti-
mates were done on computer clusters of the Center
for Scientific Computing (CSC) of the Goethe University
Frankfurt. Distribution of computation resources was sent
from within R to SLURMWorkload Manager.

Results
Basic transmission characteristics
Table 2 shows that the within-host infection model cap-
tured well the population-level transmission parameters.
The results suggest that in contrary to using outbreak
data, employing within-host infection model can provide
this information prior to outbreaks, and even for a sce-
nario where a pathogen X has never caused an epidemic
before [60].

The network model
Figure 4 shows an example of the generated networks and
its required data. In particular, given a network of sizeN ∈
N, each node was assigned an age such that the network’s
age-distribution resembled that of the target population.
Subsequently, nodes were assigned a number of contacts
per day following a defined contact distribution of inter-
est. Finally, the algorithm visited each node to generate the
defined number of contacts, not at random but following

Table 2 Simulated population-level transmission parameters
based on within-host infection model

Range and medians (in days)

Parameter Simulated Literature

Incubation period 2.6–12.4 (3.8) 3.35–12.7 (7) [79]

Time from symptom onset to recovery 6.9–17.6 (9.7) 2–26 (10) [79]

Time from symptom onset to death 8.1–15.1 (9) 3–21 (9–10) [79]
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a defined contact matrix. The network was returned as
an adjacent matrix that is compatible to available network
analyses algorithms, e.g., igraph, graph-tool [61, 62]. Stor-
ing data as a sparse matrix, a regular installation of R
could generate reliably networks of 10-20 thousand nodes
with the generation time 6-10 minutes on a single thread
Intel Core i7, 8GB RAM. Note that R theoretically can
only handle a maximum square matrix ≈ 44721 rows and
columns.

Calculating basic reproductive number (R0)
After each simulation, the uninfected nodes were
removed from the initial network. Then the basic repro-
duction number was calculated as the average network
degree, considering the network as a directed and with-
out loop network (Fig. 5-Left). Simulation results showed

that the overall estimate of R0 was 1.43 (Fig. 5-Right).
However, the estimates differed across age-groups with
the highest of 4.7 for the group of 10-14 years of age. Intu-
itively, the age-groups with a higher contact rate had also
a higher R0. Simulations of epidemics with varied inter-
vention strategies showed that Re can be reduced below
unity if a vaccination program with 85% coverage was
deployed at the time as far as five months before the intro-
duction of the index case (time zero) or as late as one
week after that (Additional file 1: Figure S1). This cov-
erage threshold was tested as it is the highest vaccine
coverage currently achieved worldwide for some diseases,
e.g., Hepatitis B, measles, and polio [63]. Late initiations
of a similar intervention from one to five months after
the time zero gradually shifted the Re to the outbreak
domain.

ab

c

d

Fig. 4 Required data and an example of an age-structure network model. (a) Generated network of one hundred individuals that mimics
distribution of physical contact, contact matrix, and population age structure. The node’s size reflects its number of contacts. Nodes in the same
age-group have the same colour; (b) Distribution of number of physical contacts shows a majority of individuals have a few physical contact per day
[34]; (c) A heat map of contact matrix shows higher contact frequencies in darker shades. The matrix reflects the assortative pattern of human
contacts, that is people contact mainly with their peers, follow by their children or parents. The age-group with the highest contacts are teenagers
and young adults [34]; (d) Reconstructed age-structure of Sierra Leon population based on Statistics Sierra Leone and ICF International data [53]
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Fig. 5 Left. Three examples of infected networks. The three networks were randomly chosen from the simulated epidemics. Uninfected nodes were
removed and the network is plotted. Based on these, the R0 was calculated based on the edges assuming a directed network, i.e., each edge
counted in only one direction. Right. Estimates of the basic reproductive number without any intervention, overall and by age-groups. Simulations
of a network of size ten thousand during a period of one year. One thousand simulations were run, each time with a random index case. At the end
of each simulation, networks of infected nodes were extracted to compute the average number of secondary infections

A lower vaccination coverage of 33%, while substantially
reduced the epidemic size, still posed a potential of a large
outbreak regardless the timing of vaccination program
(Additional file 1: Figure S1). This coverage was tested as
it is a theoretically protective threshold in stochastic and
heterogeneous mixing models, i.e., 1-1/R0 [7, 64]. Note
that the tested time window of five months before the
appearance of the index case was chosen based on the
windows of opportunity for EBOV vaccination [41]. As of
now, no detailed data are available on the secondary anti-
body responses to EBOV; it was therefore assumed that
secondary responses are similar to the primary responses.

Case-fatality rate
Simulations showed that the case-fatality rate in the
absence of intervention was about 91% (Additional file 2:
Figure S2), which falls within the range of literature
estimates of 0.4 to 0.91 [79]. Note that the simulations
assumed worst case scenarios where no other inverven-
tions were done except the vaccination. Furthermore,
simulation results showed that all the intervention strate-
gies mentioned previously reduced the case-fatality rate.
These results highlighted a benefit of vaccination pro-
grams even if they were late: reducing the disease severity
in newly infected subjects after the introduction of the
vaccination program. As such, relying on R0 as the solely
indicator for evaluating intervention programs would
overlook this life-saving aspect.

Epidemic final size
Theoretical analyses of stochastic epidemic models
showed that when R0 is larger than unity, the final size

of an epidemic converges to a bimodal distribution: either
the epidemic dies out with a small number of infected
cases or the epidemic takes off to a normal distribu-
tion with a high number of cases [7]. Our simulation
results recreated this epidemic behavior (Fig. 6). With-
out intervention, EBOV had approximately 50% proba-
bility to infect more than half the population. The intro-
duction of vaccination programs at the two previously
mentioned coverages and at any vaccination time points
under assessment scaled down the epidemic size (Fig. 6).
The earlier the vaccination programs were deployed, the
closer the epidemics size distribution resemble to a uni-
modal distribution centered at a low infected fraction.
The high vaccine coverage strategy effectively eliminated
the possibility of having a major outbreak infecting a
large proportion of the population. This was achieved
when the vaccination programs were deployed at any
time point from one week to five months before time
zero.
Figure 6 also shows that a random vaccination pro-

gram covering 33% of the population one week before the
time zero reduced the final size by more than 100 times
compared to a no intervention scenario. However, the
low coverage strategy still showed a small probability that
the epidemic becomes major, whereas the high coverage
strategies did not. Vaccination programs deployed during
the epidemics also substantially reduced the epidemic’s
size: the vaccination program conducted one month after
time zero still reduced the final size by more than ten
times. Furthermore, these interventions were not only
able to reduce the final size, but they could also increase
the epidemics extinction probability (Fig. 6).
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Fig. 6 Distribution of the final infected fraction in different timing and coverage of vaccination strategies. A synthetic population of ten thousand
individuals was generated. One thousand simulations were run to simulate the epidemic in the time course of one year. Each time, one individual
was chosen randomly as the index case. Circles, diamonds, and connected lines are median. Filled areas are the corresponding non-parametric
densities estimates [78]. Two median values are presented for multi-modal density estimates, determining by inflection points

Discussion
In estimating parameters and designing prevention strate-
gies for infectious diseases, it is important to take
into account mechanisms underlying the heterogene-
ity in immune responses [65] and in the population
[34]. This paper combined a within-host immunolog-
ical model of Ebola virus (EBOV) infection and an
age- and demographic-specfic contact network to study
EBOV epidemic. The multi-scale model reproduced
major characteristics of EBOV epidemics and allowed
finer assessments of the timing of vaccination strategies.
Estimates of the EBOV’s incubation period suggested

a contact tracing period of three weeks for Ebola epi-
demics, matching the currentWHO’s recommendation of
21 days [66]. Estimates of the delay distributions agreed
with information that EBOV infected subjects can be
infectious from day 3 up to three weeks post infection
[79]. Understanding of these delay distributions is critical
in clinical and epidemiological perspectives [67]. These
distributions, however, are often only partially observed
in practice: it is difficult to know the exact time of expo-
sure to the pathogen or to have complete outbreak data
[68, 69]. As such, parameter estimation of these distribu-
tions have been relied on testing and comparing distri-
butional assumptions [69]. The mechanistically generated
transmission characteristics using virus dynamics remark-
ably resemble literature estimates. This suggests some
inherent biological processes where individual dynamics
accumulate to produce population-level epidemics. This
approach is thus promising and practical given the accu-
mulating experimental data on varieties of pathogens,
such as a disease X [60] that as yet unknown in epidemic
contexts.

To determine infection outcomes, the threshold AUC7
was chosen based on suggestions derived from empirical
data in humans [52] and non-human primates [43, 44].
Simulations of the epidemics using this threshold repro-
duced estimate of EBOV case-fatality rate (Additional
file 2: Figure S2), suggesting that the use of total viral load
(AUC) as a criterion for determining infection outcomes
is appropriate. It is worth noting that the calculated case
fatality rate was based on the assumption of worst case
scenarios where no treatments were provided. In practice
there were medical approaches to reduce disease sever-
ity. Scientific literature has shown that for severe cases of
EBOV infection (equivalent to unvaccinated subjects or
those vaccinated too late in our model), supportive treat-
ments increased substantially the survival chance [70].
Although a more precise threshold criterion is desirable,
it might not be feasible to obtain it in practice consid-
ering the inherent ethical reasons. Thus a similar cri-
terion as used here could be considered when adapting
this approach to other diseases, but ideally derived from
dedicated experimental data.
Different classes of network models have been pro-

posed, but they cannot reproduce properties observed
in real world networks [71]. In addition, choices of the-
oretical network structure used for simulation can alter
epidemic outcomes [30]. Thus, a network model built
from empirical data would provide a more solid ground
for epidemic simulations. Apart from mimicking the con-
tact data properties, our network model can express age-
related infection traits via the assigned age attribute. It was
used in this paper to express individual differences in the
susceptibility and immune response to viral infection—
the crucial elements in a realistic disease transmission.
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Although contact data might not be available for a certain
target area, the assortative patterns of human contacts and
the highly skewed distribution of the number of contacts
might hold true across regions [34, 35]. Thus, this paper
presents a simple way to bring empirical contact data into
epidemic modelling studies.
Our network model currently can only simulate epi-

demics in a population of size 10–20 thousand. This is
because of the limit in R with the theoretical maximum
square matrix size of approximately 45000 [57]. A more
efficient storing of the network could extend the net-
work size, such as a lazy evaluation used in igraph [61].
However, it could be more realistic to have several com-
munities amount to a large population size instead of a
large single network. This can be implemented by gener-
ating different communities across computers and allow
them to communicate, speeding also the computation
processes [72]. In this case, additional data are needed to
model the communication among the communities, such
as transportation network and immigration flow.
Regarding EBOV epidemics, previous R0 estimates

based on epidemic data varied strongly, depending on
model choices and assumptions [79]. Our estimate of R0
was 1.4 which is within the range of the previous esti-
mates, ranging from 1.2 to 2.6, with some exceptional esti-
mates up to 4.7 and 8.3 [79]. Notably, we showed that the
estimates differed by age-groups with the highest of 4.7 for
the group of 10–14-years of age. Although these estimates
depend on Sierra Leon’s age-structure, the differences of
R0 estimate stress the role of the age-structure and contact
patterns in the estimation of R0, prompting that age-
specific intervention strategies should be considered. The
estimates by sub-groups also single out the effort required
to control the epidemic [73]. With the assumptions used
in our models, targeting interventions to the group 5–20-
years of age would be the most effective strategy. Note
that the differences of R0 by age-group also provide us an
explanation of the wide variation of the previous estimates
of R0 where different samples were used [79]. As the R0
estimates were larger in sub-groups, our results confirmed
that the critical vaccine coverage also needed to be larger
to ensure eradication of the epidemic [64, 74]. Using our
approach, we have shown further that while a low cover-
age could not completely eradicate the epidemic, it could
largely reduce both the size and severity of an epidemic—
which is worth pursuing in cases of lacking resources to
reach an optimal threshold.

Conclusion
Throughout this paper, we showed the possibilities to
investigate practical and intriguing questions using a
within-host viral dynamic model and an age-structured
network model. The advantages of using explicitly within-
host dynamics are the availability of experimental data,

the possibility of conducting experiments to character-
ize transmission parameters, and the ability to provide
high-resolution subject-specific responses to infection.
The advantages of using an age-structured network model
are its simple implementation, its representativeness for
disease transmission, and the availability of the age-
structured data. Therefore, immunological studies of
infectious agents could be seamlessly integrated into stud-
ies of between hosts transmission, promoting evidence-
based public health practices.
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Additional file 1: Figure S1. Estimates of the reproductive number in
different vaccination schemes. Simulations of a network of size ten
thousand during a period of one year are performed. One thousand
simulations were run, each time with a random index case. At the end of
each simulation, the network of infected nodes was extracted to compute
the average number of secondary infections. (PDF 27 kb)

Additional file 2: Figure S2. Case-fatality rate in different vaccination
schemes. Simulations of a network of size ten thousand during a period of
one year are performed. One thousand simulations were run, each time
with a random index case. At the end of each simulation, the network of
infected nodes was extracted to compute the case-fatality rate. (PDF 28 kb)
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